gf/container/garray/garray_normal_int.go
2019-11-30 18:33:51 +08:00

649 lines
16 KiB
Go

// Copyright 2018 gf Author(https://github.com/gogf/gf). All Rights Reserved.
//
// This Source Code Form is subject to the terms of the MIT License.
// If a copy of the MIT was not distributed with this file,
// You can obtain one at https://github.com/gogf/gf.
package garray
import (
"bytes"
"encoding/json"
"math"
"sort"
"github.com/gogf/gf/internal/rwmutex"
"github.com/gogf/gf/util/gconv"
"github.com/gogf/gf/util/grand"
)
type IntArray struct {
mu *rwmutex.RWMutex
array []int
}
// NewIntArray creates and returns an empty array.
// The parameter <safe> is used to specify whether using array in concurrent-safety,
// which is false in default.
func NewIntArray(safe ...bool) *IntArray {
return NewIntArraySize(0, 0, safe...)
}
// NewIntArraySize create and returns an array with given size and cap.
// The parameter <safe> is used to specify whether using array in concurrent-safety,
// which is false in default.
func NewIntArraySize(size int, cap int, safe ...bool) *IntArray {
return &IntArray{
mu: rwmutex.New(safe...),
array: make([]int, size, cap),
}
}
// NewIntArrayFrom creates and returns an array with given slice <array>.
// The parameter <safe> is used to specify whether using array in concurrent-safety,
// which is false in default.
func NewIntArrayFrom(array []int, safe ...bool) *IntArray {
return &IntArray{
mu: rwmutex.New(safe...),
array: array,
}
}
// NewIntArrayFromCopy creates and returns an array from a copy of given slice <array>.
// The parameter <safe> is used to specify whether using array in concurrent-safety,
// which is false in default.
func NewIntArrayFromCopy(array []int, safe ...bool) *IntArray {
newArray := make([]int, len(array))
copy(newArray, array)
return &IntArray{
mu: rwmutex.New(safe...),
array: newArray,
}
}
// Get returns the value of the specified index,
// the caller should notice the boundary of the array.
func (a *IntArray) Get(index int) int {
a.mu.RLock()
defer a.mu.RUnlock()
value := a.array[index]
return value
}
// Set sets value to specified index.
func (a *IntArray) Set(index int, value int) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
a.array[index] = value
return a
}
// SetArray sets the underlying slice array with the given <array>.
func (a *IntArray) SetArray(array []int) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
a.array = array
return a
}
// Replace replaces the array items by given <array> from the beginning of array.
func (a *IntArray) Replace(array []int) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
max := len(array)
if max > len(a.array) {
max = len(a.array)
}
for i := 0; i < max; i++ {
a.array[i] = array[i]
}
return a
}
// Sum returns the sum of values in an array.
func (a *IntArray) Sum() (sum int) {
a.mu.RLock()
defer a.mu.RUnlock()
for _, v := range a.array {
sum += v
}
return
}
// Sort sorts the array in increasing order.
// The parameter <reverse> controls whether sort
// in increasing order(default) or decreasing order
func (a *IntArray) Sort(reverse ...bool) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
if len(reverse) > 0 && reverse[0] {
sort.Slice(a.array, func(i, j int) bool {
if a.array[i] < a.array[j] {
return false
}
return true
})
} else {
sort.Ints(a.array)
}
return a
}
// SortFunc sorts the array by custom function <less>.
func (a *IntArray) SortFunc(less func(v1, v2 int) bool) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
sort.Slice(a.array, func(i, j int) bool {
return less(a.array[i], a.array[j])
})
return a
}
// InsertBefore inserts the <value> to the front of <index>.
func (a *IntArray) InsertBefore(index int, value int) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
rear := append([]int{}, a.array[index:]...)
a.array = append(a.array[0:index], value)
a.array = append(a.array, rear...)
return a
}
// InsertAfter inserts the <value> to the back of <index>.
func (a *IntArray) InsertAfter(index int, value int) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
rear := append([]int{}, a.array[index+1:]...)
a.array = append(a.array[0:index+1], value)
a.array = append(a.array, rear...)
return a
}
// Remove removes an item by index.
func (a *IntArray) Remove(index int) int {
a.mu.Lock()
defer a.mu.Unlock()
// Determine array boundaries when deleting to improve deletion efficiency.
if index == 0 {
value := a.array[0]
a.array = a.array[1:]
return value
} else if index == len(a.array)-1 {
value := a.array[index]
a.array = a.array[:index]
return value
}
// If it is a non-boundary delete,
// it will involve the creation of an array,
// then the deletion is less efficient.
value := a.array[index]
a.array = append(a.array[:index], a.array[index+1:]...)
return value
}
// PushLeft pushes one or multiple items to the beginning of array.
func (a *IntArray) PushLeft(value ...int) *IntArray {
a.mu.Lock()
a.array = append(value, a.array...)
a.mu.Unlock()
return a
}
// PushRight pushes one or multiple items to the end of array.
// It equals to Append.
func (a *IntArray) PushRight(value ...int) *IntArray {
a.mu.Lock()
a.array = append(a.array, value...)
a.mu.Unlock()
return a
}
// PopLeft pops and returns an item from the beginning of array.
func (a *IntArray) PopLeft() int {
a.mu.Lock()
defer a.mu.Unlock()
value := a.array[0]
a.array = a.array[1:]
return value
}
// PopRight pops and returns an item from the end of array.
func (a *IntArray) PopRight() int {
a.mu.Lock()
defer a.mu.Unlock()
index := len(a.array) - 1
value := a.array[index]
a.array = a.array[:index]
return value
}
// PopRand randomly pops and return an item out of array.
func (a *IntArray) PopRand() int {
return a.Remove(grand.Intn(len(a.array)))
}
// PopRands randomly pops and returns <size> items out of array.
func (a *IntArray) PopRands(size int) []int {
a.mu.Lock()
defer a.mu.Unlock()
if size > len(a.array) {
size = len(a.array)
}
array := make([]int, size)
for i := 0; i < size; i++ {
index := grand.Intn(len(a.array))
array[i] = a.array[index]
a.array = append(a.array[:index], a.array[index+1:]...)
}
return array
}
// PopLefts pops and returns <size> items from the beginning of array.
func (a *IntArray) PopLefts(size int) []int {
a.mu.Lock()
defer a.mu.Unlock()
length := len(a.array)
if size > length {
size = length
}
value := a.array[0:size]
a.array = a.array[size:]
return value
}
// PopRights pops and returns <size> items from the end of array.
func (a *IntArray) PopRights(size int) []int {
a.mu.Lock()
defer a.mu.Unlock()
index := len(a.array) - size
if index < 0 {
index = 0
}
value := a.array[index:]
a.array = a.array[:index]
return value
}
// Range picks and returns items by range, like array[start:end].
// Notice, if in concurrent-safe usage, it returns a copy of slice;
// else a pointer to the underlying data.
//
// If <end> is negative, then the offset will start from the end of array.
// If <end> is omitted, then the sequence will have everything from start up
// until the end of the array.
func (a *IntArray) Range(start int, end ...int) []int {
a.mu.RLock()
defer a.mu.RUnlock()
offsetEnd := len(a.array)
if len(end) > 0 && end[0] < offsetEnd {
offsetEnd = end[0]
}
if start > offsetEnd {
return nil
}
if start < 0 {
start = 0
}
array := ([]int)(nil)
if a.mu.IsSafe() {
array = make([]int, offsetEnd-start)
copy(array, a.array[start:offsetEnd])
} else {
array = a.array[start:offsetEnd]
}
return array
}
// SubSlice returns a slice of elements from the array as specified
// by the <offset> and <size> parameters.
// If in concurrent safe usage, it returns a copy of the slice; else a pointer.
//
// If offset is non-negative, the sequence will start at that offset in the array.
// If offset is negative, the sequence will start that far from the end of the array.
//
// If length is given and is positive, then the sequence will have up to that many elements in it.
// If the array is shorter than the length, then only the available array elements will be present.
// If length is given and is negative then the sequence will stop that many elements from the end of the array.
// If it is omitted, then the sequence will have everything from offset up until the end of the array.
//
// Any possibility crossing the left border of array, it will fail.
func (a *IntArray) SubSlice(offset int, length ...int) []int {
a.mu.RLock()
defer a.mu.RUnlock()
size := len(a.array)
if len(length) > 0 {
size = length[0]
}
if offset > len(a.array) {
return nil
}
if offset < 0 {
offset = len(a.array) + offset
if offset < 0 {
return nil
}
}
if size < 0 {
offset += size
size = -size
if offset < 0 {
return nil
}
}
end := offset + size
if end > len(a.array) {
end = len(a.array)
size = len(a.array) - offset
}
if a.mu.IsSafe() {
s := make([]int, size)
copy(s, a.array[offset:])
return s
} else {
return a.array[offset:end]
}
}
// See PushRight.
func (a *IntArray) Append(value ...int) *IntArray {
a.mu.Lock()
a.array = append(a.array, value...)
a.mu.Unlock()
return a
}
// Len returns the length of array.
func (a *IntArray) Len() int {
a.mu.RLock()
length := len(a.array)
a.mu.RUnlock()
return length
}
// Slice returns the underlying data of array.
// Note that, if it's in concurrent-safe usage, it returns a copy of underlying data,
// or else a pointer to the underlying data.
func (a *IntArray) Slice() []int {
array := ([]int)(nil)
if a.mu.IsSafe() {
a.mu.RLock()
defer a.mu.RUnlock()
array = make([]int, len(a.array))
copy(array, a.array)
} else {
array = a.array
}
return array
}
// Interfaces returns current array as []interface{}.
func (a *IntArray) Interfaces() []interface{} {
a.mu.RLock()
defer a.mu.RUnlock()
array := make([]interface{}, len(a.array))
for k, v := range a.array {
array[k] = v
}
return array
}
// Clone returns a new array, which is a copy of current array.
func (a *IntArray) Clone() (newArray *IntArray) {
a.mu.RLock()
array := make([]int, len(a.array))
copy(array, a.array)
a.mu.RUnlock()
return NewIntArrayFrom(array, !a.mu.IsSafe())
}
// Clear deletes all items of current array.
func (a *IntArray) Clear() *IntArray {
a.mu.Lock()
if len(a.array) > 0 {
a.array = make([]int, 0)
}
a.mu.Unlock()
return a
}
// Contains checks whether a value exists in the array.
func (a *IntArray) Contains(value int) bool {
return a.Search(value) != -1
}
// Search searches array by <value>, returns the index of <value>,
// or returns -1 if not exists.
func (a *IntArray) Search(value int) int {
if len(a.array) == 0 {
return -1
}
a.mu.RLock()
result := -1
for index, v := range a.array {
if v == value {
result = index
break
}
}
a.mu.RUnlock()
return result
}
// Unique uniques the array, clear repeated items.
func (a *IntArray) Unique() *IntArray {
a.mu.Lock()
for i := 0; i < len(a.array)-1; i++ {
for j := i + 1; j < len(a.array); j++ {
if a.array[i] == a.array[j] {
a.array = append(a.array[:j], a.array[j+1:]...)
}
}
}
a.mu.Unlock()
return a
}
// LockFunc locks writing by callback function <f>.
func (a *IntArray) LockFunc(f func(array []int)) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
f(a.array)
return a
}
// RLockFunc locks reading by callback function <f>.
func (a *IntArray) RLockFunc(f func(array []int)) *IntArray {
a.mu.RLock()
defer a.mu.RUnlock()
f(a.array)
return a
}
// Merge merges <array> into current array.
// The parameter <array> can be any garray or slice type.
// The difference between Merge and Append is Append supports only specified slice type,
// but Merge supports more parameter types.
func (a *IntArray) Merge(array interface{}) *IntArray {
switch v := array.(type) {
case *Array:
a.Append(gconv.Ints(v.Slice())...)
case *IntArray:
a.Append(gconv.Ints(v.Slice())...)
case *StrArray:
a.Append(gconv.Ints(v.Slice())...)
case *SortedArray:
a.Append(gconv.Ints(v.Slice())...)
case *SortedIntArray:
a.Append(gconv.Ints(v.Slice())...)
case *SortedStrArray:
a.Append(gconv.Ints(v.Slice())...)
default:
a.Append(gconv.Ints(array)...)
}
return a
}
// Fill fills an array with num entries of the value <value>,
// keys starting at the <startIndex> parameter.
func (a *IntArray) Fill(startIndex int, num int, value int) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
if startIndex < 0 {
startIndex = 0
}
for i := startIndex; i < startIndex+num; i++ {
if i > len(a.array)-1 {
a.array = append(a.array, value)
} else {
a.array[i] = value
}
}
return a
}
// Chunk splits an array into multiple arrays,
// the size of each array is determined by <size>.
// The last chunk may contain less than size elements.
func (a *IntArray) Chunk(size int) [][]int {
if size < 1 {
return nil
}
a.mu.RLock()
defer a.mu.RUnlock()
length := len(a.array)
chunks := int(math.Ceil(float64(length) / float64(size)))
var n [][]int
for i, end := 0, 0; chunks > 0; chunks-- {
end = (i + 1) * size
if end > length {
end = length
}
n = append(n, a.array[i*size:end])
i++
}
return n
}
// Pad pads array to the specified length with <value>.
// If size is positive then the array is padded on the right, or negative on the left.
// If the absolute value of <size> is less than or equal to the length of the array
// then no padding takes place.
func (a *IntArray) Pad(size int, value int) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
if size == 0 || (size > 0 && size < len(a.array)) || (size < 0 && size > -len(a.array)) {
return a
}
n := size
if size < 0 {
n = -size
}
n -= len(a.array)
tmp := make([]int, n)
for i := 0; i < n; i++ {
tmp[i] = value
}
if size > 0 {
a.array = append(a.array, tmp...)
} else {
a.array = append(tmp, a.array...)
}
return a
}
// Rand randomly returns one item from array(no deleting).
func (a *IntArray) Rand() int {
a.mu.RLock()
defer a.mu.RUnlock()
return a.array[grand.Intn(len(a.array))]
}
// Rands randomly returns <size> items from array(no deleting).
func (a *IntArray) Rands(size int) []int {
a.mu.RLock()
defer a.mu.RUnlock()
if size > len(a.array) {
size = len(a.array)
}
n := make([]int, size)
for i, v := range grand.Perm(len(a.array)) {
n[i] = a.array[v]
if i == size-1 {
break
}
}
return n
}
// Shuffle randomly shuffles the array.
func (a *IntArray) Shuffle() *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
for i, v := range grand.Perm(len(a.array)) {
a.array[i], a.array[v] = a.array[v], a.array[i]
}
return a
}
// Reverse makes array with elements in reverse order.
func (a *IntArray) Reverse() *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
for i, j := 0, len(a.array)-1; i < j; i, j = i+1, j-1 {
a.array[i], a.array[j] = a.array[j], a.array[i]
}
return a
}
// Join joins array elements with a string <glue>.
func (a *IntArray) Join(glue string) string {
a.mu.RLock()
defer a.mu.RUnlock()
buffer := bytes.NewBuffer(nil)
for k, v := range a.array {
buffer.WriteString(gconv.String(v))
if k != len(a.array)-1 {
buffer.WriteString(glue)
}
}
return buffer.String()
}
// CountValues counts the number of occurrences of all values in the array.
func (a *IntArray) CountValues() map[int]int {
m := make(map[int]int)
a.mu.RLock()
defer a.mu.RUnlock()
for _, v := range a.array {
m[v]++
}
return m
}
// String returns current array as a string, which implements like json.Marshal does.
func (a *IntArray) String() string {
return "[" + a.Join(",") + "]"
}
// MarshalJSON implements the interface MarshalJSON for json.Marshal.
func (a *IntArray) MarshalJSON() ([]byte, error) {
a.mu.RLock()
defer a.mu.RUnlock()
return json.Marshal(a.array)
}
// UnmarshalJSON implements the interface UnmarshalJSON for json.Unmarshal.
func (a *IntArray) UnmarshalJSON(b []byte) error {
if a.mu == nil {
a.mu = rwmutex.New()
a.array = make([]int, 0)
}
a.mu.Lock()
defer a.mu.Unlock()
if err := json.Unmarshal(b, &a.array); err != nil {
return err
}
return nil
}