gf/g/container/garray/garray_normal_int.go
2019-02-01 17:30:23 +08:00

424 lines
10 KiB
Go

// Copyright 2018 gf Author(https://gitee.com/johng/gf). All Rights Reserved.
//
// This Source Code Form is subject to the terms of the MIT License.
// If a copy of the MIT was not distributed with this file,
// You can obtain one at https://gitee.com/johng/gf.
package garray
import (
"gitee.com/johng/gf/g/internal/rwmutex"
"gitee.com/johng/gf/g/util/gconv"
"gitee.com/johng/gf/g/util/grand"
"math"
"sort"
"strings"
)
type IntArray struct {
mu *rwmutex.RWMutex // 互斥锁
cap int // 初始化设置的数组容量
size int // 初始化设置的数组大小
array []int // 底层数组
}
func NewIntArray(size int, cap int, unsafe...bool) *IntArray {
a := &IntArray{
mu : rwmutex.New(unsafe...),
}
a.size = size
if cap > 0 {
a.cap = cap
a.array = make([]int, size, cap)
} else {
a.array = make([]int, size)
}
return a
}
func NewIntArrayEmpty(unsafe...bool) *IntArray {
return NewIntArray(0, 0, unsafe...)
}
func NewIntArrayFrom(array []int, unsafe...bool) *IntArray {
return &IntArray{
mu : rwmutex.New(unsafe...),
array : array,
}
}
// 获取指定索引的数据项, 调用方注意判断数组边界
func (a *IntArray) Get(index int) int {
a.mu.RLock()
defer a.mu.RUnlock()
value := a.array[index]
return value
}
// 设置指定索引的数据项, 调用方注意判断数组边界
func (a *IntArray) Set(index int, value int) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
a.array[index] = value
return a
}
// 设置底层数组变量.
func (a *IntArray) SetArray(array []int) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
a.array = array
return a
}
// 使用指定数组替换到对应的索引元素值.
func (a *IntArray) Replace(array []int) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
max := len(array)
if max > len(a.array) {
max = len(a.array)
}
for i := 0; i < max; i++ {
a.array[i] = array[i]
}
return a
}
// Calculate the sum of values in an array.
//
// 对数组中的元素项求和。
func (a *IntArray) Sum() (sum int) {
a.mu.RLock()
defer a.mu.RUnlock()
for _, v := range a.array {
sum += v
}
return
}
// 将数组重新排序(从小到大).
func (a *IntArray) Sort() *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
sort.Ints(a.array)
return a
}
// 在当前索引位置前插入一个数据项, 调用方注意判断数组边界
func (a *IntArray) InsertBefore(index int, value int) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
rear := append([]int{}, a.array[index : ]...)
a.array = append(a.array[0 : index], value)
a.array = append(a.array, rear...)
return a
}
// 在当前索引位置后插入一个数据项, 调用方注意判断数组边界
func (a *IntArray) InsertAfter(index int, value int) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
rear := append([]int{}, a.array[index + 1:]...)
a.array = append(a.array[0 : index + 1], value)
a.array = append(a.array, rear...)
return a
}
// 删除指定索引的数据项, 调用方注意判断数组边界
func (a *IntArray) Remove(index int) int {
a.mu.Lock()
defer a.mu.Unlock()
// 边界删除判断,以提高删除效率
if index == 0 {
value := a.array[0]
a.array = a.array[1 : ]
return value
} else if index == len(a.array) - 1 {
value := a.array[index]
a.array = a.array[: index]
return value
}
// 如果非边界删除,会涉及到数组创建,那么删除的效率差一些
value := a.array[index]
a.array = append(a.array[ : index], a.array[index + 1 : ]...)
return value
}
// 将数据项添加到数组的最左端(索引为0)
func (a *IntArray) PushLeft(value...int) *IntArray {
a.mu.Lock()
a.array = append(value, a.array...)
a.mu.Unlock()
return a
}
// 将数据项添加到数组的最右端(索引为length - 1), 等于: Append
func (a *IntArray) PushRight(value...int) *IntArray {
a.mu.Lock()
a.array = append(a.array, value...)
a.mu.Unlock()
return a
}
// 将最左端(索引为0)的数据项移出数组,并返回该数据项
func (a *IntArray) PopLeft() int {
a.mu.Lock()
defer a.mu.Unlock()
value := a.array[0]
a.array = a.array[1 : ]
return value
}
// 将最右端(索引为length - 1)的数据项移出数组,并返回该数据项
func (a *IntArray) PopRight() int {
a.mu.Lock()
defer a.mu.Unlock()
index := len(a.array) - 1
value := a.array[index]
a.array = a.array[: index]
return value
}
// 随机将一个数据项移出数组,并返回该数据项
func (a *IntArray) PopRand() int {
return a.Remove(grand.Intn(len(a.array)))
}
// 追加数据项
func (a *IntArray) Append(value...int) *IntArray {
a.mu.Lock()
a.array = append(a.array, value...)
a.mu.Unlock()
return a
}
// 数组长度
func (a *IntArray) Len() int {
a.mu.RLock()
length := len(a.array)
a.mu.RUnlock()
return length
}
// 返回原始数据数组
func (a *IntArray) Slice() []int {
array := ([]int)(nil)
if a.mu.IsSafe() {
a.mu.RLock()
defer a.mu.RUnlock()
array = make([]int, len(a.array))
copy(array, a.array)
} else {
array = a.array
}
return array
}
// 清空数据数组
func (a *IntArray) Clear() *IntArray {
a.mu.Lock()
if len(a.array) > 0 {
if a.cap > 0 {
a.array = make([]int, a.size, a.cap)
} else {
a.array = make([]int, a.size)
}
}
a.mu.Unlock()
return a
}
// 查找指定数值是否存在
func (a *IntArray) Contains(value int) bool {
return a.Search(value) != -1
}
// 查找指定数值的索引位置,返回索引位置,如果查找不到则返回-1
func (a *IntArray) Search(value int) int {
if len(a.array) == 0 {
return -1
}
a.mu.RLock()
result := -1
for index, v := range a.array {
if v == value {
result = index
break
}
}
a.mu.RUnlock()
return result
}
// 清理数组中重复的元素项
func (a *IntArray) Unique() *IntArray {
a.mu.Lock()
for i := 0; i < len(a.array) - 1; i++ {
for j := i + 1; j < len(a.array); j++ {
if a.array[i] == a.array[j] {
a.array = append(a.array[ : j], a.array[j + 1 : ]...)
}
}
}
a.mu.Unlock()
return a
}
// 使用自定义方法执行加锁修改操作
func (a *IntArray) LockFunc(f func(array []int)) *IntArray {
a.mu.Lock(true)
defer a.mu.Unlock(true)
f(a.array)
return a
}
// 使用自定义方法执行加锁读取操作
func (a *IntArray) RLockFunc(f func(array []int)) *IntArray {
a.mu.RLock(true)
defer a.mu.RUnlock(true)
f(a.array)
return a
}
// 合并两个数组.
func (a *IntArray) Merge(array *IntArray) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
if a != array {
array.mu.RLock()
defer array.mu.RUnlock()
}
a.array = append(a.array, array.array...)
return a
}
// Fills an array with num entries of the value of the value parameter, keys starting at the startIndex parameter.
func (a *IntArray) Fill(startIndex int, num int, value int) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
if startIndex < 0 {
startIndex = 0
}
for i := startIndex; i < startIndex + num; i++ {
if i > len(a.array) - 1 {
a.array = append(a.array, value)
} else {
a.array[i] = value
}
}
return a
}
// Chunks an array into arrays with size elements. The last chunk may contain less than size elements.
func (a *IntArray) Chunk(size int) [][]int {
if size < 1 {
panic("size: cannot be less than 1")
}
a.mu.RLock()
defer a.mu.RUnlock()
length := len(a.array)
chunks := int(math.Ceil(float64(length) / float64(size)))
var n [][]int
for i, end := 0, 0; chunks > 0; chunks-- {
end = (i + 1) * size
if end > length {
end = length
}
n = append(n, a.array[i*size : end])
i++
}
return n
}
// Pad array to the specified length with a value.
// If size is positive then the array is padded on the right, or negative on the left.
// If the absolute value of size is less than or equal to the length of the array
// then no padding takes place.
func (a *IntArray) Pad(size int, value int) *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
if size == 0 || (size > 0 && size < len(a.array)) || (size < 0 && size > -len(a.array)) {
return a
}
n := size
if size < 0 {
n = -size
}
n -= len(a.array)
tmp := make([]int, n)
for i := 0; i < n; i++ {
tmp[i] = value
}
if size > 0 {
a.array = append(a.array, tmp...)
} else {
a.array = append(tmp, a.array...)
}
return a
}
// Extract a slice of the array(If in concurrent safe usage, it returns a copy of the slice; else a pointer).
// It returns the sequence of elements from the array array as specified by the offset and length parameters.
func (a *IntArray) SubSlice(offset, size int) []int {
a.mu.RLock()
defer a.mu.RUnlock()
if offset > len(a.array) {
return nil
}
if offset + size > len(a.array) {
size = len(a.array) - offset
}
if a.mu.IsSafe() {
s := make([]int, size)
copy(s, a.array[offset:])
return s
} else {
return a.array[offset:]
}
}
// Picks one or more random entries out of an array(a copy), and returns the key (or keys) of the random entries.
func (a *IntArray) Rand(size int) []int {
a.mu.RLock()
defer a.mu.RUnlock()
if size > len(a.array) {
size = len(a.array)
}
n := make([]int, size)
for i, v := range grand.Perm(len(a.array)) {
n[i] = a.array[v]
if i == size - 1 {
break
}
}
return n
}
// Randomly shuffles the array.
func (a *IntArray) Shuffle() *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
for i, v := range grand.Perm(len(a.array)) {
a.array[i], a.array[v] = a.array[v], a.array[i]
}
return a
}
// Make array with elements in reverse order.
func (a *IntArray) Reverse() *IntArray {
a.mu.Lock()
defer a.mu.Unlock()
for i, j := 0, len(a.array) - 1; i < j; i, j = i + 1, j - 1 {
a.array[i], a.array[j] = a.array[j], a.array[i]
}
return a
}
// Join array elements with a string.
func (a *IntArray) Join(glue string) string {
a.mu.RLock()
defer a.mu.RUnlock()
return strings.Join(gconv.Strings(a.array), glue)
}