mirror of
https://gitee.com/fastnlp/fastNLP.git
synced 2024-12-01 19:57:34 +08:00
2615 lines
111 KiB
Plaintext
2615 lines
111 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "fdd7ff16",
|
||
"metadata": {},
|
||
"source": [
|
||
"# T4. fastNLP 中的预定义模型\n",
|
||
"\n",
|
||
"  1   fastNLP 中 modules 的介绍\n",
|
||
" \n",
|
||
"    1.1   modules 模块、models 模块 简介\n",
|
||
"\n",
|
||
"    1.2   示例一:modules 实现 LSTM 分类\n",
|
||
"\n",
|
||
"  2   fastNLP 中 models 的介绍\n",
|
||
" \n",
|
||
"    2.1   示例一:models 实现 CNN 分类\n",
|
||
"\n",
|
||
"    2.3   示例二:models 实现 BiLSTM 标注"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "d3d65d53",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. fastNLP 中 modules 模块的介绍\n",
|
||
"\n",
|
||
"### 1.1 modules 模块、models 模块 简介\n",
|
||
"\n",
|
||
"在`fastNLP 0.8`中,**`modules.torch`路径下定义了一些基于`pytorch`实现的基础模块**\n",
|
||
"\n",
|
||
"    包括长短期记忆网络`LSTM`、条件随机场`CRF`、`transformer`的编解码器模块等,详见下表\n",
|
||
"\n",
|
||
"| <div align=\"center\">代码名称</div> | <div align=\"center\">简要介绍</div> | <div align=\"center\">代码路径</div> |\n",
|
||
"|:--|:--|:--|\n",
|
||
"| `LSTM` | 轻量封装`pytorch`的`LSTM` | `/modules/torch/encoder/lstm.py` |\n",
|
||
"| `Seq2SeqEncoder` | 序列变换编码器,基类 | `/modules/torch/encoder/seq2seq_encoder.py` |\n",
|
||
"| `LSTMSeq2SeqEncoder` | 序列变换编码器,基于`LSTM` | `/modules/torch/encoder/seq2seq_encoder.py` |\n",
|
||
"| `TransformerSeq2SeqEncoder` | 序列变换编码器,基于`transformer` | `/modules/torch/encoder/seq2seq_encoder.py` |\n",
|
||
"| `StarTransformer` | `Star-Transformer`的编码器部分 | `/modules/torch/encoder/star_transformer.py` |\n",
|
||
"| `VarRNN` | 实现`Variational Dropout RNN` | `/modules/torch/encoder/variational_rnn.py` |\n",
|
||
"| `VarLSTM` | 实现`Variational Dropout LSTM` | `/modules/torch/encoder/variational_rnn.py` |\n",
|
||
"| `VarGRU` | 实现`Variational Dropout GRU` | `/modules/torch/encoder/variational_rnn.py` |\n",
|
||
"| `MLP` | 多层感知机模型 | `/modules/torch/decoder/mlp.py` |\n",
|
||
"| `ConditionalRandomField` | 条件随机场模型 | `/modules/torch/decoder/crf.py` |\n",
|
||
"| `Seq2SeqDecoder` | 序列变换解码器,基类 | `/modules/torch/decoder/seq2seq_decoder.py` |\n",
|
||
"| `LSTMSeq2SeqDecoder` | 序列变换解码器,基于`LSTM` | `/modules/torch/decoder/seq2seq_decoder.py` |\n",
|
||
"| `TransformerSeq2SeqDecoder` | 序列变换解码器,基于`transformer` | `/modules/torch/decoder/seq2seq_decoder.py` |\n",
|
||
"| `SequenceGenerator` | 序列生成,封装`Seq2SeqDecoder` | `/models/torch/sequence_labeling.py` |\n",
|
||
"| `TimestepDropout` | 在每个`timestamp`上`dropout` | `/modules/torch/dropout.py` |"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "89ffcf07",
|
||
"metadata": {},
|
||
"source": [
|
||
"  **`models.torch`路径下定义了一些基于`pytorch`、`modules`实现的预定义模型** \n",
|
||
"\n",
|
||
"    例如基于`CNN`的分类模型、基于`BiLSTM+CRF`的标注模型、基于[双仿射注意力机制](https://arxiv.org/pdf/1611.01734.pdf)的分析模型\n",
|
||
"\n",
|
||
"    基于`modules.torch`中的`LSTM`/`transformer`编/解码器模块的序列变换/生成模型,详见下表\n",
|
||
"\n",
|
||
"| <div align=\"center\">代码名称</div> | <div align=\"center\">简要介绍</div> | <div align=\"center\">代码路径</div> |\n",
|
||
"|:--|:--|:--|\n",
|
||
"| `BiaffineParser` | 句法分析模型,基于双仿射注意力 | `/models/torch/biaffine_parser.py` |\n",
|
||
"| `CNNText` | 文本分类模型,基于`CNN` | `/models/torch/cnn_text_classification.py` |\n",
|
||
"| `Seq2SeqModel` | 序列变换,基类`encoder+decoder` | `/models/torch/seq2seq_model.py` |\n",
|
||
"| `LSTMSeq2SeqModel` | 序列变换,基于`LSTM` | `/models/torch/seq2seq_model.py` |\n",
|
||
"| `TransformerSeq2SeqModel` | 序列变换,基于`transformer` | `/models/torch/seq2seq_model.py` |\n",
|
||
"| `SequenceGeneratorModel` | 封装`Seq2SeqModel`,结合`SequenceGenerator` | `/models/torch/seq2seq_generator.py` |\n",
|
||
"| `SeqLabeling` | 标注模型,基类`LSTM+FC+CRF` | `/models/torch/sequence_labeling.py` |\n",
|
||
"| `BiLSTMCRF` | 标注模型,`BiLSTM+FC+CRF` | `/models/torch/sequence_labeling.py` |\n",
|
||
"| `AdvSeqLabel` | 标注模型,`LN+BiLSTM*2+LN+FC+CRF` | `/models/torch/sequence_labeling.py` |"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "61318354",
|
||
"metadata": {},
|
||
"source": [
|
||
"上述`fastNLP`模块,不仅**为入门级用户提供了简单易用的工具**,以解决各种`NLP`任务,或复现相关论文\n",
|
||
"\n",
|
||
"  同时**也为专业研究人员提供了便捷可操作的接口**,封装部分代码的同时,也能指定参数修改细节\n",
|
||
"\n",
|
||
"  在接下来的`tutorial`中,我们将通过`SST-2`分类和`CoNLL-2003`标注,展示相关模型使用\n",
|
||
"\n",
|
||
"注一:**`SST`**,**单句情感分类**数据集,包含电影评论和对应情感极性,1 对应正面情感,0 对应负面情感\n",
|
||
"\n",
|
||
"  数据集包括三部分:训练集 67350 条,验证集 873 条,测试集 1821 条,更多参考[下载链接](https://gluebenchmark.com/tasks)\n",
|
||
"\n",
|
||
"注二:**`CoNLL-2003`**,**文本语法标注**数据集,包含语句和对应的词性标签`pos_tags`(名动形数量代)\n",
|
||
"\n",
|
||
"  语法结构标签`chunk_tags`(主谓宾定状补)、命名实体标签`ner_tags`(人名、组织名、地名、时间等)\n",
|
||
"\n",
|
||
"  数据集包括三部分:训练集 14041 条,验证集 3250 条,测试集 3453 条,更多参考[原始论文](https://aclanthology.org/W03-0419.pdf)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "2a36bbe4",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 1.2 示例一:modules 实现 LSTM 分类\n",
|
||
"\n",
|
||
"\n",
|
||
"  本示例使用`fastNLP 0.8`中预定义模型`modules`模块,基于`LSTM`模型,实现`SST-2`文本二分类任务\n",
|
||
"\n",
|
||
"数据使用方面:首先,**使用`datasets`模块中的`load_dataset`函数**,以如下形式,指定`SST-2`数据集加载\n",
|
||
"\n",
|
||
"    首次下载保存至`~/.cache/huggingface/modules/datasets_modules/datasets/glue/`目录下"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "1aa5cf6d",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Reusing dataset glue (/remote-home/xrliu/.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "b8bdfdc011d349e38a1aa2aff35b2482",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
" 0%| | 0/3 [00:00<?, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"from datasets import load_dataset\n",
|
||
"\n",
|
||
"sst2data = load_dataset('glue', 'sst2')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "c476abe7",
|
||
"metadata": {},
|
||
"source": [
|
||
"  接着,使用`tutorial-1`和`tutorial-2`中的知识,将数据集转化为`fastNLP`中的`DataSet`格式\n",
|
||
"\n",
|
||
"    **使用`apply_more`函数、`Vocabulary`模块的`from_/index_dataset`函数预处理数据**\n",
|
||
"\n",
|
||
"      并结合`delete_field`函数删除字段调整格式,`split`函数划分测试集和验证集\n",
|
||
"\n",
|
||
"    **仅保留`'words'`字段表示输入文本单词序号序列、`'target'`字段表示文本对应预测输出结果**\n",
|
||
"\n",
|
||
"      两者**对应到`CNNText`中`train_step`函数和`evaluate_step`函数的签名/输入参数**"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "357ea748",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\u001b[38;5;2m[i 0604 16:19:46.727257 48 log.cc:351] Load log_sync: 1\u001b[m\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Processing: 0%| | 0/6000 [00:00<?, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"import sys\n",
|
||
"sys.path.append('..')\n",
|
||
"\n",
|
||
"from fastNLP import DataSet\n",
|
||
"\n",
|
||
"dataset = DataSet.from_pandas(sst2data['train'].to_pandas())[:6000]\n",
|
||
"\n",
|
||
"dataset.apply_more(lambda ins:{'words': ins['sentence'].lower().split(), 'target': ins['label']}, \n",
|
||
" progress_bar=\"tqdm\")\n",
|
||
"dataset.delete_field('sentence')\n",
|
||
"dataset.delete_field('label')\n",
|
||
"dataset.delete_field('idx')\n",
|
||
"\n",
|
||
"from fastNLP import Vocabulary\n",
|
||
"\n",
|
||
"vocab = Vocabulary()\n",
|
||
"vocab.from_dataset(dataset, field_name='words')\n",
|
||
"vocab.index_dataset(dataset, field_name='words')\n",
|
||
"\n",
|
||
"train_dataset, evaluate_dataset = dataset.split(ratio=0.85)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "96380c67",
|
||
"metadata": {},
|
||
"source": [
|
||
"  然后,使用`tutorial-3`中的知识,**通过`prepare_torch_dataloader`处理数据集得到`dataloader`**"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "b9dd1273",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from fastNLP import prepare_torch_dataloader\n",
|
||
"\n",
|
||
"train_dataloader = prepare_torch_dataloader(train_dataset, batch_size=16, shuffle=True)\n",
|
||
"evaluate_dataloader = prepare_torch_dataloader(evaluate_dataset, batch_size=16)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "eb75aaba",
|
||
"metadata": {},
|
||
"source": [
|
||
"模型使用方面,这里使用`Embedding`、`LSTM`、`MLP`等模块搭建模型,方法类似`pytorch`,结构如下所示\n",
|
||
"\n",
|
||
"```\n",
|
||
"ClsByModules(\n",
|
||
" (embedding): Embedding(\n",
|
||
" (embed): Embedding(8458, 100)\n",
|
||
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
||
" )\n",
|
||
" (lstm): LSTM(\n",
|
||
" (lstm): LSTM(100, 64, num_layers=2, batch_first=True, bidirectional=True)\n",
|
||
" )\n",
|
||
" (mlp): MLP(\n",
|
||
" (hiddens): ModuleList()\n",
|
||
" (output): Linear(in_features=128, out_features=2, bias=True)\n",
|
||
" (dropout): Dropout(p=0.5, inplace=False)\n",
|
||
" )\n",
|
||
" (loss_fn): CrossEntropyLoss()\n",
|
||
")\n",
|
||
"```"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "0b25b25c",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import torch\n",
|
||
"import torch.nn as nn\n",
|
||
"\n",
|
||
"from fastNLP.modules.torch import LSTM, MLP\n",
|
||
"from fastNLP.embeddings.torch import Embedding\n",
|
||
"\n",
|
||
"\n",
|
||
"class ClsByModules(nn.Module):\n",
|
||
" def __init__(self, vocab_size, embedding_dim, output_dim, hidden_dim=64, num_layers=2, dropout=0.5):\n",
|
||
" nn.Module.__init__(self)\n",
|
||
"\n",
|
||
" self.embedding = Embedding((vocab_size, embedding_dim))\n",
|
||
" self.lstm = LSTM(embedding_dim, hidden_dim, num_layers=num_layers, bidirectional=True)\n",
|
||
" self.mlp = MLP([hidden_dim * 2, output_dim], dropout=dropout)\n",
|
||
" \n",
|
||
" self.loss_fn = nn.CrossEntropyLoss()\n",
|
||
"\n",
|
||
" def forward(self, words):\n",
|
||
" output = self.embedding(words)\n",
|
||
" output, (hidden, cell) = self.lstm(output)\n",
|
||
" output = self.mlp(torch.cat((hidden[-1], hidden[-2]), dim=1))\n",
|
||
" return output\n",
|
||
" \n",
|
||
" def train_step(self, words, target):\n",
|
||
" pred = self(words)\n",
|
||
" return {\"loss\": self.loss_fn(pred, target)}\n",
|
||
"\n",
|
||
" def evaluate_step(self, words, target):\n",
|
||
" pred = self(words)\n",
|
||
" pred = torch.max(pred, dim=-1)[1]\n",
|
||
" return {\"pred\": pred, \"target\": target}"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "4890de5a",
|
||
"metadata": {},
|
||
"source": [
|
||
"  接着,初始化模型`model`实例,同时,使用`torch.optim.AdamW`初始化`optimizer`实例"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "9dbbf50d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"model = ClsByModules(vocab_size=len(vocab), embedding_dim=100, output_dim=2)\n",
|
||
"\n",
|
||
"from torch.optim import AdamW\n",
|
||
"\n",
|
||
"optimizers = AdamW(params=model.parameters(), lr=5e-5)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "054538f5",
|
||
"metadata": {},
|
||
"source": [
|
||
"  最后,使用`trainer`模块,集成`model`、`optimizer`、`dataloader`、`metric`训练"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"id": "7a93432f",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from fastNLP import Trainer, Accuracy\n",
|
||
"\n",
|
||
"trainer = Trainer(\n",
|
||
" model=model,\n",
|
||
" driver='torch',\n",
|
||
" device=0, # 'cuda'\n",
|
||
" n_epochs=10,\n",
|
||
" optimizers=optimizers,\n",
|
||
" train_dataloader=train_dataloader,\n",
|
||
" evaluate_dataloaders=evaluate_dataloader,\n",
|
||
" metrics={'acc': Accuracy()}\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"id": "31102e0f",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #7fbfbf; text-decoration-color: #7fbfbf\">[16:20:10] </span><span style=\"color: #000080; text-decoration-color: #000080\">INFO </span> Running evaluator sanity check for <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">2</span> batches. <a href=\"file://../fastNLP/core/controllers/trainer.py\"><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">trainer.py</span></a><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">:</span><a href=\"file://../fastNLP/core/controllers/trainer.py#596\"><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">596</span></a>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[2;36m[16:20:10]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running evaluator sanity check for \u001b[1;36m2\u001b[0m batches. \u001b]8;id=908530;file://../fastNLP/core/controllers/trainer.py\u001b\\\u001b[2mtrainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=864197;file://../fastNLP/core/controllers/trainer.py#596\u001b\\\u001b[2m596\u001b[0m\u001b]8;;\u001b\\\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Output()"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">/remote-home/xrliu/anaconda3/envs/demo/lib/python3.7/site-packages/ipywidgets/widgets/widget_\n",
|
||
"output.py:111: DeprecationWarning: Kernel._parent_header is deprecated in ipykernel 6. Use \n",
|
||
".get_parent()\n",
|
||
" if ip and hasattr(ip, 'kernel') and hasattr(ip.kernel, '_parent_header'):\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"/remote-home/xrliu/anaconda3/envs/demo/lib/python3.7/site-packages/ipywidgets/widgets/widget_\n",
|
||
"output.py:111: DeprecationWarning: Kernel._parent_header is deprecated in ipykernel 6. Use \n",
|
||
".get_parent()\n",
|
||
" if ip and hasattr(ip, 'kernel') and hasattr(ip.kernel, '_parent_header'):\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">/remote-home/xrliu/anaconda3/envs/demo/lib/python3.7/site-packages/ipywidgets/widgets/widget_\n",
|
||
"output.py:112: DeprecationWarning: Kernel._parent_header is deprecated in ipykernel 6. Use \n",
|
||
".get_parent()\n",
|
||
" self.msg_id = ip.kernel._parent_header['header']['msg_id']\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"/remote-home/xrliu/anaconda3/envs/demo/lib/python3.7/site-packages/ipywidgets/widgets/widget_\n",
|
||
"output.py:112: DeprecationWarning: Kernel._parent_header is deprecated in ipykernel 6. Use \n",
|
||
".get_parent()\n",
|
||
" self.msg_id = ip.kernel._parent_header['header']['msg_id']\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
|
||
],
|
||
"text/plain": []
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Output()"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">1</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m1\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.525</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">160.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">84.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.525\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m84.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">2</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m2\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.54375</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">160.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">87.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.54375\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m87.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m3\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.55</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">160.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">88.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.55\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m88.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">4</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m4\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.625</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">160.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">100.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.625\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">5</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m5\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.65</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">160.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">104.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.65\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m104.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">6</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m6\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.69375</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">160.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">111.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.69375\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m111.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">7</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m7\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.675</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">160.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">108.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.675\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m108.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">8</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m8\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.66875</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">160.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">107.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.66875\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m107.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">9</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m9\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.675</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">160.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">108.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.675\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m108.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">---------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">10</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"---------------------------- Eval. results on Epoch:\u001b[1;36m10\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.68125</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">160.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">109.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.68125\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m109.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
|
||
],
|
||
"text/plain": []
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"trainer.run(num_eval_batch_per_dl=10)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"id": "8bc4bfb2",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Output()"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
|
||
],
|
||
"text/plain": []
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"{'acc#acc': 0.712222, 'total#acc': 900.0, 'correct#acc': 641.0}"
|
||
]
|
||
},
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"trainer.evaluator.run()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "07538876",
|
||
"metadata": {},
|
||
"source": [
|
||
"  注:此处使用`gc`模块删除相关变量,释放内存,为接下来新的模型训练预留存储空间,下同"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"id": "1b52eafd",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"383"
|
||
]
|
||
},
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"import gc\n",
|
||
"\n",
|
||
"del model\n",
|
||
"del trainer\n",
|
||
"del dataset\n",
|
||
"del sst2data\n",
|
||
"\n",
|
||
"gc.collect()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "d9443213",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. fastNLP 中 models 模块的介绍\n",
|
||
"\n",
|
||
"### 2.1 示例一:models 实现 CNN 分类\n",
|
||
"\n",
|
||
"  本示例使用`fastNLP 0.8`中预定义模型`models`中的`CNNText`模型,实现`SST-2`文本二分类任务\n",
|
||
"\n",
|
||
"数据使用方面,此处沿用在上个示例中展示的`SST-2`数据集,数据加载过程相同且已经执行过了,因此简略\n",
|
||
"\n",
|
||
"模型使用方面,如上所述,这里使用**基于卷积神经网络`CNN`的预定义文本分类模型`CNNText`**,结构如下所示\n",
|
||
"\n",
|
||
"  首先是内置的`100`维嵌入层、`dropout`层、紧接着是三个一维卷积,将`100`维嵌入特征,分别通过\n",
|
||
"\n",
|
||
"    **感受野为`1`、`3`、`5`的卷积算子变换至`30`维、`40`维、`50`维的卷积特征**,再将三者拼接\n",
|
||
"\n",
|
||
"  最终再次通过`dropout`层、线性变换层,映射至二元的输出值,对应两个分类结果上的几率`logits`\n",
|
||
"\n",
|
||
"```\n",
|
||
"CNNText(\n",
|
||
" (embed): Embedding(\n",
|
||
" (embed): Embedding(5194, 100)\n",
|
||
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
||
" )\n",
|
||
" (conv_pool): ConvMaxpool(\n",
|
||
" (convs): ModuleList(\n",
|
||
" (0): Conv1d(100, 30, kernel_size=(1,), stride=(1,), bias=False)\n",
|
||
" (1): Conv1d(100, 40, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n",
|
||
" (2): Conv1d(100, 50, kernel_size=(5,), stride=(1,), padding=(2,), bias=False)\n",
|
||
" )\n",
|
||
" )\n",
|
||
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
||
" (fc): Linear(in_features=120, out_features=2, bias=True)\n",
|
||
")\n",
|
||
"```\n",
|
||
"\n",
|
||
"对应到代码上,**从`fastNLP.models.torch`路径下导入`CNNText`**,初始化`CNNText`和`optimizer`实例\n",
|
||
"\n",
|
||
"  注意:初始化`CNNText`时,**二元组参数`embed`、分类数量`num_classes`是必须传入的**,其中\n",
|
||
"\n",
|
||
"    **`embed`表示嵌入层的嵌入抽取矩阵大小**,因此第二个元素对应的是默认隐藏层维度 `100`维"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"id": "f6e76e2e",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from fastNLP.models.torch import CNNText\n",
|
||
"\n",
|
||
"model = CNNText(embed=(len(vocab), 100), num_classes=2, dropout=0.1)\n",
|
||
"\n",
|
||
"from torch.optim import AdamW\n",
|
||
"\n",
|
||
"optimizers = AdamW(params=model.parameters(), lr=5e-4)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "0cc5ca10",
|
||
"metadata": {},
|
||
"source": [
|
||
"  最后,使用`trainer`模块,集成`model`、`optimizer`、`dataloader`、`metric`训练"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"id": "50a13ee5",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from fastNLP import Trainer, Accuracy\n",
|
||
"\n",
|
||
"trainer = Trainer(\n",
|
||
" model=model,\n",
|
||
" driver='torch',\n",
|
||
" device=0, # 'cuda'\n",
|
||
" n_epochs=10,\n",
|
||
" optimizers=optimizers,\n",
|
||
" train_dataloader=train_dataloader,\n",
|
||
" evaluate_dataloaders=evaluate_dataloader,\n",
|
||
" metrics={'acc': Accuracy()}\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"id": "28903a7d",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #7fbfbf; text-decoration-color: #7fbfbf\">[16:21:57] </span><span style=\"color: #000080; text-decoration-color: #000080\">INFO </span> Running evaluator sanity check for <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">2</span> batches. <a href=\"file://../fastNLP/core/controllers/trainer.py\"><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">trainer.py</span></a><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">:</span><a href=\"file://../fastNLP/core/controllers/trainer.py#596\"><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">596</span></a>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[2;36m[16:21:57]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running evaluator sanity check for \u001b[1;36m2\u001b[0m batches. \u001b]8;id=813103;file://../fastNLP/core/controllers/trainer.py\u001b\\\u001b[2mtrainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=271516;file://../fastNLP/core/controllers/trainer.py#596\u001b\\\u001b[2m596\u001b[0m\u001b]8;;\u001b\\\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Output()"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
|
||
],
|
||
"text/plain": []
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Output()"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">1</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m1\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.654444</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">900.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">589.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.654444\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m900.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m589.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">2</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m2\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.767778</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">900.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">691.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.767778\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m900.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m691.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m3\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.797778</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">900.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">718.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.797778\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m900.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m718.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">4</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m4\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.803333</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">900.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">723.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.803333\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m900.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m723.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">5</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m5\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.807778</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">900.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">727.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.807778\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m900.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m727.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">6</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m6\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.812222</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">900.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">731.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.812222\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m900.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m731.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">7</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m7\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.804444</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">900.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">724.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.804444\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m900.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m724.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">8</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m8\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.811111</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">900.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">730.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.811111\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m900.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m730.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">9</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m9\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.811111</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">900.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">730.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.811111\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m900.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m730.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">---------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">10</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"---------------------------- Eval. results on Epoch:\u001b[1;36m10\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.806667</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">900.0</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">726.0</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.806667\u001b[0m,\n",
|
||
" \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m900.0\u001b[0m,\n",
|
||
" \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m726.0\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
|
||
],
|
||
"text/plain": []
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"trainer.run()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"id": "f47a6a35",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Output()"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
|
||
],
|
||
"text/plain": []
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"{'acc#acc': 0.806667, 'total#acc': 900.0, 'correct#acc': 726.0}"
|
||
]
|
||
},
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"trainer.evaluator.run()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "5b5c0446",
|
||
"metadata": {},
|
||
"source": [
|
||
"  注:此处使用`gc`模块删除相关变量,释放内存,为接下来新的模型训练预留存储空间,下同"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"id": "e9e70f88",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"344"
|
||
]
|
||
},
|
||
"execution_count": 14,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"import gc\n",
|
||
"\n",
|
||
"del model\n",
|
||
"del trainer\n",
|
||
"\n",
|
||
"gc.collect()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "6aec2a19",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 2.2 示例二:models 实现 BiLSTM 标注\n",
|
||
"\n",
|
||
"  通过两个示例一的对比可以发现,得益于`models`对模型结构的封装,使用`models`明显更加便捷\n",
|
||
"\n",
|
||
"    针对更加复杂的模型时,编码更加轻松;本示例将使用`models`中的`BiLSTMCRF`模型\n",
|
||
"\n",
|
||
"  避免`CRF`和`Viterbi`算法代码书写的困难,轻松实现`CoNLL-2003`中的命名实体识别`NER`任务\n",
|
||
"\n",
|
||
"模型使用方面,如上所述,这里使用**基于双向`LSTM`+条件随机场`CRF`的标注模型`BiLSTMCRF`**,结构如下所示\n",
|
||
"\n",
|
||
"  其中,隐藏层维度默认`100`维,因此对应双向`LSTM`输出`200`维,`dropout`层退学概率、`LSTM`层数可调\n",
|
||
"\n",
|
||
"```\n",
|
||
"BiLSTMCRF(\n",
|
||
" (embed): Embedding(7590, 100)\n",
|
||
" (lstm): LSTM(\n",
|
||
" (lstm): LSTM(100, 100, batch_first=True, bidirectional=True)\n",
|
||
" )\n",
|
||
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
||
" (fc): Linear(in_features=200, out_features=9, bias=True)\n",
|
||
" (crf): ConditionalRandomField()\n",
|
||
")\n",
|
||
"```\n",
|
||
"\n",
|
||
"数据使用方面,此处仍然**使用`datasets`模块中的`load_dataset`函数**,以如下形式,加载`CoNLL-2003`数据集\n",
|
||
"\n",
|
||
"  首次下载后会保存至`~.cache/huggingface/datasets/conll2003/conll2003/1.0.0/`目录下"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 15,
|
||
"id": "03e66686",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Reusing dataset conll2003 (/remote-home/xrliu/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/63f4ebd1bcb7148b1644497336fd74643d4ce70123334431a3c053b7ee4e96ee)\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "593bc03ed5914953ab94268ff2f01710",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
" 0%| | 0/3 [00:00<?, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"from datasets import load_dataset\n",
|
||
"\n",
|
||
"ner2data = load_dataset('conll2003', 'conll2003')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "fc505631",
|
||
"metadata": {},
|
||
"source": [
|
||
"紧接着,使用`tutorial-1`和`tutorial-2`中的知识,将数据集转化为`fastNLP`中的`DataSet`格式\n",
|
||
"\n",
|
||
"  完成数据集格式调整、文本序列化等操作;此处**需要`'words'`、`'seq_len'`、`'target'`三个字段**\n",
|
||
"\n",
|
||
"此外,**需要定义`NER`标签到标签序号的映射**(**词汇表`label_vocab`**),数据集中标签已经完成了序号映射\n",
|
||
"\n",
|
||
"  所以需要人工定义**`9`个标签对应之前的`9`个分类目标**;数据集说明中规定,`'O'`表示其他标签\n",
|
||
"\n",
|
||
"  **后缀`'-PER'`、`'-ORG'`、`'-LOC'`、`'-MISC'`对应人名、组织名、地名、时间等其他命名**\n",
|
||
"\n",
|
||
"  **前缀`'B-'`表示起始标签、`'I-'`表示终止标签**;例如,`'B-PER'`表示人名实体的起始标签"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 16,
|
||
"id": "1f88cad4",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Processing: 0%| | 0/4000 [00:00<?, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"import sys\n",
|
||
"sys.path.append('..')\n",
|
||
"\n",
|
||
"from fastNLP import DataSet\n",
|
||
"\n",
|
||
"dataset = DataSet.from_pandas(ner2data['train'].to_pandas())[:4000]\n",
|
||
"\n",
|
||
"dataset.apply_more(lambda ins:{'words': ins['tokens'], 'seq_len': len(ins['tokens']), 'target': ins['ner_tags']}, \n",
|
||
" progress_bar=\"tqdm\")\n",
|
||
"dataset.delete_field('tokens')\n",
|
||
"dataset.delete_field('ner_tags')\n",
|
||
"dataset.delete_field('pos_tags')\n",
|
||
"dataset.delete_field('chunk_tags')\n",
|
||
"dataset.delete_field('id')\n",
|
||
"\n",
|
||
"from fastNLP import Vocabulary\n",
|
||
"\n",
|
||
"token_vocab = Vocabulary()\n",
|
||
"token_vocab.from_dataset(dataset, field_name='words')\n",
|
||
"token_vocab.index_dataset(dataset, field_name='words')\n",
|
||
"label_vocab = Vocabulary(padding=None, unknown=None)\n",
|
||
"label_vocab.add_word_lst(['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC', 'B-MISC', 'I-MISC'])\n",
|
||
"\n",
|
||
"train_dataset, evaluate_dataset = dataset.split(ratio=0.85)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "d9889427",
|
||
"metadata": {},
|
||
"source": [
|
||
"然后,同样使用`tutorial-3`中的知识,通过`prepare_torch_dataloader`处理数据集得到`dataloader`"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 17,
|
||
"id": "7802a072",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from fastNLP import prepare_torch_dataloader\n",
|
||
"\n",
|
||
"train_dataloader = prepare_torch_dataloader(train_dataset, batch_size=16, shuffle=True)\n",
|
||
"evaluate_dataloader = prepare_torch_dataloader(evaluate_dataset, batch_size=16)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "2bc7831b",
|
||
"metadata": {},
|
||
"source": [
|
||
"接着,**从`fastNLP.models.torch`路径下导入`BiLSTMCRF`**,初始化`BiLSTMCRF`实例和优化器\n",
|
||
"\n",
|
||
"  注意:初始化`BiLSTMCRF`时,和`CNNText`相同,**参数`embed`、`num_classes`是必须传入的**\n",
|
||
"\n",
|
||
"    隐藏层维度`hidden_size`默认`100`维,调整`150`维;退学概率默认`0.1`,调整`0.2`"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 18,
|
||
"id": "4e12c09f",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from fastNLP.models.torch import BiLSTMCRF\n",
|
||
"\n",
|
||
"model = BiLSTMCRF(embed=(len(token_vocab), 150), num_classes=len(label_vocab), \n",
|
||
" num_layers=1, hidden_size=150, dropout=0.2)\n",
|
||
"\n",
|
||
"from torch.optim import AdamW\n",
|
||
"\n",
|
||
"optimizers = AdamW(params=model.parameters(), lr=1e-3)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "bf30608f",
|
||
"metadata": {},
|
||
"source": [
|
||
"最后,使用`trainer`模块,集成`model`、`optimizer`、`dataloader`、`metric`训练\n",
|
||
"\n",
|
||
"  **使用`SpanFPreRecMetric`作为`NER`的评价标准**,详细请参考接下来的`tutorial-5`\n",
|
||
"\n",
|
||
"  同时,**初始化时需要添加`vocabulary`形式的标签与序号之间的映射`tag_vocab`**"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"id": "cbd6c205",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from fastNLP import Trainer, SpanFPreRecMetric\n",
|
||
"\n",
|
||
"trainer = Trainer(\n",
|
||
" model=model,\n",
|
||
" driver='torch',\n",
|
||
" device=0, # 'cuda'\n",
|
||
" n_epochs=10,\n",
|
||
" optimizers=optimizers,\n",
|
||
" train_dataloader=train_dataloader,\n",
|
||
" evaluate_dataloaders=evaluate_dataloader,\n",
|
||
" metrics={'F1': SpanFPreRecMetric(tag_vocab=label_vocab)}\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"id": "0f8eff34",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #7fbfbf; text-decoration-color: #7fbfbf\">[16:23:41] </span><span style=\"color: #000080; text-decoration-color: #000080\">INFO </span> Running evaluator sanity check for <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">2</span> batches. <a href=\"file://../fastNLP/core/controllers/trainer.py\"><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">trainer.py</span></a><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">:</span><a href=\"file://../fastNLP/core/controllers/trainer.py#596\"><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">596</span></a>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[2;36m[16:23:41]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running evaluator sanity check for \u001b[1;36m2\u001b[0m batches. \u001b]8;id=565652;file://../fastNLP/core/controllers/trainer.py\u001b\\\u001b[2mtrainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=224849;file://../fastNLP/core/controllers/trainer.py#596\u001b\\\u001b[2m596\u001b[0m\u001b]8;;\u001b\\\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Output()"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
|
||
],
|
||
"text/plain": []
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Output()"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">1</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m1\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"f#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.169014</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"pre#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.170732</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"rec#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.167331</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"f#F1\"\u001b[0m: \u001b[1;36m0.169014\u001b[0m,\n",
|
||
" \u001b[1;34m\"pre#F1\"\u001b[0m: \u001b[1;36m0.170732\u001b[0m,\n",
|
||
" \u001b[1;34m\"rec#F1\"\u001b[0m: \u001b[1;36m0.167331\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">2</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m2\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"f#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.361809</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"pre#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.312139</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"rec#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.430279</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"f#F1\"\u001b[0m: \u001b[1;36m0.361809\u001b[0m,\n",
|
||
" \u001b[1;34m\"pre#F1\"\u001b[0m: \u001b[1;36m0.312139\u001b[0m,\n",
|
||
" \u001b[1;34m\"rec#F1\"\u001b[0m: \u001b[1;36m0.430279\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m3\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"f#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.525</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"pre#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.475728</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"rec#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.585657</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"f#F1\"\u001b[0m: \u001b[1;36m0.525\u001b[0m,\n",
|
||
" \u001b[1;34m\"pre#F1\"\u001b[0m: \u001b[1;36m0.475728\u001b[0m,\n",
|
||
" \u001b[1;34m\"rec#F1\"\u001b[0m: \u001b[1;36m0.585657\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">4</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m4\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"f#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.627306</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"pre#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.584192</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"rec#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.677291</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"f#F1\"\u001b[0m: \u001b[1;36m0.627306\u001b[0m,\n",
|
||
" \u001b[1;34m\"pre#F1\"\u001b[0m: \u001b[1;36m0.584192\u001b[0m,\n",
|
||
" \u001b[1;34m\"rec#F1\"\u001b[0m: \u001b[1;36m0.677291\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">5</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m5\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"f#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.710937</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"pre#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.697318</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"rec#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.7251</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"f#F1\"\u001b[0m: \u001b[1;36m0.710937\u001b[0m,\n",
|
||
" \u001b[1;34m\"pre#F1\"\u001b[0m: \u001b[1;36m0.697318\u001b[0m,\n",
|
||
" \u001b[1;34m\"rec#F1\"\u001b[0m: \u001b[1;36m0.7251\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">6</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m6\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"f#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.739563</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"pre#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.738095</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"rec#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.741036</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"f#F1\"\u001b[0m: \u001b[1;36m0.739563\u001b[0m,\n",
|
||
" \u001b[1;34m\"pre#F1\"\u001b[0m: \u001b[1;36m0.738095\u001b[0m,\n",
|
||
" \u001b[1;34m\"rec#F1\"\u001b[0m: \u001b[1;36m0.741036\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">7</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m7\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"f#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.748491</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"pre#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.756098</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"rec#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.741036</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"f#F1\"\u001b[0m: \u001b[1;36m0.748491\u001b[0m,\n",
|
||
" \u001b[1;34m\"pre#F1\"\u001b[0m: \u001b[1;36m0.756098\u001b[0m,\n",
|
||
" \u001b[1;34m\"rec#F1\"\u001b[0m: \u001b[1;36m0.741036\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">8</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m8\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"f#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.716763</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"pre#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.69403</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"rec#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.741036</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"f#F1\"\u001b[0m: \u001b[1;36m0.716763\u001b[0m,\n",
|
||
" \u001b[1;34m\"pre#F1\"\u001b[0m: \u001b[1;36m0.69403\u001b[0m,\n",
|
||
" \u001b[1;34m\"rec#F1\"\u001b[0m: \u001b[1;36m0.741036\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">9</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"----------------------------- Eval. results on Epoch:\u001b[1;36m9\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"f#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.768293</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"pre#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.784232</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"rec#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.752988</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"f#F1\"\u001b[0m: \u001b[1;36m0.768293\u001b[0m,\n",
|
||
" \u001b[1;34m\"pre#F1\"\u001b[0m: \u001b[1;36m0.784232\u001b[0m,\n",
|
||
" \u001b[1;34m\"rec#F1\"\u001b[0m: \u001b[1;36m0.752988\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">---------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">10</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"---------------------------- Eval. results on Epoch:\u001b[1;36m10\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"f#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.757692</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"pre#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.732342</span>,\n",
|
||
" <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"rec#F1\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.784861</span>\n",
|
||
"<span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\n",
|
||
" \u001b[1;34m\"f#F1\"\u001b[0m: \u001b[1;36m0.757692\u001b[0m,\n",
|
||
" \u001b[1;34m\"pre#F1\"\u001b[0m: \u001b[1;36m0.732342\u001b[0m,\n",
|
||
" \u001b[1;34m\"rec#F1\"\u001b[0m: \u001b[1;36m0.784861\u001b[0m\n",
|
||
"\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
|
||
],
|
||
"text/plain": []
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"trainer.run(num_eval_batch_per_dl=10)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 21,
|
||
"id": "37871d6b",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Output()"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
|
||
],
|
||
"text/plain": []
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"{'f#F1': 0.766798, 'pre#F1': 0.741874, 'rec#F1': 0.793456}"
|
||
]
|
||
},
|
||
"execution_count": 21,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"trainer.evaluator.run()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "96bae094",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.7.13"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|