gf/container/garray/garray_sorted_any.go
王哈哈 4f4109cdb6
fix typo for comments (#2268)
* Modify comment syntax error

* Modify comment syntax error
2022-11-07 17:55:49 +08:00

814 lines
22 KiB
Go

// Copyright GoFrame Author(https://goframe.org). All Rights Reserved.
//
// This Source Code Form is subject to the terms of the MIT License.
// If a copy of the MIT was not distributed with this file,
// You can obtain one at https://github.com/gogf/gf.
package garray
import (
"bytes"
"fmt"
"math"
"sort"
"github.com/gogf/gf/v2/internal/deepcopy"
"github.com/gogf/gf/v2/internal/empty"
"github.com/gogf/gf/v2/internal/json"
"github.com/gogf/gf/v2/internal/rwmutex"
"github.com/gogf/gf/v2/text/gstr"
"github.com/gogf/gf/v2/util/gconv"
"github.com/gogf/gf/v2/util/grand"
"github.com/gogf/gf/v2/util/gutil"
)
// SortedArray is a golang sorted array with rich features.
// It is using increasing order in default, which can be changed by
// setting it a custom comparator.
// It contains a concurrent-safe/unsafe switch, which should be set
// when its initialization and cannot be changed then.
type SortedArray struct {
mu rwmutex.RWMutex
array []interface{}
unique bool // Whether enable unique feature(false)
comparator func(a, b interface{}) int // Comparison function(it returns -1: a < b; 0: a == b; 1: a > b)
}
// NewSortedArray creates and returns an empty sorted array.
// The parameter `safe` is used to specify whether using array in concurrent-safety, which is false in default.
// The parameter `comparator` used to compare values to sort in array,
// if it returns value < 0, means `a` < `b`; the `a` will be inserted before `b`;
// if it returns value = 0, means `a` = `b`; the `a` will be replaced by `b`;
// if it returns value > 0, means `a` > `b`; the `a` will be inserted after `b`;
func NewSortedArray(comparator func(a, b interface{}) int, safe ...bool) *SortedArray {
return NewSortedArraySize(0, comparator, safe...)
}
// NewSortedArraySize create and returns an sorted array with given size and cap.
// The parameter `safe` is used to specify whether using array in concurrent-safety,
// which is false in default.
func NewSortedArraySize(cap int, comparator func(a, b interface{}) int, safe ...bool) *SortedArray {
return &SortedArray{
mu: rwmutex.Create(safe...),
array: make([]interface{}, 0, cap),
comparator: comparator,
}
}
// NewSortedArrayRange creates and returns an array by a range from `start` to `end`
// with step value `step`.
func NewSortedArrayRange(start, end, step int, comparator func(a, b interface{}) int, safe ...bool) *SortedArray {
if step == 0 {
panic(fmt.Sprintf(`invalid step value: %d`, step))
}
slice := make([]interface{}, (end-start+1)/step)
index := 0
for i := start; i <= end; i += step {
slice[index] = i
index++
}
return NewSortedArrayFrom(slice, comparator, safe...)
}
// NewSortedArrayFrom creates and returns an sorted array with given slice `array`.
// The parameter `safe` is used to specify whether using array in concurrent-safety,
// which is false in default.
func NewSortedArrayFrom(array []interface{}, comparator func(a, b interface{}) int, safe ...bool) *SortedArray {
a := NewSortedArraySize(0, comparator, safe...)
a.array = array
sort.Slice(a.array, func(i, j int) bool {
return a.getComparator()(a.array[i], a.array[j]) < 0
})
return a
}
// NewSortedArrayFromCopy creates and returns an sorted array from a copy of given slice `array`.
// The parameter `safe` is used to specify whether using array in concurrent-safety,
// which is false in default.
func NewSortedArrayFromCopy(array []interface{}, comparator func(a, b interface{}) int, safe ...bool) *SortedArray {
newArray := make([]interface{}, len(array))
copy(newArray, array)
return NewSortedArrayFrom(newArray, comparator, safe...)
}
// At returns the value by the specified index.
// If the given `index` is out of range of the array, it returns `nil`.
func (a *SortedArray) At(index int) (value interface{}) {
value, _ = a.Get(index)
return
}
// SetArray sets the underlying slice array with the given `array`.
func (a *SortedArray) SetArray(array []interface{}) *SortedArray {
a.mu.Lock()
defer a.mu.Unlock()
a.array = array
sort.Slice(a.array, func(i, j int) bool {
return a.getComparator()(a.array[i], a.array[j]) < 0
})
return a
}
// SetComparator sets/changes the comparator for sorting.
// It resorts the array as the comparator is changed.
func (a *SortedArray) SetComparator(comparator func(a, b interface{}) int) {
a.mu.Lock()
defer a.mu.Unlock()
a.comparator = comparator
sort.Slice(a.array, func(i, j int) bool {
return a.getComparator()(a.array[i], a.array[j]) < 0
})
}
// Sort sorts the array in increasing order.
// The parameter `reverse` controls whether sort
// in increasing order(default) or decreasing order
func (a *SortedArray) Sort() *SortedArray {
a.mu.Lock()
defer a.mu.Unlock()
sort.Slice(a.array, func(i, j int) bool {
return a.getComparator()(a.array[i], a.array[j]) < 0
})
return a
}
// Add adds one or multiple values to sorted array, the array always keeps sorted.
// It's alias of function Append, see Append.
func (a *SortedArray) Add(values ...interface{}) *SortedArray {
return a.Append(values...)
}
// Append adds one or multiple values to sorted array, the array always keeps sorted.
func (a *SortedArray) Append(values ...interface{}) *SortedArray {
if len(values) == 0 {
return a
}
a.mu.Lock()
defer a.mu.Unlock()
for _, value := range values {
index, cmp := a.binSearch(value, false)
if a.unique && cmp == 0 {
continue
}
if index < 0 {
a.array = append(a.array, value)
continue
}
if cmp > 0 {
index++
}
a.array = append(a.array[:index], append([]interface{}{value}, a.array[index:]...)...)
}
return a
}
// Get returns the value by the specified index.
// If the given `index` is out of range of the array, the `found` is false.
func (a *SortedArray) Get(index int) (value interface{}, found bool) {
a.mu.RLock()
defer a.mu.RUnlock()
if index < 0 || index >= len(a.array) {
return nil, false
}
return a.array[index], true
}
// Remove removes an item by index.
// If the given `index` is out of range of the array, the `found` is false.
func (a *SortedArray) Remove(index int) (value interface{}, found bool) {
a.mu.Lock()
defer a.mu.Unlock()
return a.doRemoveWithoutLock(index)
}
// doRemoveWithoutLock removes an item by index without lock.
func (a *SortedArray) doRemoveWithoutLock(index int) (value interface{}, found bool) {
if index < 0 || index >= len(a.array) {
return nil, false
}
// Determine array boundaries when deleting to improve deletion efficiency.
if index == 0 {
value := a.array[0]
a.array = a.array[1:]
return value, true
} else if index == len(a.array)-1 {
value := a.array[index]
a.array = a.array[:index]
return value, true
}
// If it is a non-boundary delete,
// it will involve the creation of an array,
// then the deletion is less efficient.
value = a.array[index]
a.array = append(a.array[:index], a.array[index+1:]...)
return value, true
}
// RemoveValue removes an item by value.
// It returns true if value is found in the array, or else false if not found.
func (a *SortedArray) RemoveValue(value interface{}) bool {
if i := a.Search(value); i != -1 {
a.Remove(i)
return true
}
return false
}
// PopLeft pops and returns an item from the beginning of array.
// Note that if the array is empty, the `found` is false.
func (a *SortedArray) PopLeft() (value interface{}, found bool) {
a.mu.Lock()
defer a.mu.Unlock()
if len(a.array) == 0 {
return nil, false
}
value = a.array[0]
a.array = a.array[1:]
return value, true
}
// PopRight pops and returns an item from the end of array.
// Note that if the array is empty, the `found` is false.
func (a *SortedArray) PopRight() (value interface{}, found bool) {
a.mu.Lock()
defer a.mu.Unlock()
index := len(a.array) - 1
if index < 0 {
return nil, false
}
value = a.array[index]
a.array = a.array[:index]
return value, true
}
// PopRand randomly pops and return an item out of array.
// Note that if the array is empty, the `found` is false.
func (a *SortedArray) PopRand() (value interface{}, found bool) {
a.mu.Lock()
defer a.mu.Unlock()
return a.doRemoveWithoutLock(grand.Intn(len(a.array)))
}
// PopRands randomly pops and returns `size` items out of array.
func (a *SortedArray) PopRands(size int) []interface{} {
a.mu.Lock()
defer a.mu.Unlock()
if size <= 0 || len(a.array) == 0 {
return nil
}
if size >= len(a.array) {
size = len(a.array)
}
array := make([]interface{}, size)
for i := 0; i < size; i++ {
array[i], _ = a.doRemoveWithoutLock(grand.Intn(len(a.array)))
}
return array
}
// PopLefts pops and returns `size` items from the beginning of array.
func (a *SortedArray) PopLefts(size int) []interface{} {
a.mu.Lock()
defer a.mu.Unlock()
if size <= 0 || len(a.array) == 0 {
return nil
}
if size >= len(a.array) {
array := a.array
a.array = a.array[:0]
return array
}
value := a.array[0:size]
a.array = a.array[size:]
return value
}
// PopRights pops and returns `size` items from the end of array.
func (a *SortedArray) PopRights(size int) []interface{} {
a.mu.Lock()
defer a.mu.Unlock()
if size <= 0 || len(a.array) == 0 {
return nil
}
index := len(a.array) - size
if index <= 0 {
array := a.array
a.array = a.array[:0]
return array
}
value := a.array[index:]
a.array = a.array[:index]
return value
}
// Range picks and returns items by range, like array[start:end].
// Notice, if in concurrent-safe usage, it returns a copy of slice;
// else a pointer to the underlying data.
//
// If `end` is negative, then the offset will start from the end of array.
// If `end` is omitted, then the sequence will have everything from start up
// until the end of the array.
func (a *SortedArray) Range(start int, end ...int) []interface{} {
a.mu.RLock()
defer a.mu.RUnlock()
offsetEnd := len(a.array)
if len(end) > 0 && end[0] < offsetEnd {
offsetEnd = end[0]
}
if start > offsetEnd {
return nil
}
if start < 0 {
start = 0
}
array := ([]interface{})(nil)
if a.mu.IsSafe() {
array = make([]interface{}, offsetEnd-start)
copy(array, a.array[start:offsetEnd])
} else {
array = a.array[start:offsetEnd]
}
return array
}
// SubSlice returns a slice of elements from the array as specified
// by the `offset` and `size` parameters.
// If in concurrent safe usage, it returns a copy of the slice; else a pointer.
//
// If offset is non-negative, the sequence will start at that offset in the array.
// If offset is negative, the sequence will start that far from the end of the array.
//
// If length is given and is positive, then the sequence will have up to that many elements in it.
// If the array is shorter than the length, then only the available array elements will be present.
// If length is given and is negative then the sequence will stop that many elements from the end of the array.
// If it is omitted, then the sequence will have everything from offset up until the end of the array.
//
// Any possibility crossing the left border of array, it will fail.
func (a *SortedArray) SubSlice(offset int, length ...int) []interface{} {
a.mu.RLock()
defer a.mu.RUnlock()
size := len(a.array)
if len(length) > 0 {
size = length[0]
}
if offset > len(a.array) {
return nil
}
if offset < 0 {
offset = len(a.array) + offset
if offset < 0 {
return nil
}
}
if size < 0 {
offset += size
size = -size
if offset < 0 {
return nil
}
}
end := offset + size
if end > len(a.array) {
end = len(a.array)
size = len(a.array) - offset
}
if a.mu.IsSafe() {
s := make([]interface{}, size)
copy(s, a.array[offset:])
return s
} else {
return a.array[offset:end]
}
}
// Sum returns the sum of values in an array.
func (a *SortedArray) Sum() (sum int) {
a.mu.RLock()
defer a.mu.RUnlock()
for _, v := range a.array {
sum += gconv.Int(v)
}
return
}
// Len returns the length of array.
func (a *SortedArray) Len() int {
a.mu.RLock()
length := len(a.array)
a.mu.RUnlock()
return length
}
// Slice returns the underlying data of array.
// Note that, if it's in concurrent-safe usage, it returns a copy of underlying data,
// or else a pointer to the underlying data.
func (a *SortedArray) Slice() []interface{} {
var array []interface{}
if a.mu.IsSafe() {
a.mu.RLock()
defer a.mu.RUnlock()
array = make([]interface{}, len(a.array))
copy(array, a.array)
} else {
array = a.array
}
return array
}
// Interfaces returns current array as []interface{}.
func (a *SortedArray) Interfaces() []interface{} {
return a.Slice()
}
// Contains checks whether a value exists in the array.
func (a *SortedArray) Contains(value interface{}) bool {
return a.Search(value) != -1
}
// Search searches array by `value`, returns the index of `value`,
// or returns -1 if not exists.
func (a *SortedArray) Search(value interface{}) (index int) {
if i, r := a.binSearch(value, true); r == 0 {
return i
}
return -1
}
// Binary search.
// It returns the last compared index and the result.
// If `result` equals to 0, it means the value at `index` is equals to `value`.
// If `result` lesser than 0, it means the value at `index` is lesser than `value`.
// If `result` greater than 0, it means the value at `index` is greater than `value`.
func (a *SortedArray) binSearch(value interface{}, lock bool) (index int, result int) {
if lock {
a.mu.RLock()
defer a.mu.RUnlock()
}
if len(a.array) == 0 {
return -1, -2
}
min := 0
max := len(a.array) - 1
mid := 0
cmp := -2
for min <= max {
mid = min + (max-min)/2
cmp = a.getComparator()(value, a.array[mid])
switch {
case cmp < 0:
max = mid - 1
case cmp > 0:
min = mid + 1
default:
return mid, cmp
}
}
return mid, cmp
}
// SetUnique sets unique mark to the array,
// which means it does not contain any repeated items.
// It also do unique check, remove all repeated items.
func (a *SortedArray) SetUnique(unique bool) *SortedArray {
oldUnique := a.unique
a.unique = unique
if unique && oldUnique != unique {
a.Unique()
}
return a
}
// Unique uniques the array, clear repeated items.
func (a *SortedArray) Unique() *SortedArray {
a.mu.Lock()
defer a.mu.Unlock()
if len(a.array) == 0 {
return a
}
i := 0
for {
if i == len(a.array)-1 {
break
}
if a.getComparator()(a.array[i], a.array[i+1]) == 0 {
a.array = append(a.array[:i+1], a.array[i+1+1:]...)
} else {
i++
}
}
return a
}
// Clone returns a new array, which is a copy of current array.
func (a *SortedArray) Clone() (newArray *SortedArray) {
a.mu.RLock()
array := make([]interface{}, len(a.array))
copy(array, a.array)
a.mu.RUnlock()
return NewSortedArrayFrom(array, a.comparator, a.mu.IsSafe())
}
// Clear deletes all items of current array.
func (a *SortedArray) Clear() *SortedArray {
a.mu.Lock()
if len(a.array) > 0 {
a.array = make([]interface{}, 0)
}
a.mu.Unlock()
return a
}
// LockFunc locks writing by callback function `f`.
func (a *SortedArray) LockFunc(f func(array []interface{})) *SortedArray {
a.mu.Lock()
defer a.mu.Unlock()
// Keep the array always sorted.
defer sort.Slice(a.array, func(i, j int) bool {
return a.getComparator()(a.array[i], a.array[j]) < 0
})
f(a.array)
return a
}
// RLockFunc locks reading by callback function `f`.
func (a *SortedArray) RLockFunc(f func(array []interface{})) *SortedArray {
a.mu.RLock()
defer a.mu.RUnlock()
f(a.array)
return a
}
// Merge merges `array` into current array.
// The parameter `array` can be any garray or slice type.
// The difference between Merge and Append is Append supports only specified slice type,
// but Merge supports more parameter types.
func (a *SortedArray) Merge(array interface{}) *SortedArray {
return a.Add(gconv.Interfaces(array)...)
}
// Chunk splits an array into multiple arrays,
// the size of each array is determined by `size`.
// The last chunk may contain less than size elements.
func (a *SortedArray) Chunk(size int) [][]interface{} {
if size < 1 {
return nil
}
a.mu.RLock()
defer a.mu.RUnlock()
length := len(a.array)
chunks := int(math.Ceil(float64(length) / float64(size)))
var n [][]interface{}
for i, end := 0, 0; chunks > 0; chunks-- {
end = (i + 1) * size
if end > length {
end = length
}
n = append(n, a.array[i*size:end])
i++
}
return n
}
// Rand randomly returns one item from array(no deleting).
func (a *SortedArray) Rand() (value interface{}, found bool) {
a.mu.RLock()
defer a.mu.RUnlock()
if len(a.array) == 0 {
return nil, false
}
return a.array[grand.Intn(len(a.array))], true
}
// Rands randomly returns `size` items from array(no deleting).
func (a *SortedArray) Rands(size int) []interface{} {
a.mu.RLock()
defer a.mu.RUnlock()
if size <= 0 || len(a.array) == 0 {
return nil
}
array := make([]interface{}, size)
for i := 0; i < size; i++ {
array[i] = a.array[grand.Intn(len(a.array))]
}
return array
}
// Join joins array elements with a string `glue`.
func (a *SortedArray) Join(glue string) string {
a.mu.RLock()
defer a.mu.RUnlock()
if len(a.array) == 0 {
return ""
}
buffer := bytes.NewBuffer(nil)
for k, v := range a.array {
buffer.WriteString(gconv.String(v))
if k != len(a.array)-1 {
buffer.WriteString(glue)
}
}
return buffer.String()
}
// CountValues counts the number of occurrences of all values in the array.
func (a *SortedArray) CountValues() map[interface{}]int {
m := make(map[interface{}]int)
a.mu.RLock()
defer a.mu.RUnlock()
for _, v := range a.array {
m[v]++
}
return m
}
// Iterator is alias of IteratorAsc.
func (a *SortedArray) Iterator(f func(k int, v interface{}) bool) {
a.IteratorAsc(f)
}
// IteratorAsc iterates the array readonly in ascending order with given callback function `f`.
// If `f` returns true, then it continues iterating; or false to stop.
func (a *SortedArray) IteratorAsc(f func(k int, v interface{}) bool) {
a.mu.RLock()
defer a.mu.RUnlock()
for k, v := range a.array {
if !f(k, v) {
break
}
}
}
// IteratorDesc iterates the array readonly in descending order with given callback function `f`.
// If `f` returns true, then it continues iterating; or false to stop.
func (a *SortedArray) IteratorDesc(f func(k int, v interface{}) bool) {
a.mu.RLock()
defer a.mu.RUnlock()
for i := len(a.array) - 1; i >= 0; i-- {
if !f(i, a.array[i]) {
break
}
}
}
// String returns current array as a string, which implements like json.Marshal does.
func (a *SortedArray) String() string {
if a == nil {
return ""
}
a.mu.RLock()
defer a.mu.RUnlock()
buffer := bytes.NewBuffer(nil)
buffer.WriteByte('[')
s := ""
for k, v := range a.array {
s = gconv.String(v)
if gstr.IsNumeric(s) {
buffer.WriteString(s)
} else {
buffer.WriteString(`"` + gstr.QuoteMeta(s, `"\`) + `"`)
}
if k != len(a.array)-1 {
buffer.WriteByte(',')
}
}
buffer.WriteByte(']')
return buffer.String()
}
// MarshalJSON implements the interface MarshalJSON for json.Marshal.
// Note that do not use pointer as its receiver here.
func (a SortedArray) MarshalJSON() ([]byte, error) {
a.mu.RLock()
defer a.mu.RUnlock()
return json.Marshal(a.array)
}
// UnmarshalJSON implements the interface UnmarshalJSON for json.Unmarshal.
// Note that the comparator is set as string comparator in default.
func (a *SortedArray) UnmarshalJSON(b []byte) error {
if a.comparator == nil {
a.array = make([]interface{}, 0)
a.comparator = gutil.ComparatorString
}
a.mu.Lock()
defer a.mu.Unlock()
if err := json.UnmarshalUseNumber(b, &a.array); err != nil {
return err
}
if a.comparator != nil && a.array != nil {
sort.Slice(a.array, func(i, j int) bool {
return a.comparator(a.array[i], a.array[j]) < 0
})
}
return nil
}
// UnmarshalValue is an interface implement which sets any type of value for array.
// Note that the comparator is set as string comparator in default.
func (a *SortedArray) UnmarshalValue(value interface{}) (err error) {
if a.comparator == nil {
a.comparator = gutil.ComparatorString
}
a.mu.Lock()
defer a.mu.Unlock()
switch value.(type) {
case string, []byte:
err = json.UnmarshalUseNumber(gconv.Bytes(value), &a.array)
default:
a.array = gconv.SliceAny(value)
}
if a.comparator != nil && a.array != nil {
sort.Slice(a.array, func(i, j int) bool {
return a.comparator(a.array[i], a.array[j]) < 0
})
}
return err
}
// FilterNil removes all nil value of the array.
func (a *SortedArray) FilterNil() *SortedArray {
a.mu.Lock()
defer a.mu.Unlock()
for i := 0; i < len(a.array); {
if empty.IsNil(a.array[i]) {
a.array = append(a.array[:i], a.array[i+1:]...)
} else {
break
}
}
for i := len(a.array) - 1; i >= 0; {
if empty.IsNil(a.array[i]) {
a.array = append(a.array[:i], a.array[i+1:]...)
} else {
break
}
}
return a
}
// FilterEmpty removes all empty value of the array.
// Values like: 0, nil, false, "", len(slice/map/chan) == 0 are considered empty.
func (a *SortedArray) FilterEmpty() *SortedArray {
a.mu.Lock()
defer a.mu.Unlock()
for i := 0; i < len(a.array); {
if empty.IsEmpty(a.array[i]) {
a.array = append(a.array[:i], a.array[i+1:]...)
} else {
break
}
}
for i := len(a.array) - 1; i >= 0; {
if empty.IsEmpty(a.array[i]) {
a.array = append(a.array[:i], a.array[i+1:]...)
} else {
break
}
}
return a
}
// Walk applies a user supplied function `f` to every item of array.
func (a *SortedArray) Walk(f func(value interface{}) interface{}) *SortedArray {
a.mu.Lock()
defer a.mu.Unlock()
// Keep the array always sorted.
defer sort.Slice(a.array, func(i, j int) bool {
return a.getComparator()(a.array[i], a.array[j]) < 0
})
for i, v := range a.array {
a.array[i] = f(v)
}
return a
}
// IsEmpty checks whether the array is empty.
func (a *SortedArray) IsEmpty() bool {
return a.Len() == 0
}
// getComparator returns the comparator if it's previously set,
// or else it panics.
func (a *SortedArray) getComparator() func(a, b interface{}) int {
if a.comparator == nil {
panic("comparator is missing for sorted array")
}
return a.comparator
}
// DeepCopy implements interface for deep copy of current type.
func (a *SortedArray) DeepCopy() interface{} {
if a == nil {
return nil
}
a.mu.RLock()
defer a.mu.RUnlock()
newSlice := make([]interface{}, len(a.array))
for i, v := range a.array {
newSlice[i] = deepcopy.Copy(v)
}
return NewSortedArrayFrom(newSlice, a.comparator, a.mu.IsSafe())
}