// Copyright 2018 gf Author(https://github.com/gogf/gf). All Rights Reserved. // // This Source Code Form is subject to the terms of the MIT License. // If a copy of the MIT was not distributed with this file, // You can obtain one at https://github.com/gogf/gf. package garray import ( "bytes" "encoding/json" "fmt" "github.com/gogf/gf/text/gstr" "math" "sort" "github.com/gogf/gf/internal/rwmutex" "github.com/gogf/gf/util/gconv" "github.com/gogf/gf/util/grand" ) type Array struct { mu *rwmutex.RWMutex array []interface{} } // New creates and returns an empty array. // The parameter is used to specify whether using array in concurrent-safety, // which is false in default. func New(safe ...bool) *Array { return NewArraySize(0, 0, safe...) } // See New. func NewArray(safe ...bool) *Array { return NewArraySize(0, 0, safe...) } // NewArraySize create and returns an array with given size and cap. // The parameter is used to specify whether using array in concurrent-safety, // which is false in default. func NewArraySize(size int, cap int, safe ...bool) *Array { return &Array{ mu: rwmutex.New(safe...), array: make([]interface{}, size, cap), } } // NewArrayRange creates and returns a array by a range from to // with step value . func NewArrayRange(start, end, step int, safe ...bool) *Array { if step == 0 { panic(fmt.Sprintf(`invalid step value: %d`, step)) } slice := make([]interface{}, (end-start+1)/step) index := 0 for i := start; i <= end; i += step { slice[index] = i index++ } return NewArrayFrom(slice, safe...) } // See NewArrayFrom. func NewFrom(array []interface{}, safe ...bool) *Array { return NewArrayFrom(array, safe...) } // See NewArrayFromCopy. func NewFromCopy(array []interface{}, safe ...bool) *Array { return NewArrayFromCopy(array, safe...) } // NewArrayFrom creates and returns an array with given slice . // The parameter is used to specify whether using array in concurrent-safety, // which is false in default. func NewArrayFrom(array []interface{}, safe ...bool) *Array { return &Array{ mu: rwmutex.New(safe...), array: array, } } // NewArrayFromCopy creates and returns an array from a copy of given slice . // The parameter is used to specify whether using array in concurrent-safety, // which is false in default. func NewArrayFromCopy(array []interface{}, safe ...bool) *Array { newArray := make([]interface{}, len(array)) copy(newArray, array) return &Array{ mu: rwmutex.New(safe...), array: newArray, } } // Get returns the value of the specified index, // the caller should notice the boundary of the array. func (a *Array) Get(index int) interface{} { a.mu.RLock() defer a.mu.RUnlock() value := a.array[index] return value } // Set sets value to specified index. func (a *Array) Set(index int, value interface{}) *Array { a.mu.Lock() defer a.mu.Unlock() a.array[index] = value return a } // SetArray sets the underlying slice array with the given . func (a *Array) SetArray(array []interface{}) *Array { a.mu.Lock() defer a.mu.Unlock() a.array = array return a } // Replace replaces the array items by given from the beginning of array. func (a *Array) Replace(array []interface{}) *Array { a.mu.Lock() defer a.mu.Unlock() max := len(array) if max > len(a.array) { max = len(a.array) } for i := 0; i < max; i++ { a.array[i] = array[i] } return a } // Sum returns the sum of values in an array. func (a *Array) Sum() (sum int) { a.mu.RLock() defer a.mu.RUnlock() for _, v := range a.array { sum += gconv.Int(v) } return } // SortFunc sorts the array by custom function . func (a *Array) SortFunc(less func(v1, v2 interface{}) bool) *Array { a.mu.Lock() defer a.mu.Unlock() sort.Slice(a.array, func(i, j int) bool { return less(a.array[i], a.array[j]) }) return a } // InsertBefore inserts the to the front of . func (a *Array) InsertBefore(index int, value interface{}) *Array { a.mu.Lock() defer a.mu.Unlock() rear := append([]interface{}{}, a.array[index:]...) a.array = append(a.array[0:index], value) a.array = append(a.array, rear...) return a } // InsertAfter inserts the to the back of . func (a *Array) InsertAfter(index int, value interface{}) *Array { a.mu.Lock() defer a.mu.Unlock() rear := append([]interface{}{}, a.array[index+1:]...) a.array = append(a.array[0:index+1], value) a.array = append(a.array, rear...) return a } // Remove removes an item by index. func (a *Array) Remove(index int) interface{} { a.mu.Lock() defer a.mu.Unlock() // Determine array boundaries when deleting to improve deletion efficiency。 if index == 0 { value := a.array[0] a.array = a.array[1:] return value } else if index == len(a.array)-1 { value := a.array[index] a.array = a.array[:index] return value } // If it is a non-boundary delete, // it will involve the creation of an array, // then the deletion is less efficient. value := a.array[index] a.array = append(a.array[:index], a.array[index+1:]...) return value } // PushLeft pushes one or multiple items to the beginning of array. func (a *Array) PushLeft(value ...interface{}) *Array { a.mu.Lock() a.array = append(value, a.array...) a.mu.Unlock() return a } // PushRight pushes one or multiple items to the end of array. // It equals to Append. func (a *Array) PushRight(value ...interface{}) *Array { a.mu.Lock() a.array = append(a.array, value...) a.mu.Unlock() return a } // PopRand randomly pops and return an item out of array. func (a *Array) PopRand() interface{} { return a.Remove(grand.Intn(len(a.array))) } // PopRands randomly pops and returns items out of array. func (a *Array) PopRands(size int) []interface{} { a.mu.Lock() defer a.mu.Unlock() if size > len(a.array) { size = len(a.array) } array := make([]interface{}, size) for i := 0; i < size; i++ { index := grand.Intn(len(a.array)) array[i] = a.array[index] a.array = append(a.array[:index], a.array[index+1:]...) } return array } // PopLeft pops and returns an item from the beginning of array. func (a *Array) PopLeft() interface{} { a.mu.Lock() defer a.mu.Unlock() value := a.array[0] a.array = a.array[1:] return value } // PopRight pops and returns an item from the end of array. func (a *Array) PopRight() interface{} { a.mu.Lock() defer a.mu.Unlock() index := len(a.array) - 1 value := a.array[index] a.array = a.array[:index] return value } // PopLefts pops and returns items from the beginning of array. func (a *Array) PopLefts(size int) []interface{} { a.mu.Lock() defer a.mu.Unlock() length := len(a.array) if size > length { size = length } value := a.array[0:size] a.array = a.array[size:] return value } // PopRights pops and returns items from the end of array. func (a *Array) PopRights(size int) []interface{} { a.mu.Lock() defer a.mu.Unlock() index := len(a.array) - size if index < 0 { index = 0 } value := a.array[index:] a.array = a.array[:index] return value } // Range picks and returns items by range, like array[start:end]. // Notice, if in concurrent-safe usage, it returns a copy of slice; // else a pointer to the underlying data. // // If is negative, then the offset will start from the end of array. // If is omitted, then the sequence will have everything from start up // until the end of the array. func (a *Array) Range(start int, end ...int) []interface{} { a.mu.RLock() defer a.mu.RUnlock() offsetEnd := len(a.array) if len(end) > 0 && end[0] < offsetEnd { offsetEnd = end[0] } if start > offsetEnd { return nil } if start < 0 { start = 0 } array := ([]interface{})(nil) if a.mu.IsSafe() { array = make([]interface{}, offsetEnd-start) copy(array, a.array[start:offsetEnd]) } else { array = a.array[start:offsetEnd] } return array } // SubSlice returns a slice of elements from the array as specified // by the and parameters. // If in concurrent safe usage, it returns a copy of the slice; else a pointer. // // If offset is non-negative, the sequence will start at that offset in the array. // If offset is negative, the sequence will start that far from the end of the array. // // If length is given and is positive, then the sequence will have up to that many elements in it. // If the array is shorter than the length, then only the available array elements will be present. // If length is given and is negative then the sequence will stop that many elements from the end of the array. // If it is omitted, then the sequence will have everything from offset up until the end of the array. // // Any possibility crossing the left border of array, it will fail. func (a *Array) SubSlice(offset int, length ...int) []interface{} { a.mu.RLock() defer a.mu.RUnlock() size := len(a.array) if len(length) > 0 { size = length[0] } if offset > len(a.array) { return nil } if offset < 0 { offset = len(a.array) + offset if offset < 0 { return nil } } if size < 0 { offset += size size = -size if offset < 0 { return nil } } end := offset + size if end > len(a.array) { end = len(a.array) size = len(a.array) - offset } if a.mu.IsSafe() { s := make([]interface{}, size) copy(s, a.array[offset:]) return s } else { return a.array[offset:end] } } // See PushRight. func (a *Array) Append(value ...interface{}) *Array { a.PushRight(value...) return a } // Len returns the length of array. func (a *Array) Len() int { a.mu.RLock() length := len(a.array) a.mu.RUnlock() return length } // Slice returns the underlying data of array. // Note that, if it's in concurrent-safe usage, it returns a copy of underlying data, // or else a pointer to the underlying data. func (a *Array) Slice() []interface{} { if a.mu.IsSafe() { a.mu.RLock() defer a.mu.RUnlock() array := make([]interface{}, len(a.array)) copy(array, a.array) return array } else { return a.array } } // Interfaces returns current array as []interface{}. func (a *Array) Interfaces() []interface{} { return a.Slice() } // Clone returns a new array, which is a copy of current array. func (a *Array) Clone() (newArray *Array) { a.mu.RLock() array := make([]interface{}, len(a.array)) copy(array, a.array) a.mu.RUnlock() return NewArrayFrom(array, !a.mu.IsSafe()) } // Clear deletes all items of current array. func (a *Array) Clear() *Array { a.mu.Lock() if len(a.array) > 0 { a.array = make([]interface{}, 0) } a.mu.Unlock() return a } // Contains checks whether a value exists in the array. func (a *Array) Contains(value interface{}) bool { return a.Search(value) != -1 } // Search searches array by , returns the index of , // or returns -1 if not exists. func (a *Array) Search(value interface{}) int { if len(a.array) == 0 { return -1 } a.mu.RLock() result := -1 for index, v := range a.array { if v == value { result = index break } } a.mu.RUnlock() return result } // Unique uniques the array, clear repeated items. func (a *Array) Unique() *Array { a.mu.Lock() for i := 0; i < len(a.array)-1; i++ { for j := i + 1; j < len(a.array); j++ { if a.array[i] == a.array[j] { a.array = append(a.array[:j], a.array[j+1:]...) } } } a.mu.Unlock() return a } // LockFunc locks writing by callback function . func (a *Array) LockFunc(f func(array []interface{})) *Array { a.mu.Lock() defer a.mu.Unlock() f(a.array) return a } // RLockFunc locks reading by callback function . func (a *Array) RLockFunc(f func(array []interface{})) *Array { a.mu.RLock() defer a.mu.RUnlock() f(a.array) return a } // Merge merges into current array. // The parameter can be any garray or slice type. // The difference between Merge and Append is Append supports only specified slice type, // but Merge supports more parameter types. func (a *Array) Merge(array interface{}) *Array { switch v := array.(type) { case *Array: a.Append(gconv.Interfaces(v.Slice())...) case *IntArray: a.Append(gconv.Interfaces(v.Slice())...) case *StrArray: a.Append(gconv.Interfaces(v.Slice())...) case *SortedArray: a.Append(gconv.Interfaces(v.Slice())...) case *SortedIntArray: a.Append(gconv.Interfaces(v.Slice())...) case *SortedStrArray: a.Append(gconv.Interfaces(v.Slice())...) default: a.Append(gconv.Interfaces(array)...) } return a } // Fill fills an array with num entries of the value , // keys starting at the parameter. func (a *Array) Fill(startIndex int, num int, value interface{}) *Array { a.mu.Lock() defer a.mu.Unlock() if startIndex < 0 { startIndex = 0 } for i := startIndex; i < startIndex+num; i++ { if i > len(a.array)-1 { a.array = append(a.array, value) } else { a.array[i] = value } } return a } // Chunk splits an array into multiple arrays, // the size of each array is determined by . // The last chunk may contain less than size elements. func (a *Array) Chunk(size int) [][]interface{} { if size < 1 { return nil } a.mu.RLock() defer a.mu.RUnlock() length := len(a.array) chunks := int(math.Ceil(float64(length) / float64(size))) var n [][]interface{} for i, end := 0, 0; chunks > 0; chunks-- { end = (i + 1) * size if end > length { end = length } n = append(n, a.array[i*size:end]) i++ } return n } // Pad pads array to the specified length with . // If size is positive then the array is padded on the right, or negative on the left. // If the absolute value of is less than or equal to the length of the array // then no padding takes place. func (a *Array) Pad(size int, val interface{}) *Array { a.mu.Lock() defer a.mu.Unlock() if size == 0 || (size > 0 && size < len(a.array)) || (size < 0 && size > -len(a.array)) { return a } n := size if size < 0 { n = -size } n -= len(a.array) tmp := make([]interface{}, n) for i := 0; i < n; i++ { tmp[i] = val } if size > 0 { a.array = append(a.array, tmp...) } else { a.array = append(tmp, a.array...) } return a } // Rand randomly returns one item from array(no deleting). func (a *Array) Rand() interface{} { a.mu.RLock() defer a.mu.RUnlock() return a.array[grand.Intn(len(a.array))] } // Rands randomly returns items from array(no deleting). func (a *Array) Rands(size int) []interface{} { a.mu.RLock() defer a.mu.RUnlock() if size > len(a.array) { size = len(a.array) } n := make([]interface{}, size) for i, v := range grand.Perm(len(a.array)) { n[i] = a.array[v] if i == size-1 { break } } return n } // Shuffle randomly shuffles the array. func (a *Array) Shuffle() *Array { a.mu.Lock() defer a.mu.Unlock() for i, v := range grand.Perm(len(a.array)) { a.array[i], a.array[v] = a.array[v], a.array[i] } return a } // Reverse makes array with elements in reverse order. func (a *Array) Reverse() *Array { a.mu.Lock() defer a.mu.Unlock() for i, j := 0, len(a.array)-1; i < j; i, j = i+1, j-1 { a.array[i], a.array[j] = a.array[j], a.array[i] } return a } // Join joins array elements with a string . func (a *Array) Join(glue string) string { a.mu.RLock() defer a.mu.RUnlock() buffer := bytes.NewBuffer(nil) for k, v := range a.array { buffer.WriteString(gconv.String(v)) if k != len(a.array)-1 { buffer.WriteString(glue) } } return buffer.String() } // CountValues counts the number of occurrences of all values in the array. func (a *Array) CountValues() map[interface{}]int { m := make(map[interface{}]int) a.mu.RLock() defer a.mu.RUnlock() for _, v := range a.array { m[v]++ } return m } // Iterator is alias of IteratorAsc. func (a *Array) Iterator(f func(k int, v interface{}) bool) { a.IteratorAsc(f) } // IteratorAsc iterates the array in ascending order with given callback function . // If returns true, then it continues iterating; or false to stop. func (a *Array) IteratorAsc(f func(k int, v interface{}) bool) { a.mu.RLock() defer a.mu.RUnlock() for k, v := range a.array { if !f(k, v) { break } } } // IteratorDesc iterates the array in descending order with given callback function . // If returns true, then it continues iterating; or false to stop. func (a *Array) IteratorDesc(f func(k int, v interface{}) bool) { a.mu.RLock() defer a.mu.RUnlock() for i := len(a.array) - 1; i >= 0; i-- { if !f(i, a.array[i]) { break } } } // String returns current array as a string, which implements like json.Marshal does. func (a *Array) String() string { a.mu.RLock() defer a.mu.RUnlock() buffer := bytes.NewBuffer(nil) buffer.WriteByte('[') s := "" for k, v := range a.array { s = gconv.String(v) if gstr.IsNumeric(s) { buffer.WriteString(s) } else { buffer.WriteString(`"` + gstr.QuoteMeta(s, `"\`) + `"`) } if k != len(a.array)-1 { buffer.WriteByte(',') } } buffer.WriteByte(']') return buffer.String() } // MarshalJSON implements the interface MarshalJSON for json.Marshal. func (a *Array) MarshalJSON() ([]byte, error) { a.mu.RLock() defer a.mu.RUnlock() return json.Marshal(a.array) } // UnmarshalJSON implements the interface UnmarshalJSON for json.Unmarshal. func (a *Array) UnmarshalJSON(b []byte) error { if a.mu == nil { a.mu = rwmutex.New() a.array = make([]interface{}, 0) } a.mu.Lock() defer a.mu.Unlock() if err := json.Unmarshal(b, &a.array); err != nil { return err } return nil }