mirror of
https://gitee.com/johng/gf.git
synced 2024-12-01 19:57:40 +08:00
update gview: show empty string when the variable does not exist
This commit is contained in:
parent
105a821069
commit
c961c22cd7
@ -21,11 +21,11 @@ import (
|
||||
"gitee.com/johng/gf/g/os/glog"
|
||||
"gitee.com/johng/gf/g/os/gspath"
|
||||
"gitee.com/johng/gf/g/os/gtime"
|
||||
"gitee.com/johng/gf/g/os/gview/internal/text/template"
|
||||
"gitee.com/johng/gf/g/util/gconv"
|
||||
"gitee.com/johng/gf/g/util/gstr"
|
||||
"strings"
|
||||
"sync"
|
||||
"text/template"
|
||||
)
|
||||
|
||||
// 视图对象
|
||||
|
449
g/os/gview/internal/text/template/doc.go
Normal file
449
g/os/gview/internal/text/template/doc.go
Normal file
@ -0,0 +1,449 @@
|
||||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
/*
|
||||
Package template implements data-driven templates for generating textual output.
|
||||
|
||||
To generate HTML output, see package html/template, which has the same interface
|
||||
as this package but automatically secures HTML output against certain attacks.
|
||||
|
||||
Templates are executed by applying them to a data structure. Annotations in the
|
||||
template refer to elements of the data structure (typically a field of a struct
|
||||
or a key in a map) to control execution and derive values to be displayed.
|
||||
Execution of the template walks the structure and sets the cursor, represented
|
||||
by a period '.' and called "dot", to the value at the current location in the
|
||||
structure as execution proceeds.
|
||||
|
||||
The input text for a template is UTF-8-encoded text in any format.
|
||||
"Actions"--data evaluations or control structures--are delimited by
|
||||
"{{" and "}}"; all text outside actions is copied to the output unchanged.
|
||||
Except for raw strings, actions may not span newlines, although comments can.
|
||||
|
||||
Once parsed, a template may be executed safely in parallel, although if parallel
|
||||
executions share a Writer the output may be interleaved.
|
||||
|
||||
Here is a trivial example that prints "17 items are made of wool".
|
||||
|
||||
type Inventory struct {
|
||||
Material string
|
||||
Count uint
|
||||
}
|
||||
sweaters := Inventory{"wool", 17}
|
||||
tmpl, err := template.New("test").Parse("{{.Count}} items are made of {{.Material}}")
|
||||
if err != nil { panic(err) }
|
||||
err = tmpl.Execute(os.Stdout, sweaters)
|
||||
if err != nil { panic(err) }
|
||||
|
||||
More intricate examples appear below.
|
||||
|
||||
Text and spaces
|
||||
|
||||
By default, all text between actions is copied verbatim when the template is
|
||||
executed. For example, the string " items are made of " in the example above appears
|
||||
on standard output when the program is run.
|
||||
|
||||
However, to aid in formatting template source code, if an action's left delimiter
|
||||
(by default "{{") is followed immediately by a minus sign and ASCII space character
|
||||
("{{- "), all trailing white space is trimmed from the immediately preceding text.
|
||||
Similarly, if the right delimiter ("}}") is preceded by a space and minus sign
|
||||
(" -}}"), all leading white space is trimmed from the immediately following text.
|
||||
In these trim markers, the ASCII space must be present; "{{-3}}" parses as an
|
||||
action containing the number -3.
|
||||
|
||||
For instance, when executing the template whose source is
|
||||
|
||||
"{{23 -}} < {{- 45}}"
|
||||
|
||||
the generated output would be
|
||||
|
||||
"23<45"
|
||||
|
||||
For this trimming, the definition of white space characters is the same as in Go:
|
||||
space, horizontal tab, carriage return, and newline.
|
||||
|
||||
Actions
|
||||
|
||||
Here is the list of actions. "Arguments" and "pipelines" are evaluations of
|
||||
data, defined in detail in the corresponding sections that follow.
|
||||
|
||||
*/
|
||||
// {{/* a comment */}}
|
||||
// {{- /* a comment with white space trimmed from preceding and following text */ -}}
|
||||
// A comment; discarded. May contain newlines.
|
||||
// Comments do not nest and must start and end at the
|
||||
// delimiters, as shown here.
|
||||
/*
|
||||
|
||||
{{pipeline}}
|
||||
The default textual representation (the same as would be
|
||||
printed by fmt.Print) of the value of the pipeline is copied
|
||||
to the output.
|
||||
|
||||
{{if pipeline}} T1 {{end}}
|
||||
If the value of the pipeline is empty, no output is generated;
|
||||
otherwise, T1 is executed. The empty values are false, 0, any
|
||||
nil pointer or interface value, and any array, slice, map, or
|
||||
string of length zero.
|
||||
Dot is unaffected.
|
||||
|
||||
{{if pipeline}} T1 {{else}} T0 {{end}}
|
||||
If the value of the pipeline is empty, T0 is executed;
|
||||
otherwise, T1 is executed. Dot is unaffected.
|
||||
|
||||
{{if pipeline}} T1 {{else if pipeline}} T0 {{end}}
|
||||
To simplify the appearance of if-else chains, the else action
|
||||
of an if may include another if directly; the effect is exactly
|
||||
the same as writing
|
||||
{{if pipeline}} T1 {{else}}{{if pipeline}} T0 {{end}}{{end}}
|
||||
|
||||
{{range pipeline}} T1 {{end}}
|
||||
The value of the pipeline must be an array, slice, map, or channel.
|
||||
If the value of the pipeline has length zero, nothing is output;
|
||||
otherwise, dot is set to the successive elements of the array,
|
||||
slice, or map and T1 is executed. If the value is a map and the
|
||||
keys are of basic type with a defined order ("comparable"), the
|
||||
elements will be visited in sorted key order.
|
||||
|
||||
{{range pipeline}} T1 {{else}} T0 {{end}}
|
||||
The value of the pipeline must be an array, slice, map, or channel.
|
||||
If the value of the pipeline has length zero, dot is unaffected and
|
||||
T0 is executed; otherwise, dot is set to the successive elements
|
||||
of the array, slice, or map and T1 is executed.
|
||||
|
||||
{{template "name"}}
|
||||
The template with the specified name is executed with nil data.
|
||||
|
||||
{{template "name" pipeline}}
|
||||
The template with the specified name is executed with dot set
|
||||
to the value of the pipeline.
|
||||
|
||||
{{block "name" pipeline}} T1 {{end}}
|
||||
A block is shorthand for defining a template
|
||||
{{define "name"}} T1 {{end}}
|
||||
and then executing it in place
|
||||
{{template "name" pipeline}}
|
||||
The typical use is to define a set of root templates that are
|
||||
then customized by redefining the block templates within.
|
||||
|
||||
{{with pipeline}} T1 {{end}}
|
||||
If the value of the pipeline is empty, no output is generated;
|
||||
otherwise, dot is set to the value of the pipeline and T1 is
|
||||
executed.
|
||||
|
||||
{{with pipeline}} T1 {{else}} T0 {{end}}
|
||||
If the value of the pipeline is empty, dot is unaffected and T0
|
||||
is executed; otherwise, dot is set to the value of the pipeline
|
||||
and T1 is executed.
|
||||
|
||||
Arguments
|
||||
|
||||
An argument is a simple value, denoted by one of the following.
|
||||
|
||||
- A boolean, string, character, integer, floating-point, imaginary
|
||||
or complex constant in Go syntax. These behave like Go's untyped
|
||||
constants.
|
||||
- The keyword nil, representing an untyped Go nil.
|
||||
- The character '.' (period):
|
||||
.
|
||||
The result is the value of dot.
|
||||
- A variable name, which is a (possibly empty) alphanumeric string
|
||||
preceded by a dollar sign, such as
|
||||
$piOver2
|
||||
or
|
||||
$
|
||||
The result is the value of the variable.
|
||||
Variables are described below.
|
||||
- The name of a field of the data, which must be a struct, preceded
|
||||
by a period, such as
|
||||
.Field
|
||||
The result is the value of the field. Field invocations may be
|
||||
chained:
|
||||
.Field1.Field2
|
||||
Fields can also be evaluated on variables, including chaining:
|
||||
$x.Field1.Field2
|
||||
- The name of a key of the data, which must be a map, preceded
|
||||
by a period, such as
|
||||
.Key
|
||||
The result is the map element value indexed by the key.
|
||||
Key invocations may be chained and combined with fields to any
|
||||
depth:
|
||||
.Field1.Key1.Field2.Key2
|
||||
Although the key must be an alphanumeric identifier, unlike with
|
||||
field names they do not need to start with an upper case letter.
|
||||
Keys can also be evaluated on variables, including chaining:
|
||||
$x.key1.key2
|
||||
- The name of a niladic method of the data, preceded by a period,
|
||||
such as
|
||||
.Method
|
||||
The result is the value of invoking the method with dot as the
|
||||
receiver, dot.Method(). Such a method must have one return value (of
|
||||
any type) or two return values, the second of which is an error.
|
||||
If it has two and the returned error is non-nil, execution terminates
|
||||
and an error is returned to the caller as the value of Execute.
|
||||
Method invocations may be chained and combined with fields and keys
|
||||
to any depth:
|
||||
.Field1.Key1.Method1.Field2.Key2.Method2
|
||||
Methods can also be evaluated on variables, including chaining:
|
||||
$x.Method1.Field
|
||||
- The name of a niladic function, such as
|
||||
fun
|
||||
The result is the value of invoking the function, fun(). The return
|
||||
types and values behave as in methods. Functions and function
|
||||
names are described below.
|
||||
- A parenthesized instance of one the above, for grouping. The result
|
||||
may be accessed by a field or map key invocation.
|
||||
print (.F1 arg1) (.F2 arg2)
|
||||
(.StructValuedMethod "arg").Field
|
||||
|
||||
Arguments may evaluate to any type; if they are pointers the implementation
|
||||
automatically indirects to the base type when required.
|
||||
If an evaluation yields a function value, such as a function-valued
|
||||
field of a struct, the function is not invoked automatically, but it
|
||||
can be used as a truth value for an if action and the like. To invoke
|
||||
it, use the call function, defined below.
|
||||
|
||||
Pipelines
|
||||
|
||||
A pipeline is a possibly chained sequence of "commands". A command is a simple
|
||||
value (argument) or a function or method call, possibly with multiple arguments:
|
||||
|
||||
Argument
|
||||
The result is the value of evaluating the argument.
|
||||
.Method [Argument...]
|
||||
The method can be alone or the last element of a chain but,
|
||||
unlike methods in the middle of a chain, it can take arguments.
|
||||
The result is the value of calling the method with the
|
||||
arguments:
|
||||
dot.Method(Argument1, etc.)
|
||||
functionName [Argument...]
|
||||
The result is the value of calling the function associated
|
||||
with the name:
|
||||
function(Argument1, etc.)
|
||||
Functions and function names are described below.
|
||||
|
||||
A pipeline may be "chained" by separating a sequence of commands with pipeline
|
||||
characters '|'. In a chained pipeline, the result of each command is
|
||||
passed as the last argument of the following command. The output of the final
|
||||
command in the pipeline is the value of the pipeline.
|
||||
|
||||
The output of a command will be either one value or two values, the second of
|
||||
which has type error. If that second value is present and evaluates to
|
||||
non-nil, execution terminates and the error is returned to the caller of
|
||||
Execute.
|
||||
|
||||
Variables
|
||||
|
||||
A pipeline inside an action may initialize a variable to capture the result.
|
||||
The initialization has syntax
|
||||
|
||||
$variable := pipeline
|
||||
|
||||
where $variable is the name of the variable. An action that declares a
|
||||
variable produces no output.
|
||||
|
||||
Variables previously declared can also be assigned, using the syntax
|
||||
|
||||
$variable = pipeline
|
||||
|
||||
If a "range" action initializes a variable, the variable is set to the
|
||||
successive elements of the iteration. Also, a "range" may declare two
|
||||
variables, separated by a comma:
|
||||
|
||||
range $index, $element := pipeline
|
||||
|
||||
in which case $index and $element are set to the successive values of the
|
||||
array/slice index or map key and element, respectively. Note that if there is
|
||||
only one variable, it is assigned the element; this is opposite to the
|
||||
convention in Go range clauses.
|
||||
|
||||
A variable's scope extends to the "end" action of the control structure ("if",
|
||||
"with", or "range") in which it is declared, or to the end of the template if
|
||||
there is no such control structure. A template invocation does not inherit
|
||||
variables from the point of its invocation.
|
||||
|
||||
When execution begins, $ is set to the data argument passed to Execute, that is,
|
||||
to the starting value of dot.
|
||||
|
||||
Examples
|
||||
|
||||
Here are some example one-line templates demonstrating pipelines and variables.
|
||||
All produce the quoted word "output":
|
||||
|
||||
{{"\"output\""}}
|
||||
A string constant.
|
||||
{{`"output"`}}
|
||||
A raw string constant.
|
||||
{{printf "%q" "output"}}
|
||||
A function call.
|
||||
{{"output" | printf "%q"}}
|
||||
A function call whose final argument comes from the previous
|
||||
command.
|
||||
{{printf "%q" (print "out" "put")}}
|
||||
A parenthesized argument.
|
||||
{{"put" | printf "%s%s" "out" | printf "%q"}}
|
||||
A more elaborate call.
|
||||
{{"output" | printf "%s" | printf "%q"}}
|
||||
A longer chain.
|
||||
{{with "output"}}{{printf "%q" .}}{{end}}
|
||||
A with action using dot.
|
||||
{{with $x := "output" | printf "%q"}}{{$x}}{{end}}
|
||||
A with action that creates and uses a variable.
|
||||
{{with $x := "output"}}{{printf "%q" $x}}{{end}}
|
||||
A with action that uses the variable in another action.
|
||||
{{with $x := "output"}}{{$x | printf "%q"}}{{end}}
|
||||
The same, but pipelined.
|
||||
|
||||
Functions
|
||||
|
||||
During execution functions are found in two function maps: first in the
|
||||
template, then in the global function map. By default, no functions are defined
|
||||
in the template but the Funcs method can be used to add them.
|
||||
|
||||
Predefined global functions are named as follows.
|
||||
|
||||
and
|
||||
Returns the boolean AND of its arguments by returning the
|
||||
first empty argument or the last argument, that is,
|
||||
"and x y" behaves as "if x then y else x". All the
|
||||
arguments are evaluated.
|
||||
call
|
||||
Returns the result of calling the first argument, which
|
||||
must be a function, with the remaining arguments as parameters.
|
||||
Thus "call .X.Y 1 2" is, in Go notation, dot.X.Y(1, 2) where
|
||||
Y is a func-valued field, map entry, or the like.
|
||||
The first argument must be the result of an evaluation
|
||||
that yields a value of function type (as distinct from
|
||||
a predefined function such as print). The function must
|
||||
return either one or two result values, the second of which
|
||||
is of type error. If the arguments don't match the function
|
||||
or the returned error value is non-nil, execution stops.
|
||||
html
|
||||
Returns the escaped HTML equivalent of the textual
|
||||
representation of its arguments. This function is unavailable
|
||||
in html/template, with a few exceptions.
|
||||
index
|
||||
Returns the result of indexing its first argument by the
|
||||
following arguments. Thus "index x 1 2 3" is, in Go syntax,
|
||||
x[1][2][3]. Each indexed item must be a map, slice, or array.
|
||||
js
|
||||
Returns the escaped JavaScript equivalent of the textual
|
||||
representation of its arguments.
|
||||
len
|
||||
Returns the integer length of its argument.
|
||||
not
|
||||
Returns the boolean negation of its single argument.
|
||||
or
|
||||
Returns the boolean OR of its arguments by returning the
|
||||
first non-empty argument or the last argument, that is,
|
||||
"or x y" behaves as "if x then x else y". All the
|
||||
arguments are evaluated.
|
||||
print
|
||||
An alias for fmt.Sprint
|
||||
printf
|
||||
An alias for fmt.Sprintf
|
||||
println
|
||||
An alias for fmt.Sprintln
|
||||
urlquery
|
||||
Returns the escaped value of the textual representation of
|
||||
its arguments in a form suitable for embedding in a URL query.
|
||||
This function is unavailable in html/template, with a few
|
||||
exceptions.
|
||||
|
||||
The boolean functions take any zero value to be false and a non-zero
|
||||
value to be true.
|
||||
|
||||
There is also a set of binary comparison operators defined as
|
||||
functions:
|
||||
|
||||
eq
|
||||
Returns the boolean truth of arg1 == arg2
|
||||
ne
|
||||
Returns the boolean truth of arg1 != arg2
|
||||
lt
|
||||
Returns the boolean truth of arg1 < arg2
|
||||
le
|
||||
Returns the boolean truth of arg1 <= arg2
|
||||
gt
|
||||
Returns the boolean truth of arg1 > arg2
|
||||
ge
|
||||
Returns the boolean truth of arg1 >= arg2
|
||||
|
||||
For simpler multi-way equality tests, eq (only) accepts two or more
|
||||
arguments and compares the second and subsequent to the first,
|
||||
returning in effect
|
||||
|
||||
arg1==arg2 || arg1==arg3 || arg1==arg4 ...
|
||||
|
||||
(Unlike with || in Go, however, eq is a function call and all the
|
||||
arguments will be evaluated.)
|
||||
|
||||
The comparison functions work on basic types only (or named basic
|
||||
types, such as "type Celsius float32"). They implement the Go rules
|
||||
for comparison of values, except that size and exact type are
|
||||
ignored, so any integer value, signed or unsigned, may be compared
|
||||
with any other integer value. (The arithmetic value is compared,
|
||||
not the bit pattern, so all negative integers are less than all
|
||||
unsigned integers.) However, as usual, one may not compare an int
|
||||
with a float32 and so on.
|
||||
|
||||
Associated templates
|
||||
|
||||
Each template is named by a string specified when it is created. Also, each
|
||||
template is associated with zero or more other templates that it may invoke by
|
||||
name; such associations are transitive and form a name space of templates.
|
||||
|
||||
A template may use a template invocation to instantiate another associated
|
||||
template; see the explanation of the "template" action above. The name must be
|
||||
that of a template associated with the template that contains the invocation.
|
||||
|
||||
Nested template definitions
|
||||
|
||||
When parsing a template, another template may be defined and associated with the
|
||||
template being parsed. Template definitions must appear at the top level of the
|
||||
template, much like global variables in a Go program.
|
||||
|
||||
The syntax of such definitions is to surround each template declaration with a
|
||||
"define" and "end" action.
|
||||
|
||||
The define action names the template being created by providing a string
|
||||
constant. Here is a simple example:
|
||||
|
||||
`{{define "T1"}}ONE{{end}}
|
||||
{{define "T2"}}TWO{{end}}
|
||||
{{define "T3"}}{{template "T1"}} {{template "T2"}}{{end}}
|
||||
{{template "T3"}}`
|
||||
|
||||
This defines two templates, T1 and T2, and a third T3 that invokes the other two
|
||||
when it is executed. Finally it invokes T3. If executed this template will
|
||||
produce the text
|
||||
|
||||
ONE TWO
|
||||
|
||||
By construction, a template may reside in only one association. If it's
|
||||
necessary to have a template addressable from multiple associations, the
|
||||
template definition must be parsed multiple times to create distinct *Template
|
||||
values, or must be copied with the Clone or AddParseTree method.
|
||||
|
||||
Parse may be called multiple times to assemble the various associated templates;
|
||||
see the ParseFiles and ParseGlob functions and methods for simple ways to parse
|
||||
related templates stored in files.
|
||||
|
||||
A template may be executed directly or through ExecuteTemplate, which executes
|
||||
an associated template identified by name. To invoke our example above, we
|
||||
might write,
|
||||
|
||||
err := tmpl.Execute(os.Stdout, "no data needed")
|
||||
if err != nil {
|
||||
log.Fatalf("execution failed: %s", err)
|
||||
}
|
||||
|
||||
or to invoke a particular template explicitly by name,
|
||||
|
||||
err := tmpl.ExecuteTemplate(os.Stdout, "T2", "no data needed")
|
||||
if err != nil {
|
||||
log.Fatalf("execution failed: %s", err)
|
||||
}
|
||||
|
||||
*/
|
||||
package template
|
986
g/os/gview/internal/text/template/exec.go
Normal file
986
g/os/gview/internal/text/template/exec.go
Normal file
@ -0,0 +1,986 @@
|
||||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package template
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"io"
|
||||
"reflect"
|
||||
"runtime"
|
||||
"sort"
|
||||
"strings"
|
||||
"gitee.com/johng/gf/g/os/gview/internal/text/template/parse"
|
||||
)
|
||||
|
||||
// maxExecDepth specifies the maximum stack depth of templates within
|
||||
// templates. This limit is only practically reached by accidentally
|
||||
// recursive template invocations. This limit allows us to return
|
||||
// an error instead of triggering a stack overflow.
|
||||
var maxExecDepth = initMaxExecDepth()
|
||||
|
||||
func initMaxExecDepth() int {
|
||||
if runtime.GOARCH == "wasm" {
|
||||
return 1000
|
||||
}
|
||||
return 100000
|
||||
}
|
||||
|
||||
// state represents the state of an execution. It's not part of the
|
||||
// template so that multiple executions of the same template
|
||||
// can execute in parallel.
|
||||
type state struct {
|
||||
tmpl *Template
|
||||
wr io.Writer
|
||||
node parse.Node // current node, for errors
|
||||
vars []variable // push-down stack of variable values.
|
||||
depth int // the height of the stack of executing templates.
|
||||
}
|
||||
|
||||
// variable holds the dynamic value of a variable such as $, $x etc.
|
||||
type variable struct {
|
||||
name string
|
||||
value reflect.Value
|
||||
}
|
||||
|
||||
// push pushes a new variable on the stack.
|
||||
func (s *state) push(name string, value reflect.Value) {
|
||||
s.vars = append(s.vars, variable{name, value})
|
||||
}
|
||||
|
||||
// mark returns the length of the variable stack.
|
||||
func (s *state) mark() int {
|
||||
return len(s.vars)
|
||||
}
|
||||
|
||||
// pop pops the variable stack up to the mark.
|
||||
func (s *state) pop(mark int) {
|
||||
s.vars = s.vars[0:mark]
|
||||
}
|
||||
|
||||
// setVar overwrites the last declared variable with the given name.
|
||||
// Used by variable assignments.
|
||||
func (s *state) setVar(name string, value reflect.Value) {
|
||||
for i := s.mark() - 1; i >= 0; i-- {
|
||||
if s.vars[i].name == name {
|
||||
s.vars[i].value = value
|
||||
return
|
||||
}
|
||||
}
|
||||
s.errorf("undefined variable: %s", name)
|
||||
}
|
||||
|
||||
// setTopVar overwrites the top-nth variable on the stack. Used by range iterations.
|
||||
func (s *state) setTopVar(n int, value reflect.Value) {
|
||||
s.vars[len(s.vars)-n].value = value
|
||||
}
|
||||
|
||||
// varValue returns the value of the named variable.
|
||||
func (s *state) varValue(name string) reflect.Value {
|
||||
for i := s.mark() - 1; i >= 0; i-- {
|
||||
if s.vars[i].name == name {
|
||||
return s.vars[i].value
|
||||
}
|
||||
}
|
||||
s.errorf("undefined variable: %s", name)
|
||||
return zero
|
||||
}
|
||||
|
||||
var zero reflect.Value
|
||||
|
||||
type missingValType struct{}
|
||||
|
||||
var missingVal = reflect.ValueOf(missingValType{})
|
||||
|
||||
// at marks the state to be on node n, for error reporting.
|
||||
func (s *state) at(node parse.Node) {
|
||||
s.node = node
|
||||
}
|
||||
|
||||
// doublePercent returns the string with %'s replaced by %%, if necessary,
|
||||
// so it can be used safely inside a Printf format string.
|
||||
func doublePercent(str string) string {
|
||||
return strings.Replace(str, "%", "%%", -1)
|
||||
}
|
||||
|
||||
// TODO: It would be nice if ExecError was more broken down, but
|
||||
// the way ErrorContext embeds the template name makes the
|
||||
// processing too clumsy.
|
||||
|
||||
// ExecError is the custom error type returned when Execute has an
|
||||
// error evaluating its template. (If a write error occurs, the actual
|
||||
// error is returned; it will not be of type ExecError.)
|
||||
type ExecError struct {
|
||||
Name string // Name of template.
|
||||
Err error // Pre-formatted error.
|
||||
}
|
||||
|
||||
func (e ExecError) Error() string {
|
||||
return e.Err.Error()
|
||||
}
|
||||
|
||||
// errorf records an ExecError and terminates processing.
|
||||
func (s *state) errorf(format string, args ...interface{}) {
|
||||
name := doublePercent(s.tmpl.Name())
|
||||
if s.node == nil {
|
||||
format = fmt.Sprintf("template: %s: %s", name, format)
|
||||
} else {
|
||||
location, context := s.tmpl.ErrorContext(s.node)
|
||||
format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
|
||||
}
|
||||
panic(ExecError{
|
||||
Name: s.tmpl.Name(),
|
||||
Err: fmt.Errorf(format, args...),
|
||||
})
|
||||
}
|
||||
|
||||
// writeError is the wrapper type used internally when Execute has an
|
||||
// error writing to its output. We strip the wrapper in errRecover.
|
||||
// Note that this is not an implementation of error, so it cannot escape
|
||||
// from the package as an error value.
|
||||
type writeError struct {
|
||||
Err error // Original error.
|
||||
}
|
||||
|
||||
func (s *state) writeError(err error) {
|
||||
panic(writeError{
|
||||
Err: err,
|
||||
})
|
||||
}
|
||||
|
||||
// errRecover is the handler that turns panics into returns from the top
|
||||
// level of Parse.
|
||||
func errRecover(errp *error) {
|
||||
e := recover()
|
||||
if e != nil {
|
||||
switch err := e.(type) {
|
||||
case runtime.Error:
|
||||
panic(e)
|
||||
case writeError:
|
||||
*errp = err.Err // Strip the wrapper.
|
||||
case ExecError:
|
||||
*errp = err // Keep the wrapper.
|
||||
default:
|
||||
panic(e)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ExecuteTemplate applies the template associated with t that has the given name
|
||||
// to the specified data object and writes the output to wr.
|
||||
// If an error occurs executing the template or writing its output,
|
||||
// execution stops, but partial results may already have been written to
|
||||
// the output writer.
|
||||
// A template may be executed safely in parallel, although if parallel
|
||||
// executions share a Writer the output may be interleaved.
|
||||
func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error {
|
||||
var tmpl *Template
|
||||
if t.common != nil {
|
||||
tmpl = t.tmpl[name]
|
||||
}
|
||||
if tmpl == nil {
|
||||
return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
|
||||
}
|
||||
return tmpl.Execute(wr, data)
|
||||
}
|
||||
|
||||
// Execute applies a parsed template to the specified data object,
|
||||
// and writes the output to wr.
|
||||
// If an error occurs executing the template or writing its output,
|
||||
// execution stops, but partial results may already have been written to
|
||||
// the output writer.
|
||||
// A template may be executed safely in parallel, although if parallel
|
||||
// executions share a Writer the output may be interleaved.
|
||||
//
|
||||
// If data is a reflect.Value, the template applies to the concrete
|
||||
// value that the reflect.Value holds, as in fmt.Print.
|
||||
func (t *Template) Execute(wr io.Writer, data interface{}) error {
|
||||
return t.execute(wr, data)
|
||||
}
|
||||
|
||||
func (t *Template) execute(wr io.Writer, data interface{}) (err error) {
|
||||
defer errRecover(&err)
|
||||
value, ok := data.(reflect.Value)
|
||||
if !ok {
|
||||
value = reflect.ValueOf(data)
|
||||
}
|
||||
state := &state{
|
||||
tmpl: t,
|
||||
wr: wr,
|
||||
vars: []variable{{"$", value}},
|
||||
}
|
||||
if t.Tree == nil || t.Root == nil {
|
||||
state.errorf("%q is an incomplete or empty template", t.Name())
|
||||
}
|
||||
state.walk(value, t.Root)
|
||||
return
|
||||
}
|
||||
|
||||
// DefinedTemplates returns a string listing the defined templates,
|
||||
// prefixed by the string "; defined templates are: ". If there are none,
|
||||
// it returns the empty string. For generating an error message here
|
||||
// and in html/template.
|
||||
func (t *Template) DefinedTemplates() string {
|
||||
if t.common == nil {
|
||||
return ""
|
||||
}
|
||||
var b bytes.Buffer
|
||||
for name, tmpl := range t.tmpl {
|
||||
if tmpl.Tree == nil || tmpl.Root == nil {
|
||||
continue
|
||||
}
|
||||
if b.Len() > 0 {
|
||||
b.WriteString(", ")
|
||||
}
|
||||
fmt.Fprintf(&b, "%q", name)
|
||||
}
|
||||
var s string
|
||||
if b.Len() > 0 {
|
||||
s = "; defined templates are: " + b.String()
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
// Walk functions step through the major pieces of the template structure,
|
||||
// generating output as they go.
|
||||
func (s *state) walk(dot reflect.Value, node parse.Node) {
|
||||
s.at(node)
|
||||
switch node := node.(type) {
|
||||
case *parse.ActionNode:
|
||||
// Do not pop variables so they persist until next end.
|
||||
// Also, if the action declares variables, don't print the result.
|
||||
val := s.evalPipeline(dot, node.Pipe)
|
||||
if len(node.Pipe.Decl) == 0 {
|
||||
s.printValue(node, val)
|
||||
}
|
||||
case *parse.IfNode:
|
||||
s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
|
||||
case *parse.ListNode:
|
||||
for _, node := range node.Nodes {
|
||||
s.walk(dot, node)
|
||||
}
|
||||
case *parse.RangeNode:
|
||||
s.walkRange(dot, node)
|
||||
case *parse.TemplateNode:
|
||||
s.walkTemplate(dot, node)
|
||||
case *parse.TextNode:
|
||||
if _, err := s.wr.Write(node.Text); err != nil {
|
||||
s.writeError(err)
|
||||
}
|
||||
case *parse.WithNode:
|
||||
s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
|
||||
default:
|
||||
s.errorf("unknown node: %s", node)
|
||||
}
|
||||
}
|
||||
|
||||
// walkIfOrWith walks an 'if' or 'with' node. The two control structures
|
||||
// are identical in behavior except that 'with' sets dot.
|
||||
func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
|
||||
defer s.pop(s.mark())
|
||||
val := s.evalPipeline(dot, pipe)
|
||||
truth, ok := isTrue(val)
|
||||
if !ok {
|
||||
s.errorf("if/with can't use %v", val)
|
||||
}
|
||||
if truth {
|
||||
if typ == parse.NodeWith {
|
||||
s.walk(val, list)
|
||||
} else {
|
||||
s.walk(dot, list)
|
||||
}
|
||||
} else if elseList != nil {
|
||||
s.walk(dot, elseList)
|
||||
}
|
||||
}
|
||||
|
||||
// IsTrue reports whether the value is 'true', in the sense of not the zero of its type,
|
||||
// and whether the value has a meaningful truth value. This is the definition of
|
||||
// truth used by if and other such actions.
|
||||
func IsTrue(val interface{}) (truth, ok bool) {
|
||||
return isTrue(reflect.ValueOf(val))
|
||||
}
|
||||
|
||||
func isTrue(val reflect.Value) (truth, ok bool) {
|
||||
if !val.IsValid() {
|
||||
// Something like var x interface{}, never set. It's a form of nil.
|
||||
return false, true
|
||||
}
|
||||
switch val.Kind() {
|
||||
case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
|
||||
truth = val.Len() > 0
|
||||
case reflect.Bool:
|
||||
truth = val.Bool()
|
||||
case reflect.Complex64, reflect.Complex128:
|
||||
truth = val.Complex() != 0
|
||||
case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
|
||||
truth = !val.IsNil()
|
||||
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
||||
truth = val.Int() != 0
|
||||
case reflect.Float32, reflect.Float64:
|
||||
truth = val.Float() != 0
|
||||
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
||||
truth = val.Uint() != 0
|
||||
case reflect.Struct:
|
||||
truth = true // Struct values are always true.
|
||||
default:
|
||||
return
|
||||
}
|
||||
return truth, true
|
||||
}
|
||||
|
||||
func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
|
||||
s.at(r)
|
||||
defer s.pop(s.mark())
|
||||
val, _ := indirect(s.evalPipeline(dot, r.Pipe))
|
||||
// mark top of stack before any variables in the body are pushed.
|
||||
mark := s.mark()
|
||||
oneIteration := func(index, elem reflect.Value) {
|
||||
// Set top var (lexically the second if there are two) to the element.
|
||||
if len(r.Pipe.Decl) > 0 {
|
||||
s.setTopVar(1, elem)
|
||||
}
|
||||
// Set next var (lexically the first if there are two) to the index.
|
||||
if len(r.Pipe.Decl) > 1 {
|
||||
s.setTopVar(2, index)
|
||||
}
|
||||
s.walk(elem, r.List)
|
||||
s.pop(mark)
|
||||
}
|
||||
switch val.Kind() {
|
||||
case reflect.Array, reflect.Slice:
|
||||
if val.Len() == 0 {
|
||||
break
|
||||
}
|
||||
for i := 0; i < val.Len(); i++ {
|
||||
oneIteration(reflect.ValueOf(i), val.Index(i))
|
||||
}
|
||||
return
|
||||
case reflect.Map:
|
||||
if val.Len() == 0 {
|
||||
break
|
||||
}
|
||||
for _, key := range sortKeys(val.MapKeys()) {
|
||||
oneIteration(key, val.MapIndex(key))
|
||||
}
|
||||
return
|
||||
case reflect.Chan:
|
||||
if val.IsNil() {
|
||||
break
|
||||
}
|
||||
i := 0
|
||||
for ; ; i++ {
|
||||
elem, ok := val.Recv()
|
||||
if !ok {
|
||||
break
|
||||
}
|
||||
oneIteration(reflect.ValueOf(i), elem)
|
||||
}
|
||||
if i == 0 {
|
||||
break
|
||||
}
|
||||
return
|
||||
case reflect.Invalid:
|
||||
break // An invalid value is likely a nil map, etc. and acts like an empty map.
|
||||
default:
|
||||
s.errorf("range can't iterate over %v", val)
|
||||
}
|
||||
if r.ElseList != nil {
|
||||
s.walk(dot, r.ElseList)
|
||||
}
|
||||
}
|
||||
|
||||
func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
|
||||
s.at(t)
|
||||
tmpl := s.tmpl.tmpl[t.Name]
|
||||
if tmpl == nil {
|
||||
s.errorf("template %q not defined", t.Name)
|
||||
}
|
||||
if s.depth == maxExecDepth {
|
||||
s.errorf("exceeded maximum template depth (%v)", maxExecDepth)
|
||||
}
|
||||
// Variables declared by the pipeline persist.
|
||||
dot = s.evalPipeline(dot, t.Pipe)
|
||||
newState := *s
|
||||
newState.depth++
|
||||
newState.tmpl = tmpl
|
||||
// No dynamic scoping: template invocations inherit no variables.
|
||||
newState.vars = []variable{{"$", dot}}
|
||||
newState.walk(dot, tmpl.Root)
|
||||
}
|
||||
|
||||
// Eval functions evaluate pipelines, commands, and their elements and extract
|
||||
// values from the data structure by examining fields, calling methods, and so on.
|
||||
// The printing of those values happens only through walk functions.
|
||||
|
||||
// evalPipeline returns the value acquired by evaluating a pipeline. If the
|
||||
// pipeline has a variable declaration, the variable will be pushed on the
|
||||
// stack. Callers should therefore pop the stack after they are finished
|
||||
// executing commands depending on the pipeline value.
|
||||
func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
|
||||
if pipe == nil {
|
||||
return
|
||||
}
|
||||
s.at(pipe)
|
||||
value = missingVal
|
||||
for _, cmd := range pipe.Cmds {
|
||||
value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
|
||||
// If the object has type interface{}, dig down one level to the thing inside.
|
||||
if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
|
||||
value = reflect.ValueOf(value.Interface()) // lovely!
|
||||
}
|
||||
}
|
||||
for _, variable := range pipe.Decl {
|
||||
if pipe.IsAssign {
|
||||
s.setVar(variable.Ident[0], value)
|
||||
} else {
|
||||
s.push(variable.Ident[0], value)
|
||||
}
|
||||
}
|
||||
return value
|
||||
}
|
||||
|
||||
func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
|
||||
if len(args) > 1 || final != missingVal {
|
||||
s.errorf("can't give argument to non-function %s", args[0])
|
||||
}
|
||||
}
|
||||
|
||||
func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
|
||||
firstWord := cmd.Args[0]
|
||||
switch n := firstWord.(type) {
|
||||
case *parse.FieldNode:
|
||||
return s.evalFieldNode(dot, n, cmd.Args, final)
|
||||
case *parse.ChainNode:
|
||||
return s.evalChainNode(dot, n, cmd.Args, final)
|
||||
case *parse.IdentifierNode:
|
||||
// Must be a function.
|
||||
return s.evalFunction(dot, n, cmd, cmd.Args, final)
|
||||
case *parse.PipeNode:
|
||||
// Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored.
|
||||
return s.evalPipeline(dot, n)
|
||||
case *parse.VariableNode:
|
||||
return s.evalVariableNode(dot, n, cmd.Args, final)
|
||||
}
|
||||
s.at(firstWord)
|
||||
s.notAFunction(cmd.Args, final)
|
||||
switch word := firstWord.(type) {
|
||||
case *parse.BoolNode:
|
||||
return reflect.ValueOf(word.True)
|
||||
case *parse.DotNode:
|
||||
return dot
|
||||
case *parse.NilNode:
|
||||
s.errorf("nil is not a command")
|
||||
case *parse.NumberNode:
|
||||
return s.idealConstant(word)
|
||||
case *parse.StringNode:
|
||||
return reflect.ValueOf(word.Text)
|
||||
}
|
||||
s.errorf("can't evaluate command %q", firstWord)
|
||||
panic("not reached")
|
||||
}
|
||||
|
||||
// idealConstant is called to return the value of a number in a context where
|
||||
// we don't know the type. In that case, the syntax of the number tells us
|
||||
// its type, and we use Go rules to resolve. Note there is no such thing as
|
||||
// a uint ideal constant in this situation - the value must be of int type.
|
||||
func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
|
||||
// These are ideal constants but we don't know the type
|
||||
// and we have no context. (If it was a method argument,
|
||||
// we'd know what we need.) The syntax guides us to some extent.
|
||||
s.at(constant)
|
||||
switch {
|
||||
case constant.IsComplex:
|
||||
return reflect.ValueOf(constant.Complex128) // incontrovertible.
|
||||
case constant.IsFloat && !isHexConstant(constant.Text) && strings.ContainsAny(constant.Text, ".eE"):
|
||||
return reflect.ValueOf(constant.Float64)
|
||||
case constant.IsInt:
|
||||
n := int(constant.Int64)
|
||||
if int64(n) != constant.Int64 {
|
||||
s.errorf("%s overflows int", constant.Text)
|
||||
}
|
||||
return reflect.ValueOf(n)
|
||||
case constant.IsUint:
|
||||
s.errorf("%s overflows int", constant.Text)
|
||||
}
|
||||
return zero
|
||||
}
|
||||
|
||||
func isHexConstant(s string) bool {
|
||||
return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
|
||||
}
|
||||
|
||||
func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
|
||||
s.at(field)
|
||||
return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
|
||||
}
|
||||
|
||||
func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
|
||||
s.at(chain)
|
||||
if len(chain.Field) == 0 {
|
||||
s.errorf("internal error: no fields in evalChainNode")
|
||||
}
|
||||
if chain.Node.Type() == parse.NodeNil {
|
||||
s.errorf("indirection through explicit nil in %s", chain)
|
||||
}
|
||||
// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
|
||||
pipe := s.evalArg(dot, nil, chain.Node)
|
||||
return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
|
||||
}
|
||||
|
||||
func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
|
||||
// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
|
||||
s.at(variable)
|
||||
value := s.varValue(variable.Ident[0])
|
||||
if len(variable.Ident) == 1 {
|
||||
s.notAFunction(args, final)
|
||||
return value
|
||||
}
|
||||
return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
|
||||
}
|
||||
|
||||
// evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
|
||||
// dot is the environment in which to evaluate arguments, while
|
||||
// receiver is the value being walked along the chain.
|
||||
func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
|
||||
n := len(ident)
|
||||
for i := 0; i < n-1; i++ {
|
||||
receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver)
|
||||
}
|
||||
// Now if it's a method, it gets the arguments.
|
||||
return s.evalField(dot, ident[n-1], node, args, final, receiver)
|
||||
}
|
||||
|
||||
func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
|
||||
s.at(node)
|
||||
name := node.Ident
|
||||
function, ok := findFunction(name, s.tmpl)
|
||||
if !ok {
|
||||
s.errorf("%q is not a defined function", name)
|
||||
}
|
||||
return s.evalCall(dot, function, cmd, name, args, final)
|
||||
}
|
||||
|
||||
// evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
|
||||
// The 'final' argument represents the return value from the preceding
|
||||
// value of the pipeline, if any.
|
||||
func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
|
||||
if !receiver.IsValid() {
|
||||
if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key.
|
||||
s.errorf("nil data; no entry for key %q", fieldName)
|
||||
}
|
||||
return zero
|
||||
}
|
||||
typ := receiver.Type()
|
||||
receiver, isNil := indirect(receiver)
|
||||
// Unless it's an interface, need to get to a value of type *T to guarantee
|
||||
// we see all methods of T and *T.
|
||||
ptr := receiver
|
||||
if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Ptr && ptr.CanAddr() {
|
||||
ptr = ptr.Addr()
|
||||
}
|
||||
if method := ptr.MethodByName(fieldName); method.IsValid() {
|
||||
return s.evalCall(dot, method, node, fieldName, args, final)
|
||||
}
|
||||
hasArgs := len(args) > 1 || final != missingVal
|
||||
// It's not a method; must be a field of a struct or an element of a map.
|
||||
switch receiver.Kind() {
|
||||
case reflect.Struct:
|
||||
tField, ok := receiver.Type().FieldByName(fieldName)
|
||||
if ok {
|
||||
if isNil {
|
||||
s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
|
||||
}
|
||||
field := receiver.FieldByIndex(tField.Index)
|
||||
if tField.PkgPath != "" { // field is unexported
|
||||
s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
|
||||
}
|
||||
// If it's a function, we must call it.
|
||||
if hasArgs {
|
||||
s.errorf("%s has arguments but cannot be invoked as function", fieldName)
|
||||
}
|
||||
return field
|
||||
}
|
||||
case reflect.Map:
|
||||
if isNil {
|
||||
s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
|
||||
}
|
||||
// If it's a map, attempt to use the field name as a key.
|
||||
nameVal := reflect.ValueOf(fieldName)
|
||||
if nameVal.Type().AssignableTo(receiver.Type().Key()) {
|
||||
if hasArgs {
|
||||
s.errorf("%s is not a method but has arguments", fieldName)
|
||||
}
|
||||
result := receiver.MapIndex(nameVal)
|
||||
if !result.IsValid() {
|
||||
switch s.tmpl.option.missingKey {
|
||||
case mapInvalid:
|
||||
// Just use the invalid value.
|
||||
case mapZeroValue:
|
||||
result = reflect.Zero(receiver.Type().Elem())
|
||||
case mapError:
|
||||
s.errorf("map has no entry for key %q", fieldName)
|
||||
}
|
||||
}
|
||||
return result
|
||||
}
|
||||
}
|
||||
s.errorf("can't evaluate field %s in type %s", fieldName, typ)
|
||||
panic("not reached")
|
||||
}
|
||||
|
||||
var (
|
||||
errorType = reflect.TypeOf((*error)(nil)).Elem()
|
||||
fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
|
||||
reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem()
|
||||
)
|
||||
|
||||
// evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
|
||||
// it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0]
|
||||
// as the function itself.
|
||||
func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
|
||||
if args != nil {
|
||||
args = args[1:] // Zeroth arg is function name/node; not passed to function.
|
||||
}
|
||||
typ := fun.Type()
|
||||
numIn := len(args)
|
||||
if final != missingVal {
|
||||
numIn++
|
||||
}
|
||||
numFixed := len(args)
|
||||
if typ.IsVariadic() {
|
||||
numFixed = typ.NumIn() - 1 // last arg is the variadic one.
|
||||
if numIn < numFixed {
|
||||
s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
|
||||
}
|
||||
} else if numIn != typ.NumIn() {
|
||||
s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn)
|
||||
}
|
||||
if !goodFunc(typ) {
|
||||
// TODO: This could still be a confusing error; maybe goodFunc should provide info.
|
||||
s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
|
||||
}
|
||||
// Build the arg list.
|
||||
argv := make([]reflect.Value, numIn)
|
||||
// Args must be evaluated. Fixed args first.
|
||||
i := 0
|
||||
for ; i < numFixed && i < len(args); i++ {
|
||||
argv[i] = s.evalArg(dot, typ.In(i), args[i])
|
||||
}
|
||||
// Now the ... args.
|
||||
if typ.IsVariadic() {
|
||||
argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
|
||||
for ; i < len(args); i++ {
|
||||
argv[i] = s.evalArg(dot, argType, args[i])
|
||||
}
|
||||
}
|
||||
// Add final value if necessary.
|
||||
if final != missingVal {
|
||||
t := typ.In(typ.NumIn() - 1)
|
||||
if typ.IsVariadic() {
|
||||
if numIn-1 < numFixed {
|
||||
// The added final argument corresponds to a fixed parameter of the function.
|
||||
// Validate against the type of the actual parameter.
|
||||
t = typ.In(numIn - 1)
|
||||
} else {
|
||||
// The added final argument corresponds to the variadic part.
|
||||
// Validate against the type of the elements of the variadic slice.
|
||||
t = t.Elem()
|
||||
}
|
||||
}
|
||||
argv[i] = s.validateType(final, t)
|
||||
}
|
||||
result := fun.Call(argv)
|
||||
// If we have an error that is not nil, stop execution and return that error to the caller.
|
||||
if len(result) == 2 && !result[1].IsNil() {
|
||||
s.at(node)
|
||||
s.errorf("error calling %s: %s", name, result[1].Interface().(error))
|
||||
}
|
||||
v := result[0]
|
||||
if v.Type() == reflectValueType {
|
||||
v = v.Interface().(reflect.Value)
|
||||
}
|
||||
return v
|
||||
}
|
||||
|
||||
// canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
|
||||
func canBeNil(typ reflect.Type) bool {
|
||||
switch typ.Kind() {
|
||||
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
|
||||
return true
|
||||
case reflect.Struct:
|
||||
return typ == reflectValueType
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// validateType guarantees that the value is valid and assignable to the type.
|
||||
func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
|
||||
if !value.IsValid() {
|
||||
if typ == nil {
|
||||
// An untyped nil interface{}. Accept as a proper nil value.
|
||||
return reflect.ValueOf(nil)
|
||||
}
|
||||
if canBeNil(typ) {
|
||||
// Like above, but use the zero value of the non-nil type.
|
||||
return reflect.Zero(typ)
|
||||
}
|
||||
s.errorf("invalid value; expected %s", typ)
|
||||
}
|
||||
if typ == reflectValueType && value.Type() != typ {
|
||||
return reflect.ValueOf(value)
|
||||
}
|
||||
if typ != nil && !value.Type().AssignableTo(typ) {
|
||||
if value.Kind() == reflect.Interface && !value.IsNil() {
|
||||
value = value.Elem()
|
||||
if value.Type().AssignableTo(typ) {
|
||||
return value
|
||||
}
|
||||
// fallthrough
|
||||
}
|
||||
// Does one dereference or indirection work? We could do more, as we
|
||||
// do with method receivers, but that gets messy and method receivers
|
||||
// are much more constrained, so it makes more sense there than here.
|
||||
// Besides, one is almost always all you need.
|
||||
switch {
|
||||
case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
|
||||
value = value.Elem()
|
||||
if !value.IsValid() {
|
||||
s.errorf("dereference of nil pointer of type %s", typ)
|
||||
}
|
||||
case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
|
||||
value = value.Addr()
|
||||
default:
|
||||
s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
|
||||
}
|
||||
}
|
||||
return value
|
||||
}
|
||||
|
||||
func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
|
||||
s.at(n)
|
||||
switch arg := n.(type) {
|
||||
case *parse.DotNode:
|
||||
return s.validateType(dot, typ)
|
||||
case *parse.NilNode:
|
||||
if canBeNil(typ) {
|
||||
return reflect.Zero(typ)
|
||||
}
|
||||
s.errorf("cannot assign nil to %s", typ)
|
||||
case *parse.FieldNode:
|
||||
return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ)
|
||||
case *parse.VariableNode:
|
||||
return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ)
|
||||
case *parse.PipeNode:
|
||||
return s.validateType(s.evalPipeline(dot, arg), typ)
|
||||
case *parse.IdentifierNode:
|
||||
return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ)
|
||||
case *parse.ChainNode:
|
||||
return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ)
|
||||
}
|
||||
switch typ.Kind() {
|
||||
case reflect.Bool:
|
||||
return s.evalBool(typ, n)
|
||||
case reflect.Complex64, reflect.Complex128:
|
||||
return s.evalComplex(typ, n)
|
||||
case reflect.Float32, reflect.Float64:
|
||||
return s.evalFloat(typ, n)
|
||||
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
||||
return s.evalInteger(typ, n)
|
||||
case reflect.Interface:
|
||||
if typ.NumMethod() == 0 {
|
||||
return s.evalEmptyInterface(dot, n)
|
||||
}
|
||||
case reflect.Struct:
|
||||
if typ == reflectValueType {
|
||||
return reflect.ValueOf(s.evalEmptyInterface(dot, n))
|
||||
}
|
||||
case reflect.String:
|
||||
return s.evalString(typ, n)
|
||||
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
||||
return s.evalUnsignedInteger(typ, n)
|
||||
}
|
||||
s.errorf("can't handle %s for arg of type %s", n, typ)
|
||||
panic("not reached")
|
||||
}
|
||||
|
||||
func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
|
||||
s.at(n)
|
||||
if n, ok := n.(*parse.BoolNode); ok {
|
||||
value := reflect.New(typ).Elem()
|
||||
value.SetBool(n.True)
|
||||
return value
|
||||
}
|
||||
s.errorf("expected bool; found %s", n)
|
||||
panic("not reached")
|
||||
}
|
||||
|
||||
func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
|
||||
s.at(n)
|
||||
if n, ok := n.(*parse.StringNode); ok {
|
||||
value := reflect.New(typ).Elem()
|
||||
value.SetString(n.Text)
|
||||
return value
|
||||
}
|
||||
s.errorf("expected string; found %s", n)
|
||||
panic("not reached")
|
||||
}
|
||||
|
||||
func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
|
||||
s.at(n)
|
||||
if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
|
||||
value := reflect.New(typ).Elem()
|
||||
value.SetInt(n.Int64)
|
||||
return value
|
||||
}
|
||||
s.errorf("expected integer; found %s", n)
|
||||
panic("not reached")
|
||||
}
|
||||
|
||||
func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
|
||||
s.at(n)
|
||||
if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
|
||||
value := reflect.New(typ).Elem()
|
||||
value.SetUint(n.Uint64)
|
||||
return value
|
||||
}
|
||||
s.errorf("expected unsigned integer; found %s", n)
|
||||
panic("not reached")
|
||||
}
|
||||
|
||||
func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
|
||||
s.at(n)
|
||||
if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
|
||||
value := reflect.New(typ).Elem()
|
||||
value.SetFloat(n.Float64)
|
||||
return value
|
||||
}
|
||||
s.errorf("expected float; found %s", n)
|
||||
panic("not reached")
|
||||
}
|
||||
|
||||
func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
|
||||
if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
|
||||
value := reflect.New(typ).Elem()
|
||||
value.SetComplex(n.Complex128)
|
||||
return value
|
||||
}
|
||||
s.errorf("expected complex; found %s", n)
|
||||
panic("not reached")
|
||||
}
|
||||
|
||||
func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
|
||||
s.at(n)
|
||||
switch n := n.(type) {
|
||||
case *parse.BoolNode:
|
||||
return reflect.ValueOf(n.True)
|
||||
case *parse.DotNode:
|
||||
return dot
|
||||
case *parse.FieldNode:
|
||||
return s.evalFieldNode(dot, n, nil, missingVal)
|
||||
case *parse.IdentifierNode:
|
||||
return s.evalFunction(dot, n, n, nil, missingVal)
|
||||
case *parse.NilNode:
|
||||
// NilNode is handled in evalArg, the only place that calls here.
|
||||
s.errorf("evalEmptyInterface: nil (can't happen)")
|
||||
case *parse.NumberNode:
|
||||
return s.idealConstant(n)
|
||||
case *parse.StringNode:
|
||||
return reflect.ValueOf(n.Text)
|
||||
case *parse.VariableNode:
|
||||
return s.evalVariableNode(dot, n, nil, missingVal)
|
||||
case *parse.PipeNode:
|
||||
return s.evalPipeline(dot, n)
|
||||
}
|
||||
s.errorf("can't handle assignment of %s to empty interface argument", n)
|
||||
panic("not reached")
|
||||
}
|
||||
|
||||
// indirect returns the item at the end of indirection, and a bool to indicate if it's nil.
|
||||
func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
|
||||
for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
|
||||
if v.IsNil() {
|
||||
return v, true
|
||||
}
|
||||
}
|
||||
return v, false
|
||||
}
|
||||
|
||||
// indirectInterface returns the concrete value in an interface value,
|
||||
// or else the zero reflect.Value.
|
||||
// That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x):
|
||||
// the fact that x was an interface value is forgotten.
|
||||
func indirectInterface(v reflect.Value) reflect.Value {
|
||||
if v.Kind() != reflect.Interface {
|
||||
return v
|
||||
}
|
||||
if v.IsNil() {
|
||||
return reflect.Value{}
|
||||
}
|
||||
return v.Elem()
|
||||
}
|
||||
|
||||
// printValue writes the textual representation of the value to the output of
|
||||
// the template.
|
||||
func (s *state) printValue(n parse.Node, v reflect.Value) {
|
||||
s.at(n)
|
||||
iface, ok := printableValue(v)
|
||||
if !ok {
|
||||
s.errorf("can't print %s of type %s", n, v.Type())
|
||||
}
|
||||
_, err := fmt.Fprint(s.wr, iface)
|
||||
if err != nil {
|
||||
s.writeError(err)
|
||||
}
|
||||
}
|
||||
|
||||
// printableValue returns the, possibly indirected, interface value inside v that
|
||||
// is best for a call to formatted printer.
|
||||
func printableValue(v reflect.Value) (interface{}, bool) {
|
||||
if v.Kind() == reflect.Ptr {
|
||||
v, _ = indirect(v) // fmt.Fprint handles nil.
|
||||
}
|
||||
if !v.IsValid() {
|
||||
return "", true
|
||||
}
|
||||
|
||||
if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
|
||||
if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
|
||||
v = v.Addr()
|
||||
} else {
|
||||
switch v.Kind() {
|
||||
case reflect.Chan, reflect.Func:
|
||||
return nil, false
|
||||
}
|
||||
}
|
||||
}
|
||||
return v.Interface(), true
|
||||
}
|
||||
|
||||
// sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys.
|
||||
func sortKeys(v []reflect.Value) []reflect.Value {
|
||||
if len(v) <= 1 {
|
||||
return v
|
||||
}
|
||||
switch v[0].Kind() {
|
||||
case reflect.Float32, reflect.Float64:
|
||||
sort.Slice(v, func(i, j int) bool {
|
||||
return v[i].Float() < v[j].Float()
|
||||
})
|
||||
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
||||
sort.Slice(v, func(i, j int) bool {
|
||||
return v[i].Int() < v[j].Int()
|
||||
})
|
||||
case reflect.String:
|
||||
sort.Slice(v, func(i, j int) bool {
|
||||
return v[i].String() < v[j].String()
|
||||
})
|
||||
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
||||
sort.Slice(v, func(i, j int) bool {
|
||||
return v[i].Uint() < v[j].Uint()
|
||||
})
|
||||
}
|
||||
return v
|
||||
}
|
667
g/os/gview/internal/text/template/funcs.go
Normal file
667
g/os/gview/internal/text/template/funcs.go
Normal file
@ -0,0 +1,667 @@
|
||||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package template
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/url"
|
||||
"reflect"
|
||||
"strings"
|
||||
"unicode"
|
||||
"unicode/utf8"
|
||||
)
|
||||
|
||||
// FuncMap is the type of the map defining the mapping from names to functions.
|
||||
// Each function must have either a single return value, or two return values of
|
||||
// which the second has type error. In that case, if the second (error)
|
||||
// return value evaluates to non-nil during execution, execution terminates and
|
||||
// Execute returns that error.
|
||||
//
|
||||
// When template execution invokes a function with an argument list, that list
|
||||
// must be assignable to the function's parameter types. Functions meant to
|
||||
// apply to arguments of arbitrary type can use parameters of type interface{} or
|
||||
// of type reflect.Value. Similarly, functions meant to return a result of arbitrary
|
||||
// type can return interface{} or reflect.Value.
|
||||
type FuncMap map[string]interface{}
|
||||
|
||||
var builtins = FuncMap{
|
||||
"and": and,
|
||||
"call": call,
|
||||
"html": HTMLEscaper,
|
||||
"index": index,
|
||||
"js": JSEscaper,
|
||||
"len": length,
|
||||
"not": not,
|
||||
"or": or,
|
||||
"print": fmt.Sprint,
|
||||
"printf": fmt.Sprintf,
|
||||
"println": fmt.Sprintln,
|
||||
"urlquery": URLQueryEscaper,
|
||||
|
||||
// Comparisons
|
||||
"eq": eq, // ==
|
||||
"ge": ge, // >=
|
||||
"gt": gt, // >
|
||||
"le": le, // <=
|
||||
"lt": lt, // <
|
||||
"ne": ne, // !=
|
||||
}
|
||||
|
||||
var builtinFuncs = createValueFuncs(builtins)
|
||||
|
||||
// createValueFuncs turns a FuncMap into a map[string]reflect.Value
|
||||
func createValueFuncs(funcMap FuncMap) map[string]reflect.Value {
|
||||
m := make(map[string]reflect.Value)
|
||||
addValueFuncs(m, funcMap)
|
||||
return m
|
||||
}
|
||||
|
||||
// addValueFuncs adds to values the functions in funcs, converting them to reflect.Values.
|
||||
func addValueFuncs(out map[string]reflect.Value, in FuncMap) {
|
||||
for name, fn := range in {
|
||||
if !goodName(name) {
|
||||
panic(fmt.Errorf("function name %s is not a valid identifier", name))
|
||||
}
|
||||
v := reflect.ValueOf(fn)
|
||||
if v.Kind() != reflect.Func {
|
||||
panic("value for " + name + " not a function")
|
||||
}
|
||||
if !goodFunc(v.Type()) {
|
||||
panic(fmt.Errorf("can't install method/function %q with %d results", name, v.Type().NumOut()))
|
||||
}
|
||||
out[name] = v
|
||||
}
|
||||
}
|
||||
|
||||
// addFuncs adds to values the functions in funcs. It does no checking of the input -
|
||||
// call addValueFuncs first.
|
||||
func addFuncs(out, in FuncMap) {
|
||||
for name, fn := range in {
|
||||
out[name] = fn
|
||||
}
|
||||
}
|
||||
|
||||
// goodFunc reports whether the function or method has the right result signature.
|
||||
func goodFunc(typ reflect.Type) bool {
|
||||
// We allow functions with 1 result or 2 results where the second is an error.
|
||||
switch {
|
||||
case typ.NumOut() == 1:
|
||||
return true
|
||||
case typ.NumOut() == 2 && typ.Out(1) == errorType:
|
||||
return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// goodName reports whether the function name is a valid identifier.
|
||||
func goodName(name string) bool {
|
||||
if name == "" {
|
||||
return false
|
||||
}
|
||||
for i, r := range name {
|
||||
switch {
|
||||
case r == '_':
|
||||
case i == 0 && !unicode.IsLetter(r):
|
||||
return false
|
||||
case !unicode.IsLetter(r) && !unicode.IsDigit(r):
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// findFunction looks for a function in the template, and global map.
|
||||
func findFunction(name string, tmpl *Template) (reflect.Value, bool) {
|
||||
if tmpl != nil && tmpl.common != nil {
|
||||
tmpl.muFuncs.RLock()
|
||||
defer tmpl.muFuncs.RUnlock()
|
||||
if fn := tmpl.execFuncs[name]; fn.IsValid() {
|
||||
return fn, true
|
||||
}
|
||||
}
|
||||
if fn := builtinFuncs[name]; fn.IsValid() {
|
||||
return fn, true
|
||||
}
|
||||
return reflect.Value{}, false
|
||||
}
|
||||
|
||||
// prepareArg checks if value can be used as an argument of type argType, and
|
||||
// converts an invalid value to appropriate zero if possible.
|
||||
func prepareArg(value reflect.Value, argType reflect.Type) (reflect.Value, error) {
|
||||
if !value.IsValid() {
|
||||
if !canBeNil(argType) {
|
||||
return reflect.Value{}, fmt.Errorf("value is nil; should be of type %s", argType)
|
||||
}
|
||||
value = reflect.Zero(argType)
|
||||
}
|
||||
if value.Type().AssignableTo(argType) {
|
||||
return value, nil
|
||||
}
|
||||
if intLike(value.Kind()) && intLike(argType.Kind()) && value.Type().ConvertibleTo(argType) {
|
||||
value = value.Convert(argType)
|
||||
return value, nil
|
||||
}
|
||||
return reflect.Value{}, fmt.Errorf("value has type %s; should be %s", value.Type(), argType)
|
||||
}
|
||||
|
||||
func intLike(typ reflect.Kind) bool {
|
||||
switch typ {
|
||||
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
||||
return true
|
||||
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
||||
return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// Indexing.
|
||||
|
||||
// index returns the result of indexing its first argument by the following
|
||||
// arguments. Thus "index x 1 2 3" is, in Go syntax, x[1][2][3]. Each
|
||||
// indexed item must be a map, slice, or array.
|
||||
func index(item reflect.Value, indices ...reflect.Value) (reflect.Value, error) {
|
||||
v := indirectInterface(item)
|
||||
if !v.IsValid() {
|
||||
return reflect.Value{}, fmt.Errorf("index of untyped nil")
|
||||
}
|
||||
for _, i := range indices {
|
||||
index := indirectInterface(i)
|
||||
var isNil bool
|
||||
if v, isNil = indirect(v); isNil {
|
||||
return reflect.Value{}, fmt.Errorf("index of nil pointer")
|
||||
}
|
||||
switch v.Kind() {
|
||||
case reflect.Array, reflect.Slice, reflect.String:
|
||||
var x int64
|
||||
switch index.Kind() {
|
||||
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
||||
x = index.Int()
|
||||
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
||||
x = int64(index.Uint())
|
||||
case reflect.Invalid:
|
||||
return reflect.Value{}, fmt.Errorf("cannot index slice/array with nil")
|
||||
default:
|
||||
return reflect.Value{}, fmt.Errorf("cannot index slice/array with type %s", index.Type())
|
||||
}
|
||||
if x < 0 || x >= int64(v.Len()) {
|
||||
return reflect.Value{}, fmt.Errorf("index out of range: %d", x)
|
||||
}
|
||||
v = v.Index(int(x))
|
||||
case reflect.Map:
|
||||
index, err := prepareArg(index, v.Type().Key())
|
||||
if err != nil {
|
||||
return reflect.Value{}, err
|
||||
}
|
||||
if x := v.MapIndex(index); x.IsValid() {
|
||||
v = x
|
||||
} else {
|
||||
v = reflect.Zero(v.Type().Elem())
|
||||
}
|
||||
case reflect.Invalid:
|
||||
// the loop holds invariant: v.IsValid()
|
||||
panic("unreachable")
|
||||
default:
|
||||
return reflect.Value{}, fmt.Errorf("can't index item of type %s", v.Type())
|
||||
}
|
||||
}
|
||||
return v, nil
|
||||
}
|
||||
|
||||
// Length
|
||||
|
||||
// length returns the length of the item, with an error if it has no defined length.
|
||||
func length(item interface{}) (int, error) {
|
||||
v := reflect.ValueOf(item)
|
||||
if !v.IsValid() {
|
||||
return 0, fmt.Errorf("len of untyped nil")
|
||||
}
|
||||
v, isNil := indirect(v)
|
||||
if isNil {
|
||||
return 0, fmt.Errorf("len of nil pointer")
|
||||
}
|
||||
switch v.Kind() {
|
||||
case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice, reflect.String:
|
||||
return v.Len(), nil
|
||||
}
|
||||
return 0, fmt.Errorf("len of type %s", v.Type())
|
||||
}
|
||||
|
||||
// Function invocation
|
||||
|
||||
// call returns the result of evaluating the first argument as a function.
|
||||
// The function must return 1 result, or 2 results, the second of which is an error.
|
||||
func call(fn reflect.Value, args ...reflect.Value) (reflect.Value, error) {
|
||||
v := indirectInterface(fn)
|
||||
if !v.IsValid() {
|
||||
return reflect.Value{}, fmt.Errorf("call of nil")
|
||||
}
|
||||
typ := v.Type()
|
||||
if typ.Kind() != reflect.Func {
|
||||
return reflect.Value{}, fmt.Errorf("non-function of type %s", typ)
|
||||
}
|
||||
if !goodFunc(typ) {
|
||||
return reflect.Value{}, fmt.Errorf("function called with %d args; should be 1 or 2", typ.NumOut())
|
||||
}
|
||||
numIn := typ.NumIn()
|
||||
var dddType reflect.Type
|
||||
if typ.IsVariadic() {
|
||||
if len(args) < numIn-1 {
|
||||
return reflect.Value{}, fmt.Errorf("wrong number of args: got %d want at least %d", len(args), numIn-1)
|
||||
}
|
||||
dddType = typ.In(numIn - 1).Elem()
|
||||
} else {
|
||||
if len(args) != numIn {
|
||||
return reflect.Value{}, fmt.Errorf("wrong number of args: got %d want %d", len(args), numIn)
|
||||
}
|
||||
}
|
||||
argv := make([]reflect.Value, len(args))
|
||||
for i, arg := range args {
|
||||
value := indirectInterface(arg)
|
||||
// Compute the expected type. Clumsy because of variadics.
|
||||
var argType reflect.Type
|
||||
if !typ.IsVariadic() || i < numIn-1 {
|
||||
argType = typ.In(i)
|
||||
} else {
|
||||
argType = dddType
|
||||
}
|
||||
|
||||
var err error
|
||||
if argv[i], err = prepareArg(value, argType); err != nil {
|
||||
return reflect.Value{}, fmt.Errorf("arg %d: %s", i, err)
|
||||
}
|
||||
}
|
||||
result := v.Call(argv)
|
||||
if len(result) == 2 && !result[1].IsNil() {
|
||||
return result[0], result[1].Interface().(error)
|
||||
}
|
||||
return result[0], nil
|
||||
}
|
||||
|
||||
// Boolean logic.
|
||||
|
||||
func truth(arg reflect.Value) bool {
|
||||
t, _ := isTrue(indirectInterface(arg))
|
||||
return t
|
||||
}
|
||||
|
||||
// and computes the Boolean AND of its arguments, returning
|
||||
// the first false argument it encounters, or the last argument.
|
||||
func and(arg0 reflect.Value, args ...reflect.Value) reflect.Value {
|
||||
if !truth(arg0) {
|
||||
return arg0
|
||||
}
|
||||
for i := range args {
|
||||
arg0 = args[i]
|
||||
if !truth(arg0) {
|
||||
break
|
||||
}
|
||||
}
|
||||
return arg0
|
||||
}
|
||||
|
||||
// or computes the Boolean OR of its arguments, returning
|
||||
// the first true argument it encounters, or the last argument.
|
||||
func or(arg0 reflect.Value, args ...reflect.Value) reflect.Value {
|
||||
if truth(arg0) {
|
||||
return arg0
|
||||
}
|
||||
for i := range args {
|
||||
arg0 = args[i]
|
||||
if truth(arg0) {
|
||||
break
|
||||
}
|
||||
}
|
||||
return arg0
|
||||
}
|
||||
|
||||
// not returns the Boolean negation of its argument.
|
||||
func not(arg reflect.Value) bool {
|
||||
return !truth(arg)
|
||||
}
|
||||
|
||||
// Comparison.
|
||||
|
||||
// TODO: Perhaps allow comparison between signed and unsigned integers.
|
||||
|
||||
var (
|
||||
errBadComparisonType = errors.New("invalid type for comparison")
|
||||
errBadComparison = errors.New("incompatible types for comparison")
|
||||
errNoComparison = errors.New("missing argument for comparison")
|
||||
)
|
||||
|
||||
type kind int
|
||||
|
||||
const (
|
||||
invalidKind kind = iota
|
||||
boolKind
|
||||
complexKind
|
||||
intKind
|
||||
floatKind
|
||||
stringKind
|
||||
uintKind
|
||||
)
|
||||
|
||||
func basicKind(v reflect.Value) (kind, error) {
|
||||
switch v.Kind() {
|
||||
case reflect.Bool:
|
||||
return boolKind, nil
|
||||
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
||||
return intKind, nil
|
||||
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
||||
return uintKind, nil
|
||||
case reflect.Float32, reflect.Float64:
|
||||
return floatKind, nil
|
||||
case reflect.Complex64, reflect.Complex128:
|
||||
return complexKind, nil
|
||||
case reflect.String:
|
||||
return stringKind, nil
|
||||
}
|
||||
return invalidKind, errBadComparisonType
|
||||
}
|
||||
|
||||
// eq evaluates the comparison a == b || a == c || ...
|
||||
func eq(arg1 reflect.Value, arg2 ...reflect.Value) (bool, error) {
|
||||
v1 := indirectInterface(arg1)
|
||||
k1, err := basicKind(v1)
|
||||
if err != nil {
|
||||
return false, err
|
||||
}
|
||||
if len(arg2) == 0 {
|
||||
return false, errNoComparison
|
||||
}
|
||||
for _, arg := range arg2 {
|
||||
v2 := indirectInterface(arg)
|
||||
k2, err := basicKind(v2)
|
||||
if err != nil {
|
||||
return false, err
|
||||
}
|
||||
truth := false
|
||||
if k1 != k2 {
|
||||
// Special case: Can compare integer values regardless of type's sign.
|
||||
switch {
|
||||
case k1 == intKind && k2 == uintKind:
|
||||
truth = v1.Int() >= 0 && uint64(v1.Int()) == v2.Uint()
|
||||
case k1 == uintKind && k2 == intKind:
|
||||
truth = v2.Int() >= 0 && v1.Uint() == uint64(v2.Int())
|
||||
default:
|
||||
return false, errBadComparison
|
||||
}
|
||||
} else {
|
||||
switch k1 {
|
||||
case boolKind:
|
||||
truth = v1.Bool() == v2.Bool()
|
||||
case complexKind:
|
||||
truth = v1.Complex() == v2.Complex()
|
||||
case floatKind:
|
||||
truth = v1.Float() == v2.Float()
|
||||
case intKind:
|
||||
truth = v1.Int() == v2.Int()
|
||||
case stringKind:
|
||||
truth = v1.String() == v2.String()
|
||||
case uintKind:
|
||||
truth = v1.Uint() == v2.Uint()
|
||||
default:
|
||||
panic("invalid kind")
|
||||
}
|
||||
}
|
||||
if truth {
|
||||
return true, nil
|
||||
}
|
||||
}
|
||||
return false, nil
|
||||
}
|
||||
|
||||
// ne evaluates the comparison a != b.
|
||||
func ne(arg1, arg2 reflect.Value) (bool, error) {
|
||||
// != is the inverse of ==.
|
||||
equal, err := eq(arg1, arg2)
|
||||
return !equal, err
|
||||
}
|
||||
|
||||
// lt evaluates the comparison a < b.
|
||||
func lt(arg1, arg2 reflect.Value) (bool, error) {
|
||||
v1 := indirectInterface(arg1)
|
||||
k1, err := basicKind(v1)
|
||||
if err != nil {
|
||||
return false, err
|
||||
}
|
||||
v2 := indirectInterface(arg2)
|
||||
k2, err := basicKind(v2)
|
||||
if err != nil {
|
||||
return false, err
|
||||
}
|
||||
truth := false
|
||||
if k1 != k2 {
|
||||
// Special case: Can compare integer values regardless of type's sign.
|
||||
switch {
|
||||
case k1 == intKind && k2 == uintKind:
|
||||
truth = v1.Int() < 0 || uint64(v1.Int()) < v2.Uint()
|
||||
case k1 == uintKind && k2 == intKind:
|
||||
truth = v2.Int() >= 0 && v1.Uint() < uint64(v2.Int())
|
||||
default:
|
||||
return false, errBadComparison
|
||||
}
|
||||
} else {
|
||||
switch k1 {
|
||||
case boolKind, complexKind:
|
||||
return false, errBadComparisonType
|
||||
case floatKind:
|
||||
truth = v1.Float() < v2.Float()
|
||||
case intKind:
|
||||
truth = v1.Int() < v2.Int()
|
||||
case stringKind:
|
||||
truth = v1.String() < v2.String()
|
||||
case uintKind:
|
||||
truth = v1.Uint() < v2.Uint()
|
||||
default:
|
||||
panic("invalid kind")
|
||||
}
|
||||
}
|
||||
return truth, nil
|
||||
}
|
||||
|
||||
// le evaluates the comparison <= b.
|
||||
func le(arg1, arg2 reflect.Value) (bool, error) {
|
||||
// <= is < or ==.
|
||||
lessThan, err := lt(arg1, arg2)
|
||||
if lessThan || err != nil {
|
||||
return lessThan, err
|
||||
}
|
||||
return eq(arg1, arg2)
|
||||
}
|
||||
|
||||
// gt evaluates the comparison a > b.
|
||||
func gt(arg1, arg2 reflect.Value) (bool, error) {
|
||||
// > is the inverse of <=.
|
||||
lessOrEqual, err := le(arg1, arg2)
|
||||
if err != nil {
|
||||
return false, err
|
||||
}
|
||||
return !lessOrEqual, nil
|
||||
}
|
||||
|
||||
// ge evaluates the comparison a >= b.
|
||||
func ge(arg1, arg2 reflect.Value) (bool, error) {
|
||||
// >= is the inverse of <.
|
||||
lessThan, err := lt(arg1, arg2)
|
||||
if err != nil {
|
||||
return false, err
|
||||
}
|
||||
return !lessThan, nil
|
||||
}
|
||||
|
||||
// HTML escaping.
|
||||
|
||||
var (
|
||||
htmlQuot = []byte(""") // shorter than """
|
||||
htmlApos = []byte("'") // shorter than "'" and apos was not in HTML until HTML5
|
||||
htmlAmp = []byte("&")
|
||||
htmlLt = []byte("<")
|
||||
htmlGt = []byte(">")
|
||||
htmlNull = []byte("\uFFFD")
|
||||
)
|
||||
|
||||
// HTMLEscape writes to w the escaped HTML equivalent of the plain text data b.
|
||||
func HTMLEscape(w io.Writer, b []byte) {
|
||||
last := 0
|
||||
for i, c := range b {
|
||||
var html []byte
|
||||
switch c {
|
||||
case '\000':
|
||||
html = htmlNull
|
||||
case '"':
|
||||
html = htmlQuot
|
||||
case '\'':
|
||||
html = htmlApos
|
||||
case '&':
|
||||
html = htmlAmp
|
||||
case '<':
|
||||
html = htmlLt
|
||||
case '>':
|
||||
html = htmlGt
|
||||
default:
|
||||
continue
|
||||
}
|
||||
w.Write(b[last:i])
|
||||
w.Write(html)
|
||||
last = i + 1
|
||||
}
|
||||
w.Write(b[last:])
|
||||
}
|
||||
|
||||
// HTMLEscapeString returns the escaped HTML equivalent of the plain text data s.
|
||||
func HTMLEscapeString(s string) string {
|
||||
// Avoid allocation if we can.
|
||||
if !strings.ContainsAny(s, "'\"&<>\000") {
|
||||
return s
|
||||
}
|
||||
var b bytes.Buffer
|
||||
HTMLEscape(&b, []byte(s))
|
||||
return b.String()
|
||||
}
|
||||
|
||||
// HTMLEscaper returns the escaped HTML equivalent of the textual
|
||||
// representation of its arguments.
|
||||
func HTMLEscaper(args ...interface{}) string {
|
||||
return HTMLEscapeString(evalArgs(args))
|
||||
}
|
||||
|
||||
// JavaScript escaping.
|
||||
|
||||
var (
|
||||
jsLowUni = []byte(`\u00`)
|
||||
hex = []byte("0123456789ABCDEF")
|
||||
|
||||
jsBackslash = []byte(`\\`)
|
||||
jsApos = []byte(`\'`)
|
||||
jsQuot = []byte(`\"`)
|
||||
jsLt = []byte(`\x3C`)
|
||||
jsGt = []byte(`\x3E`)
|
||||
)
|
||||
|
||||
// JSEscape writes to w the escaped JavaScript equivalent of the plain text data b.
|
||||
func JSEscape(w io.Writer, b []byte) {
|
||||
last := 0
|
||||
for i := 0; i < len(b); i++ {
|
||||
c := b[i]
|
||||
|
||||
if !jsIsSpecial(rune(c)) {
|
||||
// fast path: nothing to do
|
||||
continue
|
||||
}
|
||||
w.Write(b[last:i])
|
||||
|
||||
if c < utf8.RuneSelf {
|
||||
// Quotes, slashes and angle brackets get quoted.
|
||||
// Control characters get written as \u00XX.
|
||||
switch c {
|
||||
case '\\':
|
||||
w.Write(jsBackslash)
|
||||
case '\'':
|
||||
w.Write(jsApos)
|
||||
case '"':
|
||||
w.Write(jsQuot)
|
||||
case '<':
|
||||
w.Write(jsLt)
|
||||
case '>':
|
||||
w.Write(jsGt)
|
||||
default:
|
||||
w.Write(jsLowUni)
|
||||
t, b := c>>4, c&0x0f
|
||||
w.Write(hex[t : t+1])
|
||||
w.Write(hex[b : b+1])
|
||||
}
|
||||
} else {
|
||||
// Unicode rune.
|
||||
r, size := utf8.DecodeRune(b[i:])
|
||||
if unicode.IsPrint(r) {
|
||||
w.Write(b[i : i+size])
|
||||
} else {
|
||||
fmt.Fprintf(w, "\\u%04X", r)
|
||||
}
|
||||
i += size - 1
|
||||
}
|
||||
last = i + 1
|
||||
}
|
||||
w.Write(b[last:])
|
||||
}
|
||||
|
||||
// JSEscapeString returns the escaped JavaScript equivalent of the plain text data s.
|
||||
func JSEscapeString(s string) string {
|
||||
// Avoid allocation if we can.
|
||||
if strings.IndexFunc(s, jsIsSpecial) < 0 {
|
||||
return s
|
||||
}
|
||||
var b bytes.Buffer
|
||||
JSEscape(&b, []byte(s))
|
||||
return b.String()
|
||||
}
|
||||
|
||||
func jsIsSpecial(r rune) bool {
|
||||
switch r {
|
||||
case '\\', '\'', '"', '<', '>':
|
||||
return true
|
||||
}
|
||||
return r < ' ' || utf8.RuneSelf <= r
|
||||
}
|
||||
|
||||
// JSEscaper returns the escaped JavaScript equivalent of the textual
|
||||
// representation of its arguments.
|
||||
func JSEscaper(args ...interface{}) string {
|
||||
return JSEscapeString(evalArgs(args))
|
||||
}
|
||||
|
||||
// URLQueryEscaper returns the escaped value of the textual representation of
|
||||
// its arguments in a form suitable for embedding in a URL query.
|
||||
func URLQueryEscaper(args ...interface{}) string {
|
||||
return url.QueryEscape(evalArgs(args))
|
||||
}
|
||||
|
||||
// evalArgs formats the list of arguments into a string. It is therefore equivalent to
|
||||
// fmt.Sprint(args...)
|
||||
// except that each argument is indirected (if a pointer), as required,
|
||||
// using the same rules as the default string evaluation during template
|
||||
// execution.
|
||||
func evalArgs(args []interface{}) string {
|
||||
ok := false
|
||||
var s string
|
||||
// Fast path for simple common case.
|
||||
if len(args) == 1 {
|
||||
s, ok = args[0].(string)
|
||||
}
|
||||
if !ok {
|
||||
for i, arg := range args {
|
||||
a, ok := printableValue(reflect.ValueOf(arg))
|
||||
if ok {
|
||||
args[i] = a
|
||||
} // else let fmt do its thing
|
||||
}
|
||||
s = fmt.Sprint(args...)
|
||||
}
|
||||
return s
|
||||
}
|
129
g/os/gview/internal/text/template/helper.go
Normal file
129
g/os/gview/internal/text/template/helper.go
Normal file
@ -0,0 +1,129 @@
|
||||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Helper functions to make constructing templates easier.
|
||||
|
||||
package template
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io/ioutil"
|
||||
"path/filepath"
|
||||
)
|
||||
|
||||
// Functions and methods to parse templates.
|
||||
|
||||
// Must is a helper that wraps a call to a function returning (*Template, error)
|
||||
// and panics if the error is non-nil. It is intended for use in variable
|
||||
// initializations such as
|
||||
// var t = template.Must(template.New("name").Parse("text"))
|
||||
func Must(t *Template, err error) *Template {
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
return t
|
||||
}
|
||||
|
||||
// ParseFiles creates a new Template and parses the template definitions from
|
||||
// the named files. The returned template's name will have the base name and
|
||||
// parsed contents of the first file. There must be at least one file.
|
||||
// If an error occurs, parsing stops and the returned *Template is nil.
|
||||
//
|
||||
// When parsing multiple files with the same name in different directories,
|
||||
// the last one mentioned will be the one that results.
|
||||
// For instance, ParseFiles("a/foo", "b/foo") stores "b/foo" as the template
|
||||
// named "foo", while "a/foo" is unavailable.
|
||||
func ParseFiles(filenames ...string) (*Template, error) {
|
||||
return parseFiles(nil, filenames...)
|
||||
}
|
||||
|
||||
// ParseFiles parses the named files and associates the resulting templates with
|
||||
// t. If an error occurs, parsing stops and the returned template is nil;
|
||||
// otherwise it is t. There must be at least one file.
|
||||
// Since the templates created by ParseFiles are named by the base
|
||||
// names of the argument files, t should usually have the name of one
|
||||
// of the (base) names of the files. If it does not, depending on t's
|
||||
// contents before calling ParseFiles, t.Execute may fail. In that
|
||||
// case use t.ExecuteTemplate to execute a valid template.
|
||||
//
|
||||
// When parsing multiple files with the same name in different directories,
|
||||
// the last one mentioned will be the one that results.
|
||||
func (t *Template) ParseFiles(filenames ...string) (*Template, error) {
|
||||
t.init()
|
||||
return parseFiles(t, filenames...)
|
||||
}
|
||||
|
||||
// parseFiles is the helper for the method and function. If the argument
|
||||
// template is nil, it is created from the first file.
|
||||
func parseFiles(t *Template, filenames ...string) (*Template, error) {
|
||||
if len(filenames) == 0 {
|
||||
// Not really a problem, but be consistent.
|
||||
return nil, fmt.Errorf("template: no files named in call to ParseFiles")
|
||||
}
|
||||
for _, filename := range filenames {
|
||||
b, err := ioutil.ReadFile(filename)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
s := string(b)
|
||||
name := filepath.Base(filename)
|
||||
// First template becomes return value if not already defined,
|
||||
// and we use that one for subsequent New calls to associate
|
||||
// all the templates together. Also, if this file has the same name
|
||||
// as t, this file becomes the contents of t, so
|
||||
// t, err := New(name).Funcs(xxx).ParseFiles(name)
|
||||
// works. Otherwise we create a new template associated with t.
|
||||
var tmpl *Template
|
||||
if t == nil {
|
||||
t = New(name)
|
||||
}
|
||||
if name == t.Name() {
|
||||
tmpl = t
|
||||
} else {
|
||||
tmpl = t.New(name)
|
||||
}
|
||||
_, err = tmpl.Parse(s)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
return t, nil
|
||||
}
|
||||
|
||||
// ParseGlob creates a new Template and parses the template definitions from the
|
||||
// files identified by the pattern, which must match at least one file. The
|
||||
// returned template will have the (base) name and (parsed) contents of the
|
||||
// first file matched by the pattern. ParseGlob is equivalent to calling
|
||||
// ParseFiles with the list of files matched by the pattern.
|
||||
//
|
||||
// When parsing multiple files with the same name in different directories,
|
||||
// the last one mentioned will be the one that results.
|
||||
func ParseGlob(pattern string) (*Template, error) {
|
||||
return parseGlob(nil, pattern)
|
||||
}
|
||||
|
||||
// ParseGlob parses the template definitions in the files identified by the
|
||||
// pattern and associates the resulting templates with t. The pattern is
|
||||
// processed by filepath.Glob and must match at least one file. ParseGlob is
|
||||
// equivalent to calling t.ParseFiles with the list of files matched by the
|
||||
// pattern.
|
||||
//
|
||||
// When parsing multiple files with the same name in different directories,
|
||||
// the last one mentioned will be the one that results.
|
||||
func (t *Template) ParseGlob(pattern string) (*Template, error) {
|
||||
t.init()
|
||||
return parseGlob(t, pattern)
|
||||
}
|
||||
|
||||
// parseGlob is the implementation of the function and method ParseGlob.
|
||||
func parseGlob(t *Template, pattern string) (*Template, error) {
|
||||
filenames, err := filepath.Glob(pattern)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if len(filenames) == 0 {
|
||||
return nil, fmt.Errorf("template: pattern matches no files: %#q", pattern)
|
||||
}
|
||||
return parseFiles(t, filenames...)
|
||||
}
|
74
g/os/gview/internal/text/template/option.go
Normal file
74
g/os/gview/internal/text/template/option.go
Normal file
@ -0,0 +1,74 @@
|
||||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This file contains the code to handle template options.
|
||||
|
||||
package template
|
||||
|
||||
import "strings"
|
||||
|
||||
// missingKeyAction defines how to respond to indexing a map with a key that is not present.
|
||||
type missingKeyAction int
|
||||
|
||||
const (
|
||||
mapInvalid missingKeyAction = iota // Return an invalid reflect.Value.
|
||||
mapZeroValue // Return the zero value for the map element.
|
||||
mapError // Error out
|
||||
)
|
||||
|
||||
type option struct {
|
||||
missingKey missingKeyAction
|
||||
}
|
||||
|
||||
// Option sets options for the template. Options are described by
|
||||
// strings, either a simple string or "key=value". There can be at
|
||||
// most one equals sign in an option string. If the option string
|
||||
// is unrecognized or otherwise invalid, Option panics.
|
||||
//
|
||||
// Known options:
|
||||
//
|
||||
// missingkey: Control the behavior during execution if a map is
|
||||
// indexed with a key that is not present in the map.
|
||||
// "missingkey=default" or "missingkey=invalid"
|
||||
// The default behavior: Do nothing and continue execution.
|
||||
// If printed, the result of the index operation is the string
|
||||
// "<no value>".
|
||||
// "missingkey=zero"
|
||||
// The operation returns the zero value for the map type's element.
|
||||
// "missingkey=error"
|
||||
// Execution stops immediately with an error.
|
||||
//
|
||||
func (t *Template) Option(opt ...string) *Template {
|
||||
t.init()
|
||||
for _, s := range opt {
|
||||
t.setOption(s)
|
||||
}
|
||||
return t
|
||||
}
|
||||
|
||||
func (t *Template) setOption(opt string) {
|
||||
if opt == "" {
|
||||
panic("empty option string")
|
||||
}
|
||||
elems := strings.Split(opt, "=")
|
||||
switch len(elems) {
|
||||
case 2:
|
||||
// key=value
|
||||
switch elems[0] {
|
||||
case "missingkey":
|
||||
switch elems[1] {
|
||||
case "invalid", "default":
|
||||
t.option.missingKey = mapInvalid
|
||||
return
|
||||
case "zero":
|
||||
t.option.missingKey = mapZeroValue
|
||||
return
|
||||
case "error":
|
||||
t.option.missingKey = mapError
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
panic("unrecognized option: " + opt)
|
||||
}
|
642
g/os/gview/internal/text/template/parse/lex.go
Normal file
642
g/os/gview/internal/text/template/parse/lex.go
Normal file
@ -0,0 +1,642 @@
|
||||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package parse
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"strings"
|
||||
"unicode"
|
||||
"unicode/utf8"
|
||||
)
|
||||
|
||||
// item represents a token or text string returned from the scanner.
|
||||
type item struct {
|
||||
typ itemType // The type of this item.
|
||||
pos Pos // The starting position, in bytes, of this item in the input string.
|
||||
val string // The value of this item.
|
||||
line int // The line number at the start of this item.
|
||||
}
|
||||
|
||||
func (i item) String() string {
|
||||
switch {
|
||||
case i.typ == itemEOF:
|
||||
return "EOF"
|
||||
case i.typ == itemError:
|
||||
return i.val
|
||||
case i.typ > itemKeyword:
|
||||
return fmt.Sprintf("<%s>", i.val)
|
||||
case len(i.val) > 10:
|
||||
return fmt.Sprintf("%.10q...", i.val)
|
||||
}
|
||||
return fmt.Sprintf("%q", i.val)
|
||||
}
|
||||
|
||||
// itemType identifies the type of lex items.
|
||||
type itemType int
|
||||
|
||||
const (
|
||||
itemError itemType = iota // error occurred; value is text of error
|
||||
itemBool // boolean constant
|
||||
itemChar // printable ASCII character; grab bag for comma etc.
|
||||
itemCharConstant // character constant
|
||||
itemComplex // complex constant (1+2i); imaginary is just a number
|
||||
itemAssign // equals ('=') introducing an assignment
|
||||
itemDeclare // colon-equals (':=') introducing a declaration
|
||||
itemEOF
|
||||
itemField // alphanumeric identifier starting with '.'
|
||||
itemIdentifier // alphanumeric identifier not starting with '.'
|
||||
itemLeftDelim // left action delimiter
|
||||
itemLeftParen // '(' inside action
|
||||
itemNumber // simple number, including imaginary
|
||||
itemPipe // pipe symbol
|
||||
itemRawString // raw quoted string (includes quotes)
|
||||
itemRightDelim // right action delimiter
|
||||
itemRightParen // ')' inside action
|
||||
itemSpace // run of spaces separating arguments
|
||||
itemString // quoted string (includes quotes)
|
||||
itemText // plain text
|
||||
itemVariable // variable starting with '$', such as '$' or '$1' or '$hello'
|
||||
// Keywords appear after all the rest.
|
||||
itemKeyword // used only to delimit the keywords
|
||||
itemBlock // block keyword
|
||||
itemDot // the cursor, spelled '.'
|
||||
itemDefine // define keyword
|
||||
itemElse // else keyword
|
||||
itemEnd // end keyword
|
||||
itemIf // if keyword
|
||||
itemNil // the untyped nil constant, easiest to treat as a keyword
|
||||
itemRange // range keyword
|
||||
itemTemplate // template keyword
|
||||
itemWith // with keyword
|
||||
)
|
||||
|
||||
var key = map[string]itemType{
|
||||
".": itemDot,
|
||||
"block": itemBlock,
|
||||
"define": itemDefine,
|
||||
"else": itemElse,
|
||||
"end": itemEnd,
|
||||
"if": itemIf,
|
||||
"range": itemRange,
|
||||
"nil": itemNil,
|
||||
"template": itemTemplate,
|
||||
"with": itemWith,
|
||||
}
|
||||
|
||||
const eof = -1
|
||||
|
||||
// Trimming spaces.
|
||||
// If the action begins "{{- " rather than "{{", then all space/tab/newlines
|
||||
// preceding the action are trimmed; conversely if it ends " -}}" the
|
||||
// leading spaces are trimmed. This is done entirely in the lexer; the
|
||||
// parser never sees it happen. We require an ASCII space to be
|
||||
// present to avoid ambiguity with things like "{{-3}}". It reads
|
||||
// better with the space present anyway. For simplicity, only ASCII
|
||||
// space does the job.
|
||||
const (
|
||||
spaceChars = " \t\r\n" // These are the space characters defined by Go itself.
|
||||
leftTrimMarker = "- " // Attached to left delimiter, trims trailing spaces from preceding text.
|
||||
rightTrimMarker = " -" // Attached to right delimiter, trims leading spaces from following text.
|
||||
trimMarkerLen = Pos(len(leftTrimMarker))
|
||||
)
|
||||
|
||||
// stateFn represents the state of the scanner as a function that returns the next state.
|
||||
type stateFn func(*lexer) stateFn
|
||||
|
||||
// lexer holds the state of the scanner.
|
||||
type lexer struct {
|
||||
name string // the name of the input; used only for error reports
|
||||
input string // the string being scanned
|
||||
leftDelim string // start of action
|
||||
rightDelim string // end of action
|
||||
pos Pos // current position in the input
|
||||
start Pos // start position of this item
|
||||
width Pos // width of last rune read from input
|
||||
items chan item // channel of scanned items
|
||||
parenDepth int // nesting depth of ( ) exprs
|
||||
line int // 1+number of newlines seen
|
||||
}
|
||||
|
||||
// next returns the next rune in the input.
|
||||
func (l *lexer) next() rune {
|
||||
if int(l.pos) >= len(l.input) {
|
||||
l.width = 0
|
||||
return eof
|
||||
}
|
||||
r, w := utf8.DecodeRuneInString(l.input[l.pos:])
|
||||
l.width = Pos(w)
|
||||
l.pos += l.width
|
||||
if r == '\n' {
|
||||
l.line++
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
// peek returns but does not consume the next rune in the input.
|
||||
func (l *lexer) peek() rune {
|
||||
r := l.next()
|
||||
l.backup()
|
||||
return r
|
||||
}
|
||||
|
||||
// backup steps back one rune. Can only be called once per call of next.
|
||||
func (l *lexer) backup() {
|
||||
l.pos -= l.width
|
||||
// Correct newline count.
|
||||
if l.width == 1 && l.input[l.pos] == '\n' {
|
||||
l.line--
|
||||
}
|
||||
}
|
||||
|
||||
// emit passes an item back to the client.
|
||||
func (l *lexer) emit(t itemType) {
|
||||
l.items <- item{t, l.start, l.input[l.start:l.pos], l.line}
|
||||
// Some items contain text internally. If so, count their newlines.
|
||||
switch t {
|
||||
case itemText, itemRawString, itemLeftDelim, itemRightDelim:
|
||||
l.line += strings.Count(l.input[l.start:l.pos], "\n")
|
||||
}
|
||||
l.start = l.pos
|
||||
}
|
||||
|
||||
// ignore skips over the pending input before this point.
|
||||
func (l *lexer) ignore() {
|
||||
l.line += strings.Count(l.input[l.start:l.pos], "\n")
|
||||
l.start = l.pos
|
||||
}
|
||||
|
||||
// accept consumes the next rune if it's from the valid set.
|
||||
func (l *lexer) accept(valid string) bool {
|
||||
if strings.ContainsRune(valid, l.next()) {
|
||||
return true
|
||||
}
|
||||
l.backup()
|
||||
return false
|
||||
}
|
||||
|
||||
// acceptRun consumes a run of runes from the valid set.
|
||||
func (l *lexer) acceptRun(valid string) {
|
||||
for strings.ContainsRune(valid, l.next()) {
|
||||
}
|
||||
l.backup()
|
||||
}
|
||||
|
||||
// errorf returns an error token and terminates the scan by passing
|
||||
// back a nil pointer that will be the next state, terminating l.nextItem.
|
||||
func (l *lexer) errorf(format string, args ...interface{}) stateFn {
|
||||
l.items <- item{itemError, l.start, fmt.Sprintf(format, args...), l.line}
|
||||
return nil
|
||||
}
|
||||
|
||||
// nextItem returns the next item from the input.
|
||||
// Called by the parser, not in the lexing goroutine.
|
||||
func (l *lexer) nextItem() item {
|
||||
return <-l.items
|
||||
}
|
||||
|
||||
// drain drains the output so the lexing goroutine will exit.
|
||||
// Called by the parser, not in the lexing goroutine.
|
||||
func (l *lexer) drain() {
|
||||
for range l.items {
|
||||
}
|
||||
}
|
||||
|
||||
// lex creates a new scanner for the input string.
|
||||
func lex(name, input, left, right string) *lexer {
|
||||
if left == "" {
|
||||
left = leftDelim
|
||||
}
|
||||
if right == "" {
|
||||
right = rightDelim
|
||||
}
|
||||
l := &lexer{
|
||||
name: name,
|
||||
input: input,
|
||||
leftDelim: left,
|
||||
rightDelim: right,
|
||||
items: make(chan item),
|
||||
line: 1,
|
||||
}
|
||||
go l.run()
|
||||
return l
|
||||
}
|
||||
|
||||
// run runs the state machine for the lexer.
|
||||
func (l *lexer) run() {
|
||||
for state := lexText; state != nil; {
|
||||
state = state(l)
|
||||
}
|
||||
close(l.items)
|
||||
}
|
||||
|
||||
// state functions
|
||||
|
||||
const (
|
||||
leftDelim = "{{"
|
||||
rightDelim = "}}"
|
||||
leftComment = "/*"
|
||||
rightComment = "*/"
|
||||
)
|
||||
|
||||
// lexText scans until an opening action delimiter, "{{".
|
||||
func lexText(l *lexer) stateFn {
|
||||
l.width = 0
|
||||
if x := strings.Index(l.input[l.pos:], l.leftDelim); x >= 0 {
|
||||
ldn := Pos(len(l.leftDelim))
|
||||
l.pos += Pos(x)
|
||||
trimLength := Pos(0)
|
||||
if strings.HasPrefix(l.input[l.pos+ldn:], leftTrimMarker) {
|
||||
trimLength = rightTrimLength(l.input[l.start:l.pos])
|
||||
}
|
||||
l.pos -= trimLength
|
||||
if l.pos > l.start {
|
||||
l.emit(itemText)
|
||||
}
|
||||
l.pos += trimLength
|
||||
l.ignore()
|
||||
return lexLeftDelim
|
||||
} else {
|
||||
l.pos = Pos(len(l.input))
|
||||
}
|
||||
// Correctly reached EOF.
|
||||
if l.pos > l.start {
|
||||
l.emit(itemText)
|
||||
}
|
||||
l.emit(itemEOF)
|
||||
return nil
|
||||
}
|
||||
|
||||
// rightTrimLength returns the length of the spaces at the end of the string.
|
||||
func rightTrimLength(s string) Pos {
|
||||
return Pos(len(s) - len(strings.TrimRight(s, spaceChars)))
|
||||
}
|
||||
|
||||
// atRightDelim reports whether the lexer is at a right delimiter, possibly preceded by a trim marker.
|
||||
func (l *lexer) atRightDelim() (delim, trimSpaces bool) {
|
||||
if strings.HasPrefix(l.input[l.pos:], l.rightDelim) {
|
||||
return true, false
|
||||
}
|
||||
// The right delim might have the marker before.
|
||||
if strings.HasPrefix(l.input[l.pos:], rightTrimMarker) &&
|
||||
strings.HasPrefix(l.input[l.pos+trimMarkerLen:], l.rightDelim) {
|
||||
return true, true
|
||||
}
|
||||
return false, false
|
||||
}
|
||||
|
||||
// leftTrimLength returns the length of the spaces at the beginning of the string.
|
||||
func leftTrimLength(s string) Pos {
|
||||
return Pos(len(s) - len(strings.TrimLeft(s, spaceChars)))
|
||||
}
|
||||
|
||||
// lexLeftDelim scans the left delimiter, which is known to be present, possibly with a trim marker.
|
||||
func lexLeftDelim(l *lexer) stateFn {
|
||||
l.pos += Pos(len(l.leftDelim))
|
||||
trimSpace := strings.HasPrefix(l.input[l.pos:], leftTrimMarker)
|
||||
afterMarker := Pos(0)
|
||||
if trimSpace {
|
||||
afterMarker = trimMarkerLen
|
||||
}
|
||||
if strings.HasPrefix(l.input[l.pos+afterMarker:], leftComment) {
|
||||
l.pos += afterMarker
|
||||
l.ignore()
|
||||
return lexComment
|
||||
}
|
||||
l.emit(itemLeftDelim)
|
||||
l.pos += afterMarker
|
||||
l.ignore()
|
||||
l.parenDepth = 0
|
||||
return lexInsideAction
|
||||
}
|
||||
|
||||
// lexComment scans a comment. The left comment marker is known to be present.
|
||||
func lexComment(l *lexer) stateFn {
|
||||
l.pos += Pos(len(leftComment))
|
||||
i := strings.Index(l.input[l.pos:], rightComment)
|
||||
if i < 0 {
|
||||
return l.errorf("unclosed comment")
|
||||
}
|
||||
l.pos += Pos(i + len(rightComment))
|
||||
delim, trimSpace := l.atRightDelim()
|
||||
if !delim {
|
||||
return l.errorf("comment ends before closing delimiter")
|
||||
}
|
||||
if trimSpace {
|
||||
l.pos += trimMarkerLen
|
||||
}
|
||||
l.pos += Pos(len(l.rightDelim))
|
||||
if trimSpace {
|
||||
l.pos += leftTrimLength(l.input[l.pos:])
|
||||
}
|
||||
l.ignore()
|
||||
return lexText
|
||||
}
|
||||
|
||||
// lexRightDelim scans the right delimiter, which is known to be present, possibly with a trim marker.
|
||||
func lexRightDelim(l *lexer) stateFn {
|
||||
trimSpace := strings.HasPrefix(l.input[l.pos:], rightTrimMarker)
|
||||
if trimSpace {
|
||||
l.pos += trimMarkerLen
|
||||
l.ignore()
|
||||
}
|
||||
l.pos += Pos(len(l.rightDelim))
|
||||
l.emit(itemRightDelim)
|
||||
if trimSpace {
|
||||
l.pos += leftTrimLength(l.input[l.pos:])
|
||||
l.ignore()
|
||||
}
|
||||
return lexText
|
||||
}
|
||||
|
||||
// lexInsideAction scans the elements inside action delimiters.
|
||||
func lexInsideAction(l *lexer) stateFn {
|
||||
// Either number, quoted string, or identifier.
|
||||
// Spaces separate arguments; runs of spaces turn into itemSpace.
|
||||
// Pipe symbols separate and are emitted.
|
||||
delim, _ := l.atRightDelim()
|
||||
if delim {
|
||||
if l.parenDepth == 0 {
|
||||
return lexRightDelim
|
||||
}
|
||||
return l.errorf("unclosed left paren")
|
||||
}
|
||||
switch r := l.next(); {
|
||||
case r == eof || isEndOfLine(r):
|
||||
return l.errorf("unclosed action")
|
||||
case isSpace(r):
|
||||
return lexSpace
|
||||
case r == '=':
|
||||
l.emit(itemAssign)
|
||||
case r == ':':
|
||||
if l.next() != '=' {
|
||||
return l.errorf("expected :=")
|
||||
}
|
||||
l.emit(itemDeclare)
|
||||
case r == '|':
|
||||
l.emit(itemPipe)
|
||||
case r == '"':
|
||||
return lexQuote
|
||||
case r == '`':
|
||||
return lexRawQuote
|
||||
case r == '$':
|
||||
return lexVariable
|
||||
case r == '\'':
|
||||
return lexChar
|
||||
case r == '.':
|
||||
// special look-ahead for ".field" so we don't break l.backup().
|
||||
if l.pos < Pos(len(l.input)) {
|
||||
r := l.input[l.pos]
|
||||
if r < '0' || '9' < r {
|
||||
return lexField
|
||||
}
|
||||
}
|
||||
fallthrough // '.' can start a number.
|
||||
case r == '+' || r == '-' || ('0' <= r && r <= '9'):
|
||||
l.backup()
|
||||
return lexNumber
|
||||
case isAlphaNumeric(r):
|
||||
l.backup()
|
||||
return lexIdentifier
|
||||
case r == '(':
|
||||
l.emit(itemLeftParen)
|
||||
l.parenDepth++
|
||||
case r == ')':
|
||||
l.emit(itemRightParen)
|
||||
l.parenDepth--
|
||||
if l.parenDepth < 0 {
|
||||
return l.errorf("unexpected right paren %#U", r)
|
||||
}
|
||||
case r <= unicode.MaxASCII && unicode.IsPrint(r):
|
||||
l.emit(itemChar)
|
||||
return lexInsideAction
|
||||
default:
|
||||
return l.errorf("unrecognized character in action: %#U", r)
|
||||
}
|
||||
return lexInsideAction
|
||||
}
|
||||
|
||||
// lexSpace scans a run of space characters.
|
||||
// One space has already been seen.
|
||||
func lexSpace(l *lexer) stateFn {
|
||||
for isSpace(l.peek()) {
|
||||
l.next()
|
||||
}
|
||||
l.emit(itemSpace)
|
||||
return lexInsideAction
|
||||
}
|
||||
|
||||
// lexIdentifier scans an alphanumeric.
|
||||
func lexIdentifier(l *lexer) stateFn {
|
||||
Loop:
|
||||
for {
|
||||
switch r := l.next(); {
|
||||
case isAlphaNumeric(r):
|
||||
// absorb.
|
||||
default:
|
||||
l.backup()
|
||||
word := l.input[l.start:l.pos]
|
||||
if !l.atTerminator() {
|
||||
return l.errorf("bad character %#U", r)
|
||||
}
|
||||
switch {
|
||||
case key[word] > itemKeyword:
|
||||
l.emit(key[word])
|
||||
case word[0] == '.':
|
||||
l.emit(itemField)
|
||||
case word == "true", word == "false":
|
||||
l.emit(itemBool)
|
||||
default:
|
||||
l.emit(itemIdentifier)
|
||||
}
|
||||
break Loop
|
||||
}
|
||||
}
|
||||
return lexInsideAction
|
||||
}
|
||||
|
||||
// lexField scans a field: .Alphanumeric.
|
||||
// The . has been scanned.
|
||||
func lexField(l *lexer) stateFn {
|
||||
return lexFieldOrVariable(l, itemField)
|
||||
}
|
||||
|
||||
// lexVariable scans a Variable: $Alphanumeric.
|
||||
// The $ has been scanned.
|
||||
func lexVariable(l *lexer) stateFn {
|
||||
if l.atTerminator() { // Nothing interesting follows -> "$".
|
||||
l.emit(itemVariable)
|
||||
return lexInsideAction
|
||||
}
|
||||
return lexFieldOrVariable(l, itemVariable)
|
||||
}
|
||||
|
||||
// lexVariable scans a field or variable: [.$]Alphanumeric.
|
||||
// The . or $ has been scanned.
|
||||
func lexFieldOrVariable(l *lexer, typ itemType) stateFn {
|
||||
if l.atTerminator() { // Nothing interesting follows -> "." or "$".
|
||||
if typ == itemVariable {
|
||||
l.emit(itemVariable)
|
||||
} else {
|
||||
l.emit(itemDot)
|
||||
}
|
||||
return lexInsideAction
|
||||
}
|
||||
var r rune
|
||||
for {
|
||||
r = l.next()
|
||||
if !isAlphaNumeric(r) {
|
||||
l.backup()
|
||||
break
|
||||
}
|
||||
}
|
||||
if !l.atTerminator() {
|
||||
return l.errorf("bad character %#U", r)
|
||||
}
|
||||
l.emit(typ)
|
||||
return lexInsideAction
|
||||
}
|
||||
|
||||
// atTerminator reports whether the input is at valid termination character to
|
||||
// appear after an identifier. Breaks .X.Y into two pieces. Also catches cases
|
||||
// like "$x+2" not being acceptable without a space, in case we decide one
|
||||
// day to implement arithmetic.
|
||||
func (l *lexer) atTerminator() bool {
|
||||
r := l.peek()
|
||||
if isSpace(r) || isEndOfLine(r) {
|
||||
return true
|
||||
}
|
||||
switch r {
|
||||
case eof, '.', ',', '|', ':', ')', '(':
|
||||
return true
|
||||
}
|
||||
// Does r start the delimiter? This can be ambiguous (with delim=="//", $x/2 will
|
||||
// succeed but should fail) but only in extremely rare cases caused by willfully
|
||||
// bad choice of delimiter.
|
||||
if rd, _ := utf8.DecodeRuneInString(l.rightDelim); rd == r {
|
||||
return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// lexChar scans a character constant. The initial quote is already
|
||||
// scanned. Syntax checking is done by the parser.
|
||||
func lexChar(l *lexer) stateFn {
|
||||
Loop:
|
||||
for {
|
||||
switch l.next() {
|
||||
case '\\':
|
||||
if r := l.next(); r != eof && r != '\n' {
|
||||
break
|
||||
}
|
||||
fallthrough
|
||||
case eof, '\n':
|
||||
return l.errorf("unterminated character constant")
|
||||
case '\'':
|
||||
break Loop
|
||||
}
|
||||
}
|
||||
l.emit(itemCharConstant)
|
||||
return lexInsideAction
|
||||
}
|
||||
|
||||
// lexNumber scans a number: decimal, octal, hex, float, or imaginary. This
|
||||
// isn't a perfect number scanner - for instance it accepts "." and "0x0.2"
|
||||
// and "089" - but when it's wrong the input is invalid and the parser (via
|
||||
// strconv) will notice.
|
||||
func lexNumber(l *lexer) stateFn {
|
||||
if !l.scanNumber() {
|
||||
return l.errorf("bad number syntax: %q", l.input[l.start:l.pos])
|
||||
}
|
||||
if sign := l.peek(); sign == '+' || sign == '-' {
|
||||
// Complex: 1+2i. No spaces, must end in 'i'.
|
||||
if !l.scanNumber() || l.input[l.pos-1] != 'i' {
|
||||
return l.errorf("bad number syntax: %q", l.input[l.start:l.pos])
|
||||
}
|
||||
l.emit(itemComplex)
|
||||
} else {
|
||||
l.emit(itemNumber)
|
||||
}
|
||||
return lexInsideAction
|
||||
}
|
||||
|
||||
func (l *lexer) scanNumber() bool {
|
||||
// Optional leading sign.
|
||||
l.accept("+-")
|
||||
// Is it hex?
|
||||
digits := "0123456789"
|
||||
if l.accept("0") && l.accept("xX") {
|
||||
digits = "0123456789abcdefABCDEF"
|
||||
}
|
||||
l.acceptRun(digits)
|
||||
if l.accept(".") {
|
||||
l.acceptRun(digits)
|
||||
}
|
||||
if l.accept("eE") {
|
||||
l.accept("+-")
|
||||
l.acceptRun("0123456789")
|
||||
}
|
||||
// Is it imaginary?
|
||||
l.accept("i")
|
||||
// Next thing mustn't be alphanumeric.
|
||||
if isAlphaNumeric(l.peek()) {
|
||||
l.next()
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// lexQuote scans a quoted string.
|
||||
func lexQuote(l *lexer) stateFn {
|
||||
Loop:
|
||||
for {
|
||||
switch l.next() {
|
||||
case '\\':
|
||||
if r := l.next(); r != eof && r != '\n' {
|
||||
break
|
||||
}
|
||||
fallthrough
|
||||
case eof, '\n':
|
||||
return l.errorf("unterminated quoted string")
|
||||
case '"':
|
||||
break Loop
|
||||
}
|
||||
}
|
||||
l.emit(itemString)
|
||||
return lexInsideAction
|
||||
}
|
||||
|
||||
// lexRawQuote scans a raw quoted string.
|
||||
func lexRawQuote(l *lexer) stateFn {
|
||||
startLine := l.line
|
||||
Loop:
|
||||
for {
|
||||
switch l.next() {
|
||||
case eof:
|
||||
// Restore line number to location of opening quote.
|
||||
// We will error out so it's ok just to overwrite the field.
|
||||
l.line = startLine
|
||||
return l.errorf("unterminated raw quoted string")
|
||||
case '`':
|
||||
break Loop
|
||||
}
|
||||
}
|
||||
l.emit(itemRawString)
|
||||
return lexInsideAction
|
||||
}
|
||||
|
||||
// isSpace reports whether r is a space character.
|
||||
func isSpace(r rune) bool {
|
||||
return r == ' ' || r == '\t'
|
||||
}
|
||||
|
||||
// isEndOfLine reports whether r is an end-of-line character.
|
||||
func isEndOfLine(r rune) bool {
|
||||
return r == '\r' || r == '\n'
|
||||
}
|
||||
|
||||
// isAlphaNumeric reports whether r is an alphabetic, digit, or underscore.
|
||||
func isAlphaNumeric(r rune) bool {
|
||||
return r == '_' || unicode.IsLetter(r) || unicode.IsDigit(r)
|
||||
}
|
841
g/os/gview/internal/text/template/parse/node.go
Normal file
841
g/os/gview/internal/text/template/parse/node.go
Normal file
@ -0,0 +1,841 @@
|
||||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Parse nodes.
|
||||
|
||||
package parse
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"strconv"
|
||||
"strings"
|
||||
)
|
||||
|
||||
var textFormat = "%s" // Changed to "%q" in tests for better error messages.
|
||||
|
||||
// A Node is an element in the parse tree. The interface is trivial.
|
||||
// The interface contains an unexported method so that only
|
||||
// types local to this package can satisfy it.
|
||||
type Node interface {
|
||||
Type() NodeType
|
||||
String() string
|
||||
// Copy does a deep copy of the Node and all its components.
|
||||
// To avoid type assertions, some XxxNodes also have specialized
|
||||
// CopyXxx methods that return *XxxNode.
|
||||
Copy() Node
|
||||
Position() Pos // byte position of start of node in full original input string
|
||||
// tree returns the containing *Tree.
|
||||
// It is unexported so all implementations of Node are in this package.
|
||||
tree() *Tree
|
||||
}
|
||||
|
||||
// NodeType identifies the type of a parse tree node.
|
||||
type NodeType int
|
||||
|
||||
// Pos represents a byte position in the original input text from which
|
||||
// this template was parsed.
|
||||
type Pos int
|
||||
|
||||
func (p Pos) Position() Pos {
|
||||
return p
|
||||
}
|
||||
|
||||
// Type returns itself and provides an easy default implementation
|
||||
// for embedding in a Node. Embedded in all non-trivial Nodes.
|
||||
func (t NodeType) Type() NodeType {
|
||||
return t
|
||||
}
|
||||
|
||||
const (
|
||||
NodeText NodeType = iota // Plain text.
|
||||
NodeAction // A non-control action such as a field evaluation.
|
||||
NodeBool // A boolean constant.
|
||||
NodeChain // A sequence of field accesses.
|
||||
NodeCommand // An element of a pipeline.
|
||||
NodeDot // The cursor, dot.
|
||||
nodeElse // An else action. Not added to tree.
|
||||
nodeEnd // An end action. Not added to tree.
|
||||
NodeField // A field or method name.
|
||||
NodeIdentifier // An identifier; always a function name.
|
||||
NodeIf // An if action.
|
||||
NodeList // A list of Nodes.
|
||||
NodeNil // An untyped nil constant.
|
||||
NodeNumber // A numerical constant.
|
||||
NodePipe // A pipeline of commands.
|
||||
NodeRange // A range action.
|
||||
NodeString // A string constant.
|
||||
NodeTemplate // A template invocation action.
|
||||
NodeVariable // A $ variable.
|
||||
NodeWith // A with action.
|
||||
)
|
||||
|
||||
// Nodes.
|
||||
|
||||
// ListNode holds a sequence of nodes.
|
||||
type ListNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
Nodes []Node // The element nodes in lexical order.
|
||||
}
|
||||
|
||||
func (t *Tree) newList(pos Pos) *ListNode {
|
||||
return &ListNode{tr: t, NodeType: NodeList, Pos: pos}
|
||||
}
|
||||
|
||||
func (l *ListNode) append(n Node) {
|
||||
l.Nodes = append(l.Nodes, n)
|
||||
}
|
||||
|
||||
func (l *ListNode) tree() *Tree {
|
||||
return l.tr
|
||||
}
|
||||
|
||||
func (l *ListNode) String() string {
|
||||
b := new(bytes.Buffer)
|
||||
for _, n := range l.Nodes {
|
||||
fmt.Fprint(b, n)
|
||||
}
|
||||
return b.String()
|
||||
}
|
||||
|
||||
func (l *ListNode) CopyList() *ListNode {
|
||||
if l == nil {
|
||||
return l
|
||||
}
|
||||
n := l.tr.newList(l.Pos)
|
||||
for _, elem := range l.Nodes {
|
||||
n.append(elem.Copy())
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
func (l *ListNode) Copy() Node {
|
||||
return l.CopyList()
|
||||
}
|
||||
|
||||
// TextNode holds plain text.
|
||||
type TextNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
Text []byte // The text; may span newlines.
|
||||
}
|
||||
|
||||
func (t *Tree) newText(pos Pos, text string) *TextNode {
|
||||
return &TextNode{tr: t, NodeType: NodeText, Pos: pos, Text: []byte(text)}
|
||||
}
|
||||
|
||||
func (t *TextNode) String() string {
|
||||
return fmt.Sprintf(textFormat, t.Text)
|
||||
}
|
||||
|
||||
func (t *TextNode) tree() *Tree {
|
||||
return t.tr
|
||||
}
|
||||
|
||||
func (t *TextNode) Copy() Node {
|
||||
return &TextNode{tr: t.tr, NodeType: NodeText, Pos: t.Pos, Text: append([]byte{}, t.Text...)}
|
||||
}
|
||||
|
||||
// PipeNode holds a pipeline with optional declaration
|
||||
type PipeNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
Line int // The line number in the input. Deprecated: Kept for compatibility.
|
||||
IsAssign bool // The variables are being assigned, not declared.
|
||||
Decl []*VariableNode // Variables in lexical order.
|
||||
Cmds []*CommandNode // The commands in lexical order.
|
||||
}
|
||||
|
||||
func (t *Tree) newPipeline(pos Pos, line int, vars []*VariableNode) *PipeNode {
|
||||
return &PipeNode{tr: t, NodeType: NodePipe, Pos: pos, Line: line, Decl: vars}
|
||||
}
|
||||
|
||||
func (p *PipeNode) append(command *CommandNode) {
|
||||
p.Cmds = append(p.Cmds, command)
|
||||
}
|
||||
|
||||
func (p *PipeNode) String() string {
|
||||
s := ""
|
||||
if len(p.Decl) > 0 {
|
||||
for i, v := range p.Decl {
|
||||
if i > 0 {
|
||||
s += ", "
|
||||
}
|
||||
s += v.String()
|
||||
}
|
||||
s += " := "
|
||||
}
|
||||
for i, c := range p.Cmds {
|
||||
if i > 0 {
|
||||
s += " | "
|
||||
}
|
||||
s += c.String()
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
func (p *PipeNode) tree() *Tree {
|
||||
return p.tr
|
||||
}
|
||||
|
||||
func (p *PipeNode) CopyPipe() *PipeNode {
|
||||
if p == nil {
|
||||
return p
|
||||
}
|
||||
var vars []*VariableNode
|
||||
for _, d := range p.Decl {
|
||||
vars = append(vars, d.Copy().(*VariableNode))
|
||||
}
|
||||
n := p.tr.newPipeline(p.Pos, p.Line, vars)
|
||||
n.IsAssign = p.IsAssign
|
||||
for _, c := range p.Cmds {
|
||||
n.append(c.Copy().(*CommandNode))
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
func (p *PipeNode) Copy() Node {
|
||||
return p.CopyPipe()
|
||||
}
|
||||
|
||||
// ActionNode holds an action (something bounded by delimiters).
|
||||
// Control actions have their own nodes; ActionNode represents simple
|
||||
// ones such as field evaluations and parenthesized pipelines.
|
||||
type ActionNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
Line int // The line number in the input. Deprecated: Kept for compatibility.
|
||||
Pipe *PipeNode // The pipeline in the action.
|
||||
}
|
||||
|
||||
func (t *Tree) newAction(pos Pos, line int, pipe *PipeNode) *ActionNode {
|
||||
return &ActionNode{tr: t, NodeType: NodeAction, Pos: pos, Line: line, Pipe: pipe}
|
||||
}
|
||||
|
||||
func (a *ActionNode) String() string {
|
||||
return fmt.Sprintf("{{%s}}", a.Pipe)
|
||||
|
||||
}
|
||||
|
||||
func (a *ActionNode) tree() *Tree {
|
||||
return a.tr
|
||||
}
|
||||
|
||||
func (a *ActionNode) Copy() Node {
|
||||
return a.tr.newAction(a.Pos, a.Line, a.Pipe.CopyPipe())
|
||||
|
||||
}
|
||||
|
||||
// CommandNode holds a command (a pipeline inside an evaluating action).
|
||||
type CommandNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
Args []Node // Arguments in lexical order: Identifier, field, or constant.
|
||||
}
|
||||
|
||||
func (t *Tree) newCommand(pos Pos) *CommandNode {
|
||||
return &CommandNode{tr: t, NodeType: NodeCommand, Pos: pos}
|
||||
}
|
||||
|
||||
func (c *CommandNode) append(arg Node) {
|
||||
c.Args = append(c.Args, arg)
|
||||
}
|
||||
|
||||
func (c *CommandNode) String() string {
|
||||
s := ""
|
||||
for i, arg := range c.Args {
|
||||
if i > 0 {
|
||||
s += " "
|
||||
}
|
||||
if arg, ok := arg.(*PipeNode); ok {
|
||||
s += "(" + arg.String() + ")"
|
||||
continue
|
||||
}
|
||||
s += arg.String()
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
func (c *CommandNode) tree() *Tree {
|
||||
return c.tr
|
||||
}
|
||||
|
||||
func (c *CommandNode) Copy() Node {
|
||||
if c == nil {
|
||||
return c
|
||||
}
|
||||
n := c.tr.newCommand(c.Pos)
|
||||
for _, c := range c.Args {
|
||||
n.append(c.Copy())
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
// IdentifierNode holds an identifier.
|
||||
type IdentifierNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
Ident string // The identifier's name.
|
||||
}
|
||||
|
||||
// NewIdentifier returns a new IdentifierNode with the given identifier name.
|
||||
func NewIdentifier(ident string) *IdentifierNode {
|
||||
return &IdentifierNode{NodeType: NodeIdentifier, Ident: ident}
|
||||
}
|
||||
|
||||
// SetPos sets the position. NewIdentifier is a public method so we can't modify its signature.
|
||||
// Chained for convenience.
|
||||
// TODO: fix one day?
|
||||
func (i *IdentifierNode) SetPos(pos Pos) *IdentifierNode {
|
||||
i.Pos = pos
|
||||
return i
|
||||
}
|
||||
|
||||
// SetTree sets the parent tree for the node. NewIdentifier is a public method so we can't modify its signature.
|
||||
// Chained for convenience.
|
||||
// TODO: fix one day?
|
||||
func (i *IdentifierNode) SetTree(t *Tree) *IdentifierNode {
|
||||
i.tr = t
|
||||
return i
|
||||
}
|
||||
|
||||
func (i *IdentifierNode) String() string {
|
||||
return i.Ident
|
||||
}
|
||||
|
||||
func (i *IdentifierNode) tree() *Tree {
|
||||
return i.tr
|
||||
}
|
||||
|
||||
func (i *IdentifierNode) Copy() Node {
|
||||
return NewIdentifier(i.Ident).SetTree(i.tr).SetPos(i.Pos)
|
||||
}
|
||||
|
||||
// AssignNode holds a list of variable names, possibly with chained field
|
||||
// accesses. The dollar sign is part of the (first) name.
|
||||
type VariableNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
Ident []string // Variable name and fields in lexical order.
|
||||
}
|
||||
|
||||
func (t *Tree) newVariable(pos Pos, ident string) *VariableNode {
|
||||
return &VariableNode{tr: t, NodeType: NodeVariable, Pos: pos, Ident: strings.Split(ident, ".")}
|
||||
}
|
||||
|
||||
func (v *VariableNode) String() string {
|
||||
s := ""
|
||||
for i, id := range v.Ident {
|
||||
if i > 0 {
|
||||
s += "."
|
||||
}
|
||||
s += id
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
func (v *VariableNode) tree() *Tree {
|
||||
return v.tr
|
||||
}
|
||||
|
||||
func (v *VariableNode) Copy() Node {
|
||||
return &VariableNode{tr: v.tr, NodeType: NodeVariable, Pos: v.Pos, Ident: append([]string{}, v.Ident...)}
|
||||
}
|
||||
|
||||
// DotNode holds the special identifier '.'.
|
||||
type DotNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
}
|
||||
|
||||
func (t *Tree) newDot(pos Pos) *DotNode {
|
||||
return &DotNode{tr: t, NodeType: NodeDot, Pos: pos}
|
||||
}
|
||||
|
||||
func (d *DotNode) Type() NodeType {
|
||||
// Override method on embedded NodeType for API compatibility.
|
||||
// TODO: Not really a problem; could change API without effect but
|
||||
// api tool complains.
|
||||
return NodeDot
|
||||
}
|
||||
|
||||
func (d *DotNode) String() string {
|
||||
return "."
|
||||
}
|
||||
|
||||
func (d *DotNode) tree() *Tree {
|
||||
return d.tr
|
||||
}
|
||||
|
||||
func (d *DotNode) Copy() Node {
|
||||
return d.tr.newDot(d.Pos)
|
||||
}
|
||||
|
||||
// NilNode holds the special identifier 'nil' representing an untyped nil constant.
|
||||
type NilNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
}
|
||||
|
||||
func (t *Tree) newNil(pos Pos) *NilNode {
|
||||
return &NilNode{tr: t, NodeType: NodeNil, Pos: pos}
|
||||
}
|
||||
|
||||
func (n *NilNode) Type() NodeType {
|
||||
// Override method on embedded NodeType for API compatibility.
|
||||
// TODO: Not really a problem; could change API without effect but
|
||||
// api tool complains.
|
||||
return NodeNil
|
||||
}
|
||||
|
||||
func (n *NilNode) String() string {
|
||||
return "nil"
|
||||
}
|
||||
|
||||
func (n *NilNode) tree() *Tree {
|
||||
return n.tr
|
||||
}
|
||||
|
||||
func (n *NilNode) Copy() Node {
|
||||
return n.tr.newNil(n.Pos)
|
||||
}
|
||||
|
||||
// FieldNode holds a field (identifier starting with '.').
|
||||
// The names may be chained ('.x.y').
|
||||
// The period is dropped from each ident.
|
||||
type FieldNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
Ident []string // The identifiers in lexical order.
|
||||
}
|
||||
|
||||
func (t *Tree) newField(pos Pos, ident string) *FieldNode {
|
||||
return &FieldNode{tr: t, NodeType: NodeField, Pos: pos, Ident: strings.Split(ident[1:], ".")} // [1:] to drop leading period
|
||||
}
|
||||
|
||||
func (f *FieldNode) String() string {
|
||||
s := ""
|
||||
for _, id := range f.Ident {
|
||||
s += "." + id
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
func (f *FieldNode) tree() *Tree {
|
||||
return f.tr
|
||||
}
|
||||
|
||||
func (f *FieldNode) Copy() Node {
|
||||
return &FieldNode{tr: f.tr, NodeType: NodeField, Pos: f.Pos, Ident: append([]string{}, f.Ident...)}
|
||||
}
|
||||
|
||||
// ChainNode holds a term followed by a chain of field accesses (identifier starting with '.').
|
||||
// The names may be chained ('.x.y').
|
||||
// The periods are dropped from each ident.
|
||||
type ChainNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
Node Node
|
||||
Field []string // The identifiers in lexical order.
|
||||
}
|
||||
|
||||
func (t *Tree) newChain(pos Pos, node Node) *ChainNode {
|
||||
return &ChainNode{tr: t, NodeType: NodeChain, Pos: pos, Node: node}
|
||||
}
|
||||
|
||||
// Add adds the named field (which should start with a period) to the end of the chain.
|
||||
func (c *ChainNode) Add(field string) {
|
||||
if len(field) == 0 || field[0] != '.' {
|
||||
panic("no dot in field")
|
||||
}
|
||||
field = field[1:] // Remove leading dot.
|
||||
if field == "" {
|
||||
panic("empty field")
|
||||
}
|
||||
c.Field = append(c.Field, field)
|
||||
}
|
||||
|
||||
func (c *ChainNode) String() string {
|
||||
s := c.Node.String()
|
||||
if _, ok := c.Node.(*PipeNode); ok {
|
||||
s = "(" + s + ")"
|
||||
}
|
||||
for _, field := range c.Field {
|
||||
s += "." + field
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
func (c *ChainNode) tree() *Tree {
|
||||
return c.tr
|
||||
}
|
||||
|
||||
func (c *ChainNode) Copy() Node {
|
||||
return &ChainNode{tr: c.tr, NodeType: NodeChain, Pos: c.Pos, Node: c.Node, Field: append([]string{}, c.Field...)}
|
||||
}
|
||||
|
||||
// BoolNode holds a boolean constant.
|
||||
type BoolNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
True bool // The value of the boolean constant.
|
||||
}
|
||||
|
||||
func (t *Tree) newBool(pos Pos, true bool) *BoolNode {
|
||||
return &BoolNode{tr: t, NodeType: NodeBool, Pos: pos, True: true}
|
||||
}
|
||||
|
||||
func (b *BoolNode) String() string {
|
||||
if b.True {
|
||||
return "true"
|
||||
}
|
||||
return "false"
|
||||
}
|
||||
|
||||
func (b *BoolNode) tree() *Tree {
|
||||
return b.tr
|
||||
}
|
||||
|
||||
func (b *BoolNode) Copy() Node {
|
||||
return b.tr.newBool(b.Pos, b.True)
|
||||
}
|
||||
|
||||
// NumberNode holds a number: signed or unsigned integer, float, or complex.
|
||||
// The value is parsed and stored under all the types that can represent the value.
|
||||
// This simulates in a small amount of code the behavior of Go's ideal constants.
|
||||
type NumberNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
IsInt bool // Number has an integral value.
|
||||
IsUint bool // Number has an unsigned integral value.
|
||||
IsFloat bool // Number has a floating-point value.
|
||||
IsComplex bool // Number is complex.
|
||||
Int64 int64 // The signed integer value.
|
||||
Uint64 uint64 // The unsigned integer value.
|
||||
Float64 float64 // The floating-point value.
|
||||
Complex128 complex128 // The complex value.
|
||||
Text string // The original textual representation from the input.
|
||||
}
|
||||
|
||||
func (t *Tree) newNumber(pos Pos, text string, typ itemType) (*NumberNode, error) {
|
||||
n := &NumberNode{tr: t, NodeType: NodeNumber, Pos: pos, Text: text}
|
||||
switch typ {
|
||||
case itemCharConstant:
|
||||
rune, _, tail, err := strconv.UnquoteChar(text[1:], text[0])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if tail != "'" {
|
||||
return nil, fmt.Errorf("malformed character constant: %s", text)
|
||||
}
|
||||
n.Int64 = int64(rune)
|
||||
n.IsInt = true
|
||||
n.Uint64 = uint64(rune)
|
||||
n.IsUint = true
|
||||
n.Float64 = float64(rune) // odd but those are the rules.
|
||||
n.IsFloat = true
|
||||
return n, nil
|
||||
case itemComplex:
|
||||
// fmt.Sscan can parse the pair, so let it do the work.
|
||||
if _, err := fmt.Sscan(text, &n.Complex128); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
n.IsComplex = true
|
||||
n.simplifyComplex()
|
||||
return n, nil
|
||||
}
|
||||
// Imaginary constants can only be complex unless they are zero.
|
||||
if len(text) > 0 && text[len(text)-1] == 'i' {
|
||||
f, err := strconv.ParseFloat(text[:len(text)-1], 64)
|
||||
if err == nil {
|
||||
n.IsComplex = true
|
||||
n.Complex128 = complex(0, f)
|
||||
n.simplifyComplex()
|
||||
return n, nil
|
||||
}
|
||||
}
|
||||
// Do integer test first so we get 0x123 etc.
|
||||
u, err := strconv.ParseUint(text, 0, 64) // will fail for -0; fixed below.
|
||||
if err == nil {
|
||||
n.IsUint = true
|
||||
n.Uint64 = u
|
||||
}
|
||||
i, err := strconv.ParseInt(text, 0, 64)
|
||||
if err == nil {
|
||||
n.IsInt = true
|
||||
n.Int64 = i
|
||||
if i == 0 {
|
||||
n.IsUint = true // in case of -0.
|
||||
n.Uint64 = u
|
||||
}
|
||||
}
|
||||
// If an integer extraction succeeded, promote the float.
|
||||
if n.IsInt {
|
||||
n.IsFloat = true
|
||||
n.Float64 = float64(n.Int64)
|
||||
} else if n.IsUint {
|
||||
n.IsFloat = true
|
||||
n.Float64 = float64(n.Uint64)
|
||||
} else {
|
||||
f, err := strconv.ParseFloat(text, 64)
|
||||
if err == nil {
|
||||
// If we parsed it as a float but it looks like an integer,
|
||||
// it's a huge number too large to fit in an int. Reject it.
|
||||
if !strings.ContainsAny(text, ".eE") {
|
||||
return nil, fmt.Errorf("integer overflow: %q", text)
|
||||
}
|
||||
n.IsFloat = true
|
||||
n.Float64 = f
|
||||
// If a floating-point extraction succeeded, extract the int if needed.
|
||||
if !n.IsInt && float64(int64(f)) == f {
|
||||
n.IsInt = true
|
||||
n.Int64 = int64(f)
|
||||
}
|
||||
if !n.IsUint && float64(uint64(f)) == f {
|
||||
n.IsUint = true
|
||||
n.Uint64 = uint64(f)
|
||||
}
|
||||
}
|
||||
}
|
||||
if !n.IsInt && !n.IsUint && !n.IsFloat {
|
||||
return nil, fmt.Errorf("illegal number syntax: %q", text)
|
||||
}
|
||||
return n, nil
|
||||
}
|
||||
|
||||
// simplifyComplex pulls out any other types that are represented by the complex number.
|
||||
// These all require that the imaginary part be zero.
|
||||
func (n *NumberNode) simplifyComplex() {
|
||||
n.IsFloat = imag(n.Complex128) == 0
|
||||
if n.IsFloat {
|
||||
n.Float64 = real(n.Complex128)
|
||||
n.IsInt = float64(int64(n.Float64)) == n.Float64
|
||||
if n.IsInt {
|
||||
n.Int64 = int64(n.Float64)
|
||||
}
|
||||
n.IsUint = float64(uint64(n.Float64)) == n.Float64
|
||||
if n.IsUint {
|
||||
n.Uint64 = uint64(n.Float64)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (n *NumberNode) String() string {
|
||||
return n.Text
|
||||
}
|
||||
|
||||
func (n *NumberNode) tree() *Tree {
|
||||
return n.tr
|
||||
}
|
||||
|
||||
func (n *NumberNode) Copy() Node {
|
||||
nn := new(NumberNode)
|
||||
*nn = *n // Easy, fast, correct.
|
||||
return nn
|
||||
}
|
||||
|
||||
// StringNode holds a string constant. The value has been "unquoted".
|
||||
type StringNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
Quoted string // The original text of the string, with quotes.
|
||||
Text string // The string, after quote processing.
|
||||
}
|
||||
|
||||
func (t *Tree) newString(pos Pos, orig, text string) *StringNode {
|
||||
return &StringNode{tr: t, NodeType: NodeString, Pos: pos, Quoted: orig, Text: text}
|
||||
}
|
||||
|
||||
func (s *StringNode) String() string {
|
||||
return s.Quoted
|
||||
}
|
||||
|
||||
func (s *StringNode) tree() *Tree {
|
||||
return s.tr
|
||||
}
|
||||
|
||||
func (s *StringNode) Copy() Node {
|
||||
return s.tr.newString(s.Pos, s.Quoted, s.Text)
|
||||
}
|
||||
|
||||
// endNode represents an {{end}} action.
|
||||
// It does not appear in the final parse tree.
|
||||
type endNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
}
|
||||
|
||||
func (t *Tree) newEnd(pos Pos) *endNode {
|
||||
return &endNode{tr: t, NodeType: nodeEnd, Pos: pos}
|
||||
}
|
||||
|
||||
func (e *endNode) String() string {
|
||||
return "{{end}}"
|
||||
}
|
||||
|
||||
func (e *endNode) tree() *Tree {
|
||||
return e.tr
|
||||
}
|
||||
|
||||
func (e *endNode) Copy() Node {
|
||||
return e.tr.newEnd(e.Pos)
|
||||
}
|
||||
|
||||
// elseNode represents an {{else}} action. Does not appear in the final tree.
|
||||
type elseNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
Line int // The line number in the input. Deprecated: Kept for compatibility.
|
||||
}
|
||||
|
||||
func (t *Tree) newElse(pos Pos, line int) *elseNode {
|
||||
return &elseNode{tr: t, NodeType: nodeElse, Pos: pos, Line: line}
|
||||
}
|
||||
|
||||
func (e *elseNode) Type() NodeType {
|
||||
return nodeElse
|
||||
}
|
||||
|
||||
func (e *elseNode) String() string {
|
||||
return "{{else}}"
|
||||
}
|
||||
|
||||
func (e *elseNode) tree() *Tree {
|
||||
return e.tr
|
||||
}
|
||||
|
||||
func (e *elseNode) Copy() Node {
|
||||
return e.tr.newElse(e.Pos, e.Line)
|
||||
}
|
||||
|
||||
// BranchNode is the common representation of if, range, and with.
|
||||
type BranchNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
Line int // The line number in the input. Deprecated: Kept for compatibility.
|
||||
Pipe *PipeNode // The pipeline to be evaluated.
|
||||
List *ListNode // What to execute if the value is non-empty.
|
||||
ElseList *ListNode // What to execute if the value is empty (nil if absent).
|
||||
}
|
||||
|
||||
func (b *BranchNode) String() string {
|
||||
name := ""
|
||||
switch b.NodeType {
|
||||
case NodeIf:
|
||||
name = "if"
|
||||
case NodeRange:
|
||||
name = "range"
|
||||
case NodeWith:
|
||||
name = "with"
|
||||
default:
|
||||
panic("unknown branch type")
|
||||
}
|
||||
if b.ElseList != nil {
|
||||
return fmt.Sprintf("{{%s %s}}%s{{else}}%s{{end}}", name, b.Pipe, b.List, b.ElseList)
|
||||
}
|
||||
return fmt.Sprintf("{{%s %s}}%s{{end}}", name, b.Pipe, b.List)
|
||||
}
|
||||
|
||||
func (b *BranchNode) tree() *Tree {
|
||||
return b.tr
|
||||
}
|
||||
|
||||
func (b *BranchNode) Copy() Node {
|
||||
switch b.NodeType {
|
||||
case NodeIf:
|
||||
return b.tr.newIf(b.Pos, b.Line, b.Pipe, b.List, b.ElseList)
|
||||
case NodeRange:
|
||||
return b.tr.newRange(b.Pos, b.Line, b.Pipe, b.List, b.ElseList)
|
||||
case NodeWith:
|
||||
return b.tr.newWith(b.Pos, b.Line, b.Pipe, b.List, b.ElseList)
|
||||
default:
|
||||
panic("unknown branch type")
|
||||
}
|
||||
}
|
||||
|
||||
// IfNode represents an {{if}} action and its commands.
|
||||
type IfNode struct {
|
||||
BranchNode
|
||||
}
|
||||
|
||||
func (t *Tree) newIf(pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) *IfNode {
|
||||
return &IfNode{BranchNode{tr: t, NodeType: NodeIf, Pos: pos, Line: line, Pipe: pipe, List: list, ElseList: elseList}}
|
||||
}
|
||||
|
||||
func (i *IfNode) Copy() Node {
|
||||
return i.tr.newIf(i.Pos, i.Line, i.Pipe.CopyPipe(), i.List.CopyList(), i.ElseList.CopyList())
|
||||
}
|
||||
|
||||
// RangeNode represents a {{range}} action and its commands.
|
||||
type RangeNode struct {
|
||||
BranchNode
|
||||
}
|
||||
|
||||
func (t *Tree) newRange(pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) *RangeNode {
|
||||
return &RangeNode{BranchNode{tr: t, NodeType: NodeRange, Pos: pos, Line: line, Pipe: pipe, List: list, ElseList: elseList}}
|
||||
}
|
||||
|
||||
func (r *RangeNode) Copy() Node {
|
||||
return r.tr.newRange(r.Pos, r.Line, r.Pipe.CopyPipe(), r.List.CopyList(), r.ElseList.CopyList())
|
||||
}
|
||||
|
||||
// WithNode represents a {{with}} action and its commands.
|
||||
type WithNode struct {
|
||||
BranchNode
|
||||
}
|
||||
|
||||
func (t *Tree) newWith(pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) *WithNode {
|
||||
return &WithNode{BranchNode{tr: t, NodeType: NodeWith, Pos: pos, Line: line, Pipe: pipe, List: list, ElseList: elseList}}
|
||||
}
|
||||
|
||||
func (w *WithNode) Copy() Node {
|
||||
return w.tr.newWith(w.Pos, w.Line, w.Pipe.CopyPipe(), w.List.CopyList(), w.ElseList.CopyList())
|
||||
}
|
||||
|
||||
// TemplateNode represents a {{template}} action.
|
||||
type TemplateNode struct {
|
||||
NodeType
|
||||
Pos
|
||||
tr *Tree
|
||||
Line int // The line number in the input. Deprecated: Kept for compatibility.
|
||||
Name string // The name of the template (unquoted).
|
||||
Pipe *PipeNode // The command to evaluate as dot for the template.
|
||||
}
|
||||
|
||||
func (t *Tree) newTemplate(pos Pos, line int, name string, pipe *PipeNode) *TemplateNode {
|
||||
return &TemplateNode{tr: t, NodeType: NodeTemplate, Pos: pos, Line: line, Name: name, Pipe: pipe}
|
||||
}
|
||||
|
||||
func (t *TemplateNode) String() string {
|
||||
if t.Pipe == nil {
|
||||
return fmt.Sprintf("{{template %q}}", t.Name)
|
||||
}
|
||||
return fmt.Sprintf("{{template %q %s}}", t.Name, t.Pipe)
|
||||
}
|
||||
|
||||
func (t *TemplateNode) tree() *Tree {
|
||||
return t.tr
|
||||
}
|
||||
|
||||
func (t *TemplateNode) Copy() Node {
|
||||
return t.tr.newTemplate(t.Pos, t.Line, t.Name, t.Pipe.CopyPipe())
|
||||
}
|
741
g/os/gview/internal/text/template/parse/parse.go
Normal file
741
g/os/gview/internal/text/template/parse/parse.go
Normal file
@ -0,0 +1,741 @@
|
||||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package parse builds parse trees for templates as defined by text/template
|
||||
// and html/template. Clients should use those packages to construct templates
|
||||
// rather than this one, which provides shared internal data structures not
|
||||
// intended for general use.
|
||||
package parse
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// Tree is the representation of a single parsed template.
|
||||
type Tree struct {
|
||||
Name string // name of the template represented by the tree.
|
||||
ParseName string // name of the top-level template during parsing, for error messages.
|
||||
Root *ListNode // top-level root of the tree.
|
||||
text string // text parsed to create the template (or its parent)
|
||||
// Parsing only; cleared after parse.
|
||||
funcs []map[string]interface{}
|
||||
lex *lexer
|
||||
token [3]item // three-token lookahead for parser.
|
||||
peekCount int
|
||||
vars []string // variables defined at the moment.
|
||||
treeSet map[string]*Tree
|
||||
}
|
||||
|
||||
// Copy returns a copy of the Tree. Any parsing state is discarded.
|
||||
func (t *Tree) Copy() *Tree {
|
||||
if t == nil {
|
||||
return nil
|
||||
}
|
||||
return &Tree{
|
||||
Name: t.Name,
|
||||
ParseName: t.ParseName,
|
||||
Root: t.Root.CopyList(),
|
||||
text: t.text,
|
||||
}
|
||||
}
|
||||
|
||||
// Parse returns a map from template name to parse.Tree, created by parsing the
|
||||
// templates described in the argument string. The top-level template will be
|
||||
// given the specified name. If an error is encountered, parsing stops and an
|
||||
// empty map is returned with the error.
|
||||
func Parse(name, text, leftDelim, rightDelim string, funcs ...map[string]interface{}) (map[string]*Tree, error) {
|
||||
treeSet := make(map[string]*Tree)
|
||||
t := New(name)
|
||||
t.text = text
|
||||
_, err := t.Parse(text, leftDelim, rightDelim, treeSet, funcs...)
|
||||
return treeSet, err
|
||||
}
|
||||
|
||||
// next returns the next token.
|
||||
func (t *Tree) next() item {
|
||||
if t.peekCount > 0 {
|
||||
t.peekCount--
|
||||
} else {
|
||||
t.token[0] = t.lex.nextItem()
|
||||
}
|
||||
return t.token[t.peekCount]
|
||||
}
|
||||
|
||||
// backup backs the input stream up one token.
|
||||
func (t *Tree) backup() {
|
||||
t.peekCount++
|
||||
}
|
||||
|
||||
// backup2 backs the input stream up two tokens.
|
||||
// The zeroth token is already there.
|
||||
func (t *Tree) backup2(t1 item) {
|
||||
t.token[1] = t1
|
||||
t.peekCount = 2
|
||||
}
|
||||
|
||||
// backup3 backs the input stream up three tokens
|
||||
// The zeroth token is already there.
|
||||
func (t *Tree) backup3(t2, t1 item) { // Reverse order: we're pushing back.
|
||||
t.token[1] = t1
|
||||
t.token[2] = t2
|
||||
t.peekCount = 3
|
||||
}
|
||||
|
||||
// peek returns but does not consume the next token.
|
||||
func (t *Tree) peek() item {
|
||||
if t.peekCount > 0 {
|
||||
return t.token[t.peekCount-1]
|
||||
}
|
||||
t.peekCount = 1
|
||||
t.token[0] = t.lex.nextItem()
|
||||
return t.token[0]
|
||||
}
|
||||
|
||||
// nextNonSpace returns the next non-space token.
|
||||
func (t *Tree) nextNonSpace() (token item) {
|
||||
for {
|
||||
token = t.next()
|
||||
if token.typ != itemSpace {
|
||||
break
|
||||
}
|
||||
}
|
||||
return token
|
||||
}
|
||||
|
||||
// peekNonSpace returns but does not consume the next non-space token.
|
||||
func (t *Tree) peekNonSpace() (token item) {
|
||||
for {
|
||||
token = t.next()
|
||||
if token.typ != itemSpace {
|
||||
break
|
||||
}
|
||||
}
|
||||
t.backup()
|
||||
return token
|
||||
}
|
||||
|
||||
// Parsing.
|
||||
|
||||
// New allocates a new parse tree with the given name.
|
||||
func New(name string, funcs ...map[string]interface{}) *Tree {
|
||||
return &Tree{
|
||||
Name: name,
|
||||
funcs: funcs,
|
||||
}
|
||||
}
|
||||
|
||||
// ErrorContext returns a textual representation of the location of the node in the input text.
|
||||
// The receiver is only used when the node does not have a pointer to the tree inside,
|
||||
// which can occur in old code.
|
||||
func (t *Tree) ErrorContext(n Node) (location, context string) {
|
||||
pos := int(n.Position())
|
||||
tree := n.tree()
|
||||
if tree == nil {
|
||||
tree = t
|
||||
}
|
||||
text := tree.text[:pos]
|
||||
byteNum := strings.LastIndex(text, "\n")
|
||||
if byteNum == -1 {
|
||||
byteNum = pos // On first line.
|
||||
} else {
|
||||
byteNum++ // After the newline.
|
||||
byteNum = pos - byteNum
|
||||
}
|
||||
lineNum := 1 + strings.Count(text, "\n")
|
||||
context = n.String()
|
||||
if len(context) > 20 {
|
||||
context = fmt.Sprintf("%.20s...", context)
|
||||
}
|
||||
return fmt.Sprintf("%s:%d:%d", tree.ParseName, lineNum, byteNum), context
|
||||
}
|
||||
|
||||
// errorf formats the error and terminates processing.
|
||||
func (t *Tree) errorf(format string, args ...interface{}) {
|
||||
t.Root = nil
|
||||
format = fmt.Sprintf("template: %s:%d: %s", t.ParseName, t.token[0].line, format)
|
||||
panic(fmt.Errorf(format, args...))
|
||||
}
|
||||
|
||||
// error terminates processing.
|
||||
func (t *Tree) error(err error) {
|
||||
t.errorf("%s", err)
|
||||
}
|
||||
|
||||
// expect consumes the next token and guarantees it has the required type.
|
||||
func (t *Tree) expect(expected itemType, context string) item {
|
||||
token := t.nextNonSpace()
|
||||
if token.typ != expected {
|
||||
t.unexpected(token, context)
|
||||
}
|
||||
return token
|
||||
}
|
||||
|
||||
// expectOneOf consumes the next token and guarantees it has one of the required types.
|
||||
func (t *Tree) expectOneOf(expected1, expected2 itemType, context string) item {
|
||||
token := t.nextNonSpace()
|
||||
if token.typ != expected1 && token.typ != expected2 {
|
||||
t.unexpected(token, context)
|
||||
}
|
||||
return token
|
||||
}
|
||||
|
||||
// unexpected complains about the token and terminates processing.
|
||||
func (t *Tree) unexpected(token item, context string) {
|
||||
t.errorf("unexpected %s in %s", token, context)
|
||||
}
|
||||
|
||||
// recover is the handler that turns panics into returns from the top level of Parse.
|
||||
func (t *Tree) recover(errp *error) {
|
||||
e := recover()
|
||||
if e != nil {
|
||||
if _, ok := e.(runtime.Error); ok {
|
||||
panic(e)
|
||||
}
|
||||
if t != nil {
|
||||
t.lex.drain()
|
||||
t.stopParse()
|
||||
}
|
||||
*errp = e.(error)
|
||||
}
|
||||
}
|
||||
|
||||
// startParse initializes the parser, using the lexer.
|
||||
func (t *Tree) startParse(funcs []map[string]interface{}, lex *lexer, treeSet map[string]*Tree) {
|
||||
t.Root = nil
|
||||
t.lex = lex
|
||||
t.vars = []string{"$"}
|
||||
t.funcs = funcs
|
||||
t.treeSet = treeSet
|
||||
}
|
||||
|
||||
// stopParse terminates parsing.
|
||||
func (t *Tree) stopParse() {
|
||||
t.lex = nil
|
||||
t.vars = nil
|
||||
t.funcs = nil
|
||||
t.treeSet = nil
|
||||
}
|
||||
|
||||
// Parse parses the template definition string to construct a representation of
|
||||
// the template for execution. If either action delimiter string is empty, the
|
||||
// default ("{{" or "}}") is used. Embedded template definitions are added to
|
||||
// the treeSet map.
|
||||
func (t *Tree) Parse(text, leftDelim, rightDelim string, treeSet map[string]*Tree, funcs ...map[string]interface{}) (tree *Tree, err error) {
|
||||
defer t.recover(&err)
|
||||
t.ParseName = t.Name
|
||||
t.startParse(funcs, lex(t.Name, text, leftDelim, rightDelim), treeSet)
|
||||
t.text = text
|
||||
t.parse()
|
||||
t.add()
|
||||
t.stopParse()
|
||||
return t, nil
|
||||
}
|
||||
|
||||
// add adds tree to t.treeSet.
|
||||
func (t *Tree) add() {
|
||||
tree := t.treeSet[t.Name]
|
||||
if tree == nil || IsEmptyTree(tree.Root) {
|
||||
t.treeSet[t.Name] = t
|
||||
return
|
||||
}
|
||||
if !IsEmptyTree(t.Root) {
|
||||
t.errorf("template: multiple definition of template %q", t.Name)
|
||||
}
|
||||
}
|
||||
|
||||
// IsEmptyTree reports whether this tree (node) is empty of everything but space.
|
||||
func IsEmptyTree(n Node) bool {
|
||||
switch n := n.(type) {
|
||||
case nil:
|
||||
return true
|
||||
case *ActionNode:
|
||||
case *IfNode:
|
||||
case *ListNode:
|
||||
for _, node := range n.Nodes {
|
||||
if !IsEmptyTree(node) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
case *RangeNode:
|
||||
case *TemplateNode:
|
||||
case *TextNode:
|
||||
return len(bytes.TrimSpace(n.Text)) == 0
|
||||
case *WithNode:
|
||||
default:
|
||||
panic("unknown node: " + n.String())
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// parse is the top-level parser for a template, essentially the same
|
||||
// as itemList except it also parses {{define}} actions.
|
||||
// It runs to EOF.
|
||||
func (t *Tree) parse() {
|
||||
t.Root = t.newList(t.peek().pos)
|
||||
for t.peek().typ != itemEOF {
|
||||
if t.peek().typ == itemLeftDelim {
|
||||
delim := t.next()
|
||||
if t.nextNonSpace().typ == itemDefine {
|
||||
newT := New("definition") // name will be updated once we know it.
|
||||
newT.text = t.text
|
||||
newT.ParseName = t.ParseName
|
||||
newT.startParse(t.funcs, t.lex, t.treeSet)
|
||||
newT.parseDefinition()
|
||||
continue
|
||||
}
|
||||
t.backup2(delim)
|
||||
}
|
||||
switch n := t.textOrAction(); n.Type() {
|
||||
case nodeEnd, nodeElse:
|
||||
t.errorf("unexpected %s", n)
|
||||
default:
|
||||
t.Root.append(n)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// parseDefinition parses a {{define}} ... {{end}} template definition and
|
||||
// installs the definition in t.treeSet. The "define" keyword has already
|
||||
// been scanned.
|
||||
func (t *Tree) parseDefinition() {
|
||||
const context = "define clause"
|
||||
name := t.expectOneOf(itemString, itemRawString, context)
|
||||
var err error
|
||||
t.Name, err = strconv.Unquote(name.val)
|
||||
if err != nil {
|
||||
t.error(err)
|
||||
}
|
||||
t.expect(itemRightDelim, context)
|
||||
var end Node
|
||||
t.Root, end = t.itemList()
|
||||
if end.Type() != nodeEnd {
|
||||
t.errorf("unexpected %s in %s", end, context)
|
||||
}
|
||||
t.add()
|
||||
t.stopParse()
|
||||
}
|
||||
|
||||
// itemList:
|
||||
// textOrAction*
|
||||
// Terminates at {{end}} or {{else}}, returned separately.
|
||||
func (t *Tree) itemList() (list *ListNode, next Node) {
|
||||
list = t.newList(t.peekNonSpace().pos)
|
||||
for t.peekNonSpace().typ != itemEOF {
|
||||
n := t.textOrAction()
|
||||
switch n.Type() {
|
||||
case nodeEnd, nodeElse:
|
||||
return list, n
|
||||
}
|
||||
list.append(n)
|
||||
}
|
||||
t.errorf("unexpected EOF")
|
||||
return
|
||||
}
|
||||
|
||||
// textOrAction:
|
||||
// text | action
|
||||
func (t *Tree) textOrAction() Node {
|
||||
switch token := t.nextNonSpace(); token.typ {
|
||||
case itemText:
|
||||
return t.newText(token.pos, token.val)
|
||||
case itemLeftDelim:
|
||||
return t.action()
|
||||
default:
|
||||
t.unexpected(token, "input")
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Action:
|
||||
// control
|
||||
// command ("|" command)*
|
||||
// Left delim is past. Now get actions.
|
||||
// First word could be a keyword such as range.
|
||||
func (t *Tree) action() (n Node) {
|
||||
switch token := t.nextNonSpace(); token.typ {
|
||||
case itemBlock:
|
||||
return t.blockControl()
|
||||
case itemElse:
|
||||
return t.elseControl()
|
||||
case itemEnd:
|
||||
return t.endControl()
|
||||
case itemIf:
|
||||
return t.ifControl()
|
||||
case itemRange:
|
||||
return t.rangeControl()
|
||||
case itemTemplate:
|
||||
return t.templateControl()
|
||||
case itemWith:
|
||||
return t.withControl()
|
||||
}
|
||||
t.backup()
|
||||
token := t.peek()
|
||||
// Do not pop variables; they persist until "end".
|
||||
return t.newAction(token.pos, token.line, t.pipeline("command"))
|
||||
}
|
||||
|
||||
// Pipeline:
|
||||
// declarations? command ('|' command)*
|
||||
func (t *Tree) pipeline(context string) (pipe *PipeNode) {
|
||||
decl := false
|
||||
var vars []*VariableNode
|
||||
token := t.peekNonSpace()
|
||||
pos := token.pos
|
||||
// Are there declarations or assignments?
|
||||
for {
|
||||
if v := t.peekNonSpace(); v.typ == itemVariable {
|
||||
t.next()
|
||||
// Since space is a token, we need 3-token look-ahead here in the worst case:
|
||||
// in "$x foo" we need to read "foo" (as opposed to ":=") to know that $x is an
|
||||
// argument variable rather than a declaration. So remember the token
|
||||
// adjacent to the variable so we can push it back if necessary.
|
||||
tokenAfterVariable := t.peek()
|
||||
next := t.peekNonSpace()
|
||||
switch {
|
||||
case next.typ == itemAssign, next.typ == itemDeclare,
|
||||
next.typ == itemChar && next.val == ",":
|
||||
t.nextNonSpace()
|
||||
variable := t.newVariable(v.pos, v.val)
|
||||
vars = append(vars, variable)
|
||||
t.vars = append(t.vars, v.val)
|
||||
if next.typ == itemDeclare {
|
||||
decl = true
|
||||
}
|
||||
if next.typ == itemChar && next.val == "," {
|
||||
if context == "range" && len(vars) < 2 {
|
||||
continue
|
||||
}
|
||||
t.errorf("too many declarations in %s", context)
|
||||
}
|
||||
case tokenAfterVariable.typ == itemSpace:
|
||||
t.backup3(v, tokenAfterVariable)
|
||||
default:
|
||||
t.backup2(v)
|
||||
}
|
||||
}
|
||||
break
|
||||
}
|
||||
pipe = t.newPipeline(pos, token.line, vars)
|
||||
pipe.IsAssign = !decl
|
||||
for {
|
||||
switch token := t.nextNonSpace(); token.typ {
|
||||
case itemRightDelim, itemRightParen:
|
||||
// At this point, the pipeline is complete
|
||||
t.checkPipeline(pipe, context)
|
||||
if token.typ == itemRightParen {
|
||||
t.backup()
|
||||
}
|
||||
return
|
||||
case itemBool, itemCharConstant, itemComplex, itemDot, itemField, itemIdentifier,
|
||||
itemNumber, itemNil, itemRawString, itemString, itemVariable, itemLeftParen:
|
||||
t.backup()
|
||||
pipe.append(t.command())
|
||||
default:
|
||||
t.unexpected(token, context)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tree) checkPipeline(pipe *PipeNode, context string) {
|
||||
// Reject empty pipelines
|
||||
if len(pipe.Cmds) == 0 {
|
||||
t.errorf("missing value for %s", context)
|
||||
}
|
||||
// Only the first command of a pipeline can start with a non executable operand
|
||||
for i, c := range pipe.Cmds[1:] {
|
||||
switch c.Args[0].Type() {
|
||||
case NodeBool, NodeDot, NodeNil, NodeNumber, NodeString:
|
||||
// With A|B|C, pipeline stage 2 is B
|
||||
t.errorf("non executable command in pipeline stage %d", i+2)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tree) parseControl(allowElseIf bool, context string) (pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) {
|
||||
defer t.popVars(len(t.vars))
|
||||
pipe = t.pipeline(context)
|
||||
var next Node
|
||||
list, next = t.itemList()
|
||||
switch next.Type() {
|
||||
case nodeEnd: //done
|
||||
case nodeElse:
|
||||
if allowElseIf {
|
||||
// Special case for "else if". If the "else" is followed immediately by an "if",
|
||||
// the elseControl will have left the "if" token pending. Treat
|
||||
// {{if a}}_{{else if b}}_{{end}}
|
||||
// as
|
||||
// {{if a}}_{{else}}{{if b}}_{{end}}{{end}}.
|
||||
// To do this, parse the if as usual and stop at it {{end}}; the subsequent{{end}}
|
||||
// is assumed. This technique works even for long if-else-if chains.
|
||||
// TODO: Should we allow else-if in with and range?
|
||||
if t.peek().typ == itemIf {
|
||||
t.next() // Consume the "if" token.
|
||||
elseList = t.newList(next.Position())
|
||||
elseList.append(t.ifControl())
|
||||
// Do not consume the next item - only one {{end}} required.
|
||||
break
|
||||
}
|
||||
}
|
||||
elseList, next = t.itemList()
|
||||
if next.Type() != nodeEnd {
|
||||
t.errorf("expected end; found %s", next)
|
||||
}
|
||||
}
|
||||
return pipe.Position(), pipe.Line, pipe, list, elseList
|
||||
}
|
||||
|
||||
// If:
|
||||
// {{if pipeline}} itemList {{end}}
|
||||
// {{if pipeline}} itemList {{else}} itemList {{end}}
|
||||
// If keyword is past.
|
||||
func (t *Tree) ifControl() Node {
|
||||
return t.newIf(t.parseControl(true, "if"))
|
||||
}
|
||||
|
||||
// Range:
|
||||
// {{range pipeline}} itemList {{end}}
|
||||
// {{range pipeline}} itemList {{else}} itemList {{end}}
|
||||
// Range keyword is past.
|
||||
func (t *Tree) rangeControl() Node {
|
||||
return t.newRange(t.parseControl(false, "range"))
|
||||
}
|
||||
|
||||
// With:
|
||||
// {{with pipeline}} itemList {{end}}
|
||||
// {{with pipeline}} itemList {{else}} itemList {{end}}
|
||||
// If keyword is past.
|
||||
func (t *Tree) withControl() Node {
|
||||
return t.newWith(t.parseControl(false, "with"))
|
||||
}
|
||||
|
||||
// End:
|
||||
// {{end}}
|
||||
// End keyword is past.
|
||||
func (t *Tree) endControl() Node {
|
||||
return t.newEnd(t.expect(itemRightDelim, "end").pos)
|
||||
}
|
||||
|
||||
// Else:
|
||||
// {{else}}
|
||||
// Else keyword is past.
|
||||
func (t *Tree) elseControl() Node {
|
||||
// Special case for "else if".
|
||||
peek := t.peekNonSpace()
|
||||
if peek.typ == itemIf {
|
||||
// We see "{{else if ... " but in effect rewrite it to {{else}}{{if ... ".
|
||||
return t.newElse(peek.pos, peek.line)
|
||||
}
|
||||
token := t.expect(itemRightDelim, "else")
|
||||
return t.newElse(token.pos, token.line)
|
||||
}
|
||||
|
||||
// Block:
|
||||
// {{block stringValue pipeline}}
|
||||
// Block keyword is past.
|
||||
// The name must be something that can evaluate to a string.
|
||||
// The pipeline is mandatory.
|
||||
func (t *Tree) blockControl() Node {
|
||||
const context = "block clause"
|
||||
|
||||
token := t.nextNonSpace()
|
||||
name := t.parseTemplateName(token, context)
|
||||
pipe := t.pipeline(context)
|
||||
|
||||
block := New(name) // name will be updated once we know it.
|
||||
block.text = t.text
|
||||
block.ParseName = t.ParseName
|
||||
block.startParse(t.funcs, t.lex, t.treeSet)
|
||||
var end Node
|
||||
block.Root, end = block.itemList()
|
||||
if end.Type() != nodeEnd {
|
||||
t.errorf("unexpected %s in %s", end, context)
|
||||
}
|
||||
block.add()
|
||||
block.stopParse()
|
||||
|
||||
return t.newTemplate(token.pos, token.line, name, pipe)
|
||||
}
|
||||
|
||||
// Template:
|
||||
// {{template stringValue pipeline}}
|
||||
// Template keyword is past. The name must be something that can evaluate
|
||||
// to a string.
|
||||
func (t *Tree) templateControl() Node {
|
||||
const context = "template clause"
|
||||
token := t.nextNonSpace()
|
||||
name := t.parseTemplateName(token, context)
|
||||
var pipe *PipeNode
|
||||
if t.nextNonSpace().typ != itemRightDelim {
|
||||
t.backup()
|
||||
// Do not pop variables; they persist until "end".
|
||||
pipe = t.pipeline(context)
|
||||
}
|
||||
return t.newTemplate(token.pos, token.line, name, pipe)
|
||||
}
|
||||
|
||||
func (t *Tree) parseTemplateName(token item, context string) (name string) {
|
||||
switch token.typ {
|
||||
case itemString, itemRawString:
|
||||
s, err := strconv.Unquote(token.val)
|
||||
if err != nil {
|
||||
t.error(err)
|
||||
}
|
||||
name = s
|
||||
default:
|
||||
t.unexpected(token, context)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// command:
|
||||
// operand (space operand)*
|
||||
// space-separated arguments up to a pipeline character or right delimiter.
|
||||
// we consume the pipe character but leave the right delim to terminate the action.
|
||||
func (t *Tree) command() *CommandNode {
|
||||
cmd := t.newCommand(t.peekNonSpace().pos)
|
||||
for {
|
||||
t.peekNonSpace() // skip leading spaces.
|
||||
operand := t.operand()
|
||||
if operand != nil {
|
||||
cmd.append(operand)
|
||||
}
|
||||
switch token := t.next(); token.typ {
|
||||
case itemSpace:
|
||||
continue
|
||||
case itemError:
|
||||
t.errorf("%s", token.val)
|
||||
case itemRightDelim, itemRightParen:
|
||||
t.backup()
|
||||
case itemPipe:
|
||||
default:
|
||||
t.errorf("unexpected %s in operand", token)
|
||||
}
|
||||
break
|
||||
}
|
||||
if len(cmd.Args) == 0 {
|
||||
t.errorf("empty command")
|
||||
}
|
||||
return cmd
|
||||
}
|
||||
|
||||
// operand:
|
||||
// term .Field*
|
||||
// An operand is a space-separated component of a command,
|
||||
// a term possibly followed by field accesses.
|
||||
// A nil return means the next item is not an operand.
|
||||
func (t *Tree) operand() Node {
|
||||
node := t.term()
|
||||
if node == nil {
|
||||
return nil
|
||||
}
|
||||
if t.peek().typ == itemField {
|
||||
chain := t.newChain(t.peek().pos, node)
|
||||
for t.peek().typ == itemField {
|
||||
chain.Add(t.next().val)
|
||||
}
|
||||
// Compatibility with original API: If the term is of type NodeField
|
||||
// or NodeVariable, just put more fields on the original.
|
||||
// Otherwise, keep the Chain node.
|
||||
// Obvious parsing errors involving literal values are detected here.
|
||||
// More complex error cases will have to be handled at execution time.
|
||||
switch node.Type() {
|
||||
case NodeField:
|
||||
node = t.newField(chain.Position(), chain.String())
|
||||
case NodeVariable:
|
||||
node = t.newVariable(chain.Position(), chain.String())
|
||||
case NodeBool, NodeString, NodeNumber, NodeNil, NodeDot:
|
||||
t.errorf("unexpected . after term %q", node.String())
|
||||
default:
|
||||
node = chain
|
||||
}
|
||||
}
|
||||
return node
|
||||
}
|
||||
|
||||
// term:
|
||||
// literal (number, string, nil, boolean)
|
||||
// function (identifier)
|
||||
// .
|
||||
// .Field
|
||||
// $
|
||||
// '(' pipeline ')'
|
||||
// A term is a simple "expression".
|
||||
// A nil return means the next item is not a term.
|
||||
func (t *Tree) term() Node {
|
||||
switch token := t.nextNonSpace(); token.typ {
|
||||
case itemError:
|
||||
t.errorf("%s", token.val)
|
||||
case itemIdentifier:
|
||||
if !t.hasFunction(token.val) {
|
||||
t.errorf("function %q not defined", token.val)
|
||||
}
|
||||
return NewIdentifier(token.val).SetTree(t).SetPos(token.pos)
|
||||
case itemDot:
|
||||
return t.newDot(token.pos)
|
||||
case itemNil:
|
||||
return t.newNil(token.pos)
|
||||
case itemVariable:
|
||||
return t.useVar(token.pos, token.val)
|
||||
case itemField:
|
||||
return t.newField(token.pos, token.val)
|
||||
case itemBool:
|
||||
return t.newBool(token.pos, token.val == "true")
|
||||
case itemCharConstant, itemComplex, itemNumber:
|
||||
number, err := t.newNumber(token.pos, token.val, token.typ)
|
||||
if err != nil {
|
||||
t.error(err)
|
||||
}
|
||||
return number
|
||||
case itemLeftParen:
|
||||
pipe := t.pipeline("parenthesized pipeline")
|
||||
if token := t.next(); token.typ != itemRightParen {
|
||||
t.errorf("unclosed right paren: unexpected %s", token)
|
||||
}
|
||||
return pipe
|
||||
case itemString, itemRawString:
|
||||
s, err := strconv.Unquote(token.val)
|
||||
if err != nil {
|
||||
t.error(err)
|
||||
}
|
||||
return t.newString(token.pos, token.val, s)
|
||||
}
|
||||
t.backup()
|
||||
return nil
|
||||
}
|
||||
|
||||
// hasFunction reports if a function name exists in the Tree's maps.
|
||||
func (t *Tree) hasFunction(name string) bool {
|
||||
for _, funcMap := range t.funcs {
|
||||
if funcMap == nil {
|
||||
continue
|
||||
}
|
||||
if funcMap[name] != nil {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// popVars trims the variable list to the specified length
|
||||
func (t *Tree) popVars(n int) {
|
||||
t.vars = t.vars[:n]
|
||||
}
|
||||
|
||||
// useVar returns a node for a variable reference. It errors if the
|
||||
// variable is not defined.
|
||||
func (t *Tree) useVar(pos Pos, name string) Node {
|
||||
v := t.newVariable(pos, name)
|
||||
for _, varName := range t.vars {
|
||||
if varName == v.Ident[0] {
|
||||
return v
|
||||
}
|
||||
}
|
||||
t.errorf("undefined variable %q", v.Ident[0])
|
||||
return nil
|
||||
}
|
224
g/os/gview/internal/text/template/template.go
Normal file
224
g/os/gview/internal/text/template/template.go
Normal file
@ -0,0 +1,224 @@
|
||||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package template
|
||||
|
||||
import (
|
||||
"reflect"
|
||||
"sync"
|
||||
"gitee.com/johng/gf/g/os/gview/internal/text/template/parse"
|
||||
)
|
||||
|
||||
// common holds the information shared by related templates.
|
||||
type common struct {
|
||||
tmpl map[string]*Template // Map from name to defined templates.
|
||||
option option
|
||||
// We use two maps, one for parsing and one for execution.
|
||||
// This separation makes the API cleaner since it doesn't
|
||||
// expose reflection to the client.
|
||||
muFuncs sync.RWMutex // protects parseFuncs and execFuncs
|
||||
parseFuncs FuncMap
|
||||
execFuncs map[string]reflect.Value
|
||||
}
|
||||
|
||||
// Template is the representation of a parsed template. The *parse.Tree
|
||||
// field is exported only for use by html/template and should be treated
|
||||
// as unexported by all other clients.
|
||||
type Template struct {
|
||||
name string
|
||||
*parse.Tree
|
||||
*common
|
||||
leftDelim string
|
||||
rightDelim string
|
||||
}
|
||||
|
||||
// New allocates a new, undefined template with the given name.
|
||||
func New(name string) *Template {
|
||||
t := &Template{
|
||||
name: name,
|
||||
}
|
||||
t.init()
|
||||
return t
|
||||
}
|
||||
|
||||
// Name returns the name of the template.
|
||||
func (t *Template) Name() string {
|
||||
return t.name
|
||||
}
|
||||
|
||||
// New allocates a new, undefined template associated with the given one and with the same
|
||||
// delimiters. The association, which is transitive, allows one template to
|
||||
// invoke another with a {{template}} action.
|
||||
func (t *Template) New(name string) *Template {
|
||||
t.init()
|
||||
nt := &Template{
|
||||
name: name,
|
||||
common: t.common,
|
||||
leftDelim: t.leftDelim,
|
||||
rightDelim: t.rightDelim,
|
||||
}
|
||||
return nt
|
||||
}
|
||||
|
||||
// init guarantees that t has a valid common structure.
|
||||
func (t *Template) init() {
|
||||
if t.common == nil {
|
||||
c := new(common)
|
||||
c.tmpl = make(map[string]*Template)
|
||||
c.parseFuncs = make(FuncMap)
|
||||
c.execFuncs = make(map[string]reflect.Value)
|
||||
t.common = c
|
||||
}
|
||||
}
|
||||
|
||||
// Clone returns a duplicate of the template, including all associated
|
||||
// templates. The actual representation is not copied, but the name space of
|
||||
// associated templates is, so further calls to Parse in the copy will add
|
||||
// templates to the copy but not to the original. Clone can be used to prepare
|
||||
// common templates and use them with variant definitions for other templates
|
||||
// by adding the variants after the clone is made.
|
||||
func (t *Template) Clone() (*Template, error) {
|
||||
nt := t.copy(nil)
|
||||
nt.init()
|
||||
if t.common == nil {
|
||||
return nt, nil
|
||||
}
|
||||
for k, v := range t.tmpl {
|
||||
if k == t.name {
|
||||
nt.tmpl[t.name] = nt
|
||||
continue
|
||||
}
|
||||
// The associated templates share nt's common structure.
|
||||
tmpl := v.copy(nt.common)
|
||||
nt.tmpl[k] = tmpl
|
||||
}
|
||||
t.muFuncs.RLock()
|
||||
defer t.muFuncs.RUnlock()
|
||||
for k, v := range t.parseFuncs {
|
||||
nt.parseFuncs[k] = v
|
||||
}
|
||||
for k, v := range t.execFuncs {
|
||||
nt.execFuncs[k] = v
|
||||
}
|
||||
return nt, nil
|
||||
}
|
||||
|
||||
// copy returns a shallow copy of t, with common set to the argument.
|
||||
func (t *Template) copy(c *common) *Template {
|
||||
nt := New(t.name)
|
||||
nt.Tree = t.Tree
|
||||
nt.common = c
|
||||
nt.leftDelim = t.leftDelim
|
||||
nt.rightDelim = t.rightDelim
|
||||
return nt
|
||||
}
|
||||
|
||||
// AddParseTree adds parse tree for template with given name and associates it with t.
|
||||
// If the template does not already exist, it will create a new one.
|
||||
// If the template does exist, it will be replaced.
|
||||
func (t *Template) AddParseTree(name string, tree *parse.Tree) (*Template, error) {
|
||||
t.init()
|
||||
// If the name is the name of this template, overwrite this template.
|
||||
nt := t
|
||||
if name != t.name {
|
||||
nt = t.New(name)
|
||||
}
|
||||
// Even if nt == t, we need to install it in the common.tmpl map.
|
||||
if t.associate(nt, tree) || nt.Tree == nil {
|
||||
nt.Tree = tree
|
||||
}
|
||||
return nt, nil
|
||||
}
|
||||
|
||||
// Templates returns a slice of defined templates associated with t.
|
||||
func (t *Template) Templates() []*Template {
|
||||
if t.common == nil {
|
||||
return nil
|
||||
}
|
||||
// Return a slice so we don't expose the map.
|
||||
m := make([]*Template, 0, len(t.tmpl))
|
||||
for _, v := range t.tmpl {
|
||||
m = append(m, v)
|
||||
}
|
||||
return m
|
||||
}
|
||||
|
||||
// Delims sets the action delimiters to the specified strings, to be used in
|
||||
// subsequent calls to Parse, ParseFiles, or ParseGlob. Nested template
|
||||
// definitions will inherit the settings. An empty delimiter stands for the
|
||||
// corresponding default: {{ or }}.
|
||||
// The return value is the template, so calls can be chained.
|
||||
func (t *Template) Delims(left, right string) *Template {
|
||||
t.init()
|
||||
t.leftDelim = left
|
||||
t.rightDelim = right
|
||||
return t
|
||||
}
|
||||
|
||||
// Funcs adds the elements of the argument map to the template's function map.
|
||||
// It must be called before the template is parsed.
|
||||
// It panics if a value in the map is not a function with appropriate return
|
||||
// type or if the name cannot be used syntactically as a function in a template.
|
||||
// It is legal to overwrite elements of the map. The return value is the template,
|
||||
// so calls can be chained.
|
||||
func (t *Template) Funcs(funcMap FuncMap) *Template {
|
||||
t.init()
|
||||
t.muFuncs.Lock()
|
||||
defer t.muFuncs.Unlock()
|
||||
addValueFuncs(t.execFuncs, funcMap)
|
||||
addFuncs(t.parseFuncs, funcMap)
|
||||
return t
|
||||
}
|
||||
|
||||
// Lookup returns the template with the given name that is associated with t.
|
||||
// It returns nil if there is no such template or the template has no definition.
|
||||
func (t *Template) Lookup(name string) *Template {
|
||||
if t.common == nil {
|
||||
return nil
|
||||
}
|
||||
return t.tmpl[name]
|
||||
}
|
||||
|
||||
// Parse parses text as a template body for t.
|
||||
// Named template definitions ({{define ...}} or {{block ...}} statements) in text
|
||||
// define additional templates associated with t and are removed from the
|
||||
// definition of t itself.
|
||||
//
|
||||
// Templates can be redefined in successive calls to Parse.
|
||||
// A template definition with a body containing only white space and comments
|
||||
// is considered empty and will not replace an existing template's body.
|
||||
// This allows using Parse to add new named template definitions without
|
||||
// overwriting the main template body.
|
||||
func (t *Template) Parse(text string) (*Template, error) {
|
||||
t.init()
|
||||
t.muFuncs.RLock()
|
||||
trees, err := parse.Parse(t.name, text, t.leftDelim, t.rightDelim, t.parseFuncs, builtins)
|
||||
t.muFuncs.RUnlock()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
// Add the newly parsed trees, including the one for t, into our common structure.
|
||||
for name, tree := range trees {
|
||||
if _, err := t.AddParseTree(name, tree); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
return t, nil
|
||||
}
|
||||
|
||||
// associate installs the new template into the group of templates associated
|
||||
// with t. The two are already known to share the common structure.
|
||||
// The boolean return value reports whether to store this tree as t.Tree.
|
||||
func (t *Template) associate(new *Template, tree *parse.Tree) bool {
|
||||
if new.common != t.common {
|
||||
panic("internal error: associate not common")
|
||||
}
|
||||
if old := t.tmpl[new.name]; old != nil && parse.IsEmptyTree(tree.Root) && old.Tree != nil {
|
||||
// If a template by that name exists,
|
||||
// don't replace it with an empty template.
|
||||
return false
|
||||
}
|
||||
t.tmpl[new.name] = new
|
||||
return true
|
||||
}
|
3
g/os/gview/internal/text/text.go
Normal file
3
g/os/gview/internal/text/text.go
Normal file
@ -0,0 +1,3 @@
|
||||
// from golang-1.11.2
|
||||
// 1. remove "<no value>" when template variable does not exist;
|
||||
package text
|
@ -1,20 +1,35 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"gitee.com/johng/gf/g"
|
||||
"gitee.com/johng/gf/g/util/gvalid"
|
||||
)
|
||||
|
||||
|
||||
func Map() map[int]int {
|
||||
return nil
|
||||
type User struct {
|
||||
Uid int `gvalid:"uid @integer|min:1"`
|
||||
Name string `gvalid:"name @required|length:6,30#请输入用户名称|用户名称长度非法"`
|
||||
Pass1 string `gvalid:"password1@required|password3"`
|
||||
Pass2 string `gvalid:"password2@required|password3|same:password1#||两次密码不一致,请重新输入"`
|
||||
}
|
||||
|
||||
|
||||
func main() {
|
||||
v := (interface{})(nil)
|
||||
fmt.Println(v == nil)
|
||||
if v = Map(); v != nil {
|
||||
fmt.Println(v == nil)
|
||||
user := &User{
|
||||
Name : "john",
|
||||
Pass1: "Abc123!@#",
|
||||
Pass2: "123",
|
||||
}
|
||||
fmt.Println(Map() == nil)
|
||||
|
||||
// 使用结构体定义的校验规则和错误提示进行校验
|
||||
g.Dump(gvalid.CheckStruct(user, nil).Maps())
|
||||
|
||||
// 自定义校验规则和错误提示,对定义的特定校验规则和错误提示进行覆盖
|
||||
rules := map[string]string {
|
||||
"Uid" : "required",
|
||||
}
|
||||
msgs := map[string]interface{} {
|
||||
"Pass2" : map[string]string {
|
||||
"password3" : "名称不能为空",
|
||||
},
|
||||
}
|
||||
g.Dump(gvalid.CheckStruct(user, rules, msgs).Maps())
|
||||
}
|
Loading…
Reference in New Issue
Block a user