// Copyright 2018 gf Author(https://github.com/gogf/gf). All Rights Reserved. // // This Source Code Form is subject to the terms of the MIT License. // If a copy of the MIT was not distributed with this file, // You can obtain one at https://github.com/gogf/gf. package garray import ( "bytes" "encoding/json" "math" "sort" "github.com/gogf/gf/container/gtype" "github.com/gogf/gf/internal/rwmutex" "github.com/gogf/gf/util/gconv" "github.com/gogf/gf/util/grand" ) // It's using increasing order in default. type SortedIntArray struct { mu *rwmutex.RWMutex array []int unique *gtype.Bool // Whether enable unique feature(false) comparator func(a, b int) int // Comparison function(it returns -1: a < b; 0: a == b; 1: a > b) } // NewSortedIntArray creates and returns an empty sorted array. // The parameter used to specify whether using array in concurrent-safety, // which is false in default. func NewSortedIntArray(safe ...bool) *SortedIntArray { return NewSortedIntArraySize(0, safe...) } // NewSortedIntArrayComparator creates and returns an empty sorted array with specified comparator. // The parameter used to specify whether using array in concurrent-safety which is false in default. func NewSortedIntArrayComparator(comparator func(a, b int) int, safe ...bool) *SortedIntArray { array := NewSortedIntArray(safe...) array.comparator = comparator return array } // NewSortedIntArraySize create and returns an sorted array with given size and cap. // The parameter used to specify whether using array in concurrent-safety, // which is false in default. func NewSortedIntArraySize(cap int, safe ...bool) *SortedIntArray { return &SortedIntArray{ mu: rwmutex.New(safe...), array: make([]int, 0, cap), unique: gtype.NewBool(), comparator: defaultComparatorInt, } } // NewIntArrayFrom creates and returns an sorted array with given slice . // The parameter used to specify whether using array in concurrent-safety, // which is false in default. func NewSortedIntArrayFrom(array []int, safe ...bool) *SortedIntArray { a := NewSortedIntArraySize(0, safe...) a.array = array sort.Ints(a.array) return a } // NewSortedIntArrayFromCopy creates and returns an sorted array from a copy of given slice . // The parameter used to specify whether using array in concurrent-safety, // which is false in default. func NewSortedIntArrayFromCopy(array []int, safe ...bool) *SortedIntArray { newArray := make([]int, len(array)) copy(newArray, array) return NewSortedIntArrayFrom(newArray, safe...) } // SetArray sets the underlying slice array with the given . func (a *SortedIntArray) SetArray(array []int) *SortedIntArray { a.mu.Lock() defer a.mu.Unlock() a.array = array sort.Ints(a.array) return a } // Sort sorts the array in increasing order. // The parameter controls whether sort // in increasing order(default) or decreasing order. func (a *SortedIntArray) Sort() *SortedIntArray { a.mu.Lock() defer a.mu.Unlock() sort.Ints(a.array) return a } // Add adds one or multiple values to sorted array, the array always keeps sorted. func (a *SortedIntArray) Add(values ...int) *SortedIntArray { if len(values) == 0 { return a } a.mu.Lock() defer a.mu.Unlock() for _, value := range values { index, cmp := a.binSearch(value, false) if a.unique.Val() && cmp == 0 { continue } if index < 0 { a.array = append(a.array, value) continue } if cmp > 0 { index++ } rear := append([]int{}, a.array[index:]...) a.array = append(a.array[0:index], value) a.array = append(a.array, rear...) } return a } // Get returns the value of the specified index, // the caller should notice the boundary of the array. func (a *SortedIntArray) Get(index int) int { a.mu.RLock() defer a.mu.RUnlock() value := a.array[index] return value } // Remove removes an item by index. func (a *SortedIntArray) Remove(index int) int { a.mu.Lock() defer a.mu.Unlock() // Determine array boundaries when deleting to improve deletion efficiency. if index == 0 { value := a.array[0] a.array = a.array[1:] return value } else if index == len(a.array)-1 { value := a.array[index] a.array = a.array[:index] return value } // If it is a non-boundary delete, // it will involve the creation of an array, // then the deletion is less efficient. value := a.array[index] a.array = append(a.array[:index], a.array[index+1:]...) return value } // PopLeft pops and returns an item from the beginning of array. func (a *SortedIntArray) PopLeft() int { a.mu.Lock() defer a.mu.Unlock() value := a.array[0] a.array = a.array[1:] return value } // PopRight pops and returns an item from the end of array. func (a *SortedIntArray) PopRight() int { a.mu.Lock() defer a.mu.Unlock() index := len(a.array) - 1 value := a.array[index] a.array = a.array[:index] return value } // PopRand randomly pops and return an item out of array. func (a *SortedIntArray) PopRand() int { return a.Remove(grand.Intn(len(a.array))) } // PopRands randomly pops and returns items out of array. func (a *SortedIntArray) PopRands(size int) []int { a.mu.Lock() defer a.mu.Unlock() if size > len(a.array) { size = len(a.array) } array := make([]int, size) for i := 0; i < size; i++ { index := grand.Intn(len(a.array)) array[i] = a.array[index] a.array = append(a.array[:index], a.array[index+1:]...) } return array } // PopLefts pops and returns items from the beginning of array. func (a *SortedIntArray) PopLefts(size int) []int { a.mu.Lock() defer a.mu.Unlock() length := len(a.array) if size > length { size = length } value := a.array[0:size] a.array = a.array[size:] return value } // PopRights pops and returns items from the end of array. func (a *SortedIntArray) PopRights(size int) []int { a.mu.Lock() defer a.mu.Unlock() index := len(a.array) - size if index < 0 { index = 0 } value := a.array[index:] a.array = a.array[:index] return value } // Range picks and returns items by range, like array[start:end]. // Notice, if in concurrent-safe usage, it returns a copy of slice; // else a pointer to the underlying data. // // If is negative, then the offset will start from the end of array. // If is omitted, then the sequence will have everything from start up // until the end of the array. func (a *SortedIntArray) Range(start int, end ...int) []int { a.mu.RLock() defer a.mu.RUnlock() offsetEnd := len(a.array) if len(end) > 0 && end[0] < offsetEnd { offsetEnd = end[0] } if start > offsetEnd { return nil } if start < 0 { start = 0 } array := ([]int)(nil) if a.mu.IsSafe() { array = make([]int, offsetEnd-start) copy(array, a.array[start:offsetEnd]) } else { array = a.array[start:offsetEnd] } return array } // SubSlice returns a slice of elements from the array as specified // by the and parameters. // If in concurrent safe usage, it returns a copy of the slice; else a pointer. // // If offset is non-negative, the sequence will start at that offset in the array. // If offset is negative, the sequence will start that far from the end of the array. // // If length is given and is positive, then the sequence will have up to that many elements in it. // If the array is shorter than the length, then only the available array elements will be present. // If length is given and is negative then the sequence will stop that many elements from the end of the array. // If it is omitted, then the sequence will have everything from offset up until the end of the array. // // Any possibility crossing the left border of array, it will fail. func (a *SortedIntArray) SubSlice(offset int, length ...int) []int { a.mu.RLock() defer a.mu.RUnlock() size := len(a.array) if len(length) > 0 { size = length[0] } if offset > len(a.array) { return nil } if offset < 0 { offset = len(a.array) + offset if offset < 0 { return nil } } if size < 0 { offset += size size = -size if offset < 0 { return nil } } end := offset + size if end > len(a.array) { end = len(a.array) size = len(a.array) - offset } if a.mu.IsSafe() { s := make([]int, size) copy(s, a.array[offset:]) return s } else { return a.array[offset:end] } } // Len returns the length of array. func (a *SortedIntArray) Len() int { a.mu.RLock() length := len(a.array) a.mu.RUnlock() return length } // Sum returns the sum of values in an array. func (a *SortedIntArray) Sum() (sum int) { a.mu.RLock() defer a.mu.RUnlock() for _, v := range a.array { sum += v } return } // Slice returns the underlying data of array. // Notice, if in concurrent-safe usage, it returns a copy of slice; // else a pointer to the underlying data. func (a *SortedIntArray) Slice() []int { array := ([]int)(nil) if a.mu.IsSafe() { a.mu.RLock() defer a.mu.RUnlock() array = make([]int, len(a.array)) copy(array, a.array) } else { array = a.array } return array } // Contains checks whether a value exists in the array. func (a *SortedIntArray) Contains(value int) bool { return a.Search(value) != -1 } // Search searches array by , returns the index of , // or returns -1 if not exists. func (a *SortedIntArray) Search(value int) (index int) { if i, r := a.binSearch(value, true); r == 0 { return i } return -1 } // Binary search. // It returns the last compared index and the result. // If equals to 0, it means the value at is equals to . // If lesser than 0, it means the value at is lesser than . // If greater than 0, it means the value at is greater than . func (a *SortedIntArray) binSearch(value int, lock bool) (index int, result int) { if len(a.array) == 0 { return -1, -2 } if lock { a.mu.RLock() defer a.mu.RUnlock() } min := 0 max := len(a.array) - 1 mid := 0 cmp := -2 for min <= max { mid = int((min + max) / 2) cmp = a.comparator(value, a.array[mid]) switch { case cmp < 0: max = mid - 1 case cmp > 0: min = mid + 1 default: return mid, cmp } } return mid, cmp } // SetUnique sets unique mark to the array, // which means it does not contain any repeated items. // It also do unique check, remove all repeated items. func (a *SortedIntArray) SetUnique(unique bool) *SortedIntArray { oldUnique := a.unique.Val() a.unique.Set(unique) if unique && oldUnique != unique { a.Unique() } return a } // Unique uniques the array, clear repeated items. func (a *SortedIntArray) Unique() *SortedIntArray { a.mu.Lock() i := 0 for { if i == len(a.array)-1 { break } if a.comparator(a.array[i], a.array[i+1]) == 0 { a.array = append(a.array[:i+1], a.array[i+1+1:]...) } else { i++ } } a.mu.Unlock() return a } // Clone returns a new array, which is a copy of current array. func (a *SortedIntArray) Clone() (newArray *SortedIntArray) { a.mu.RLock() array := make([]int, len(a.array)) copy(array, a.array) a.mu.RUnlock() return NewSortedIntArrayFrom(array, !a.mu.IsSafe()) } // Clear deletes all items of current array. func (a *SortedIntArray) Clear() *SortedIntArray { a.mu.Lock() if len(a.array) > 0 { a.array = make([]int, 0) } a.mu.Unlock() return a } // LockFunc locks writing by callback function . func (a *SortedIntArray) LockFunc(f func(array []int)) *SortedIntArray { a.mu.Lock() defer a.mu.Unlock() f(a.array) return a } // RLockFunc locks reading by callback function . func (a *SortedIntArray) RLockFunc(f func(array []int)) *SortedIntArray { a.mu.RLock() defer a.mu.RUnlock() f(a.array) return a } // Merge merges into current array. // The parameter can be any garray or slice type. // The difference between Merge and Append is Append supports only specified slice type, // but Merge supports more parameter types. func (a *SortedIntArray) Merge(array interface{}) *SortedIntArray { switch v := array.(type) { case *Array: a.Add(gconv.Ints(v.Slice())...) case *IntArray: a.Add(gconv.Ints(v.Slice())...) case *StrArray: a.Add(gconv.Ints(v.Slice())...) case *SortedArray: a.Add(gconv.Ints(v.Slice())...) case *SortedIntArray: a.Add(gconv.Ints(v.Slice())...) case *SortedStrArray: a.Add(gconv.Ints(v.Slice())...) default: a.Add(gconv.Ints(array)...) } return a } // Chunk splits an array into multiple arrays, // the size of each array is determined by . // The last chunk may contain less than size elements. func (a *SortedIntArray) Chunk(size int) [][]int { if size < 1 { return nil } a.mu.RLock() defer a.mu.RUnlock() length := len(a.array) chunks := int(math.Ceil(float64(length) / float64(size))) var n [][]int for i, end := 0, 0; chunks > 0; chunks-- { end = (i + 1) * size if end > length { end = length } n = append(n, a.array[i*size:end]) i++ } return n } // Rand randomly returns one item from array(no deleting). func (a *SortedIntArray) Rand() int { a.mu.RLock() defer a.mu.RUnlock() return a.array[grand.Intn(len(a.array))] } // Rands randomly returns items from array(no deleting). func (a *SortedIntArray) Rands(size int) []int { a.mu.RLock() defer a.mu.RUnlock() if size > len(a.array) { size = len(a.array) } n := make([]int, size) for i, v := range grand.Perm(len(a.array)) { n[i] = a.array[v] if i == size-1 { break } } return n } // Join joins array elements with a string . func (a *SortedIntArray) Join(glue string) string { a.mu.RLock() defer a.mu.RUnlock() buffer := bytes.NewBuffer(nil) for k, v := range a.array { buffer.WriteString(gconv.String(v)) if k != len(a.array)-1 { buffer.WriteString(glue) } } return buffer.String() } // CountValues counts the number of occurrences of all values in the array. func (a *SortedIntArray) CountValues() map[int]int { m := make(map[int]int) a.mu.RLock() defer a.mu.RUnlock() for _, v := range a.array { m[v]++ } return m } // String returns current array as a string. func (a *SortedIntArray) String() string { a.mu.RLock() defer a.mu.RUnlock() jsonContent, _ := json.Marshal(a.array) return string(jsonContent) } // MarshalJSON implements the interface MarshalJSON for json.Marshal. func (a *SortedIntArray) MarshalJSON() ([]byte, error) { a.mu.RLock() defer a.mu.RUnlock() return json.Marshal(a.array) }