fastNLP/tests/helpers/datasets/torch_data.py
2022-04-26 03:35:25 +00:00

69 lines
2.3 KiB
Python

import torch
from functools import reduce
from torch.utils.data import Dataset, DataLoader, DistributedSampler
from torch.utils.data.sampler import SequentialSampler, BatchSampler
class TorchNormalDataset(Dataset):
def __init__(self, num_of_data=1000):
self.num_of_data = num_of_data
self._data = list(range(num_of_data))
def __len__(self):
return self.num_of_data
def __getitem__(self, item):
return self._data[item]
# 该类专门用于为 tests.helpers.models.torch_model.py/ TorchNormalModel_Classification_1 创建数据;
class TorchNormalDataset_Classification(Dataset):
def __init__(self, num_labels, feature_dimension=2, each_label_data=1000, seed=0):
self.num_labels = num_labels
self.feature_dimension = feature_dimension
self.each_label_data = each_label_data
self.seed = seed
torch.manual_seed(seed)
self.x_center = torch.randint(low=-100, high=100, size=[num_labels, feature_dimension])
random_shuffle = torch.randn([num_labels, each_label_data, feature_dimension]) / 10
self.x = self.x_center.unsqueeze(1).expand(num_labels, each_label_data, feature_dimension) + random_shuffle
self.x = self.x.view(num_labels * each_label_data, feature_dimension)
self.y = reduce(lambda x, y: x+y, [[i] * each_label_data for i in range(num_labels)])
def __len__(self):
return self.num_labels * self.each_label_data
def __getitem__(self, item):
return {"x": self.x[item], "y": self.y[item]}
class TorchArgMaxDataset(Dataset):
def __init__(self, feature_dimension=10, data_num=1000, seed=0):
self.num_labels = feature_dimension
self.feature_dimension = feature_dimension
self.data_num = data_num
self.seed = seed
g = torch.Generator()
g.manual_seed(1000)
self.x = torch.randint(low=-100, high=100, size=[data_num, feature_dimension], generator=g).float()
self.y = torch.max(self.x, dim=-1)[1]
def __len__(self):
return self.data_num
def __getitem__(self, item):
return {"x": self.x[item], "y": self.y[item]}
if __name__ == "__main__":
a = TorchNormalDataset_Classification(2, each_label_data=4)
print(a.x)
print(a.y)
print(a[0])