gf/g/container/garray/garray_sorted_interface.go

553 lines
15 KiB
Go

// Copyright 2018 gf Author(https://github.com/gogf/gf). All Rights Reserved.
//
// This Source Code Form is subject to the terms of the MIT License.
// If a copy of the MIT was not distributed with this file,
// You can obtain one at https://github.com/gogf/gf.
package garray
import (
"bytes"
"encoding/json"
"math"
"sort"
"github.com/gogf/gf/g/container/gtype"
"github.com/gogf/gf/g/internal/rwmutex"
"github.com/gogf/gf/g/util/gconv"
"github.com/gogf/gf/g/util/grand"
)
// It's using increasing order in default.
type SortedArray struct {
mu *rwmutex.RWMutex
array []interface{}
unique *gtype.Bool // Whether enable unique feature(false)
comparator func(v1, v2 interface{}) int // Comparison function(it returns -1: v1 < v2; 0: v1 == v2; 1: v1 > v2)
}
// NewSortedArray creates and returns an empty sorted array.
// The parameter <safe> used to specify whether using array in concurrent-safety, which is false in default.
// The parameter <comparator> used to compare values to sort in array,
// if it returns value < 0, means v1 < v2;
// if it returns value = 0, means v1 = v2;
// if it returns value > 0, means v1 > v2;
func NewSortedArray(comparator func(v1, v2 interface{}) int, safe ...bool) *SortedArray {
return NewSortedArraySize(0, comparator, safe...)
}
// NewSortedArraySize create and returns an sorted array with given size and cap.
// The parameter <safe> used to specify whether using array in concurrent-safety,
// which is false in default.
func NewSortedArraySize(cap int, comparator func(v1, v2 interface{}) int, safe ...bool) *SortedArray {
return &SortedArray{
mu: rwmutex.New(safe...),
unique: gtype.NewBool(),
array: make([]interface{}, 0, cap),
comparator: comparator,
}
}
// NewSortedArrayFrom creates and returns an sorted array with given slice <array>.
// The parameter <safe> used to specify whether using array in concurrent-safety,
// which is false in default.
func NewSortedArrayFrom(array []interface{}, comparator func(v1, v2 interface{}) int, safe ...bool) *SortedArray {
a := NewSortedArraySize(0, comparator, safe...)
a.array = array
sort.Slice(a.array, func(i, j int) bool {
return a.comparator(a.array[i], a.array[j]) < 0
})
return a
}
// NewSortedArrayFromCopy creates and returns an sorted array from a copy of given slice <array>.
// The parameter <safe> used to specify whether using array in concurrent-safety,
// which is false in default.
func NewSortedArrayFromCopy(array []interface{}, comparator func(v1, v2 interface{}) int, safe ...bool) *SortedArray {
newArray := make([]interface{}, len(array))
copy(newArray, array)
return NewSortedArrayFrom(newArray, comparator, safe...)
}
// SetArray sets the underlying slice array with the given <array>.
func (a *SortedArray) SetArray(array []interface{}) *SortedArray {
a.mu.Lock()
defer a.mu.Unlock()
a.array = array
sort.Slice(a.array, func(i, j int) bool {
return a.comparator(a.array[i], a.array[j]) < 0
})
return a
}
// Sort sorts the array in increasing order.
// The parameter <reverse> controls whether sort
// in increasing order(default) or decreasing order
func (a *SortedArray) Sort() *SortedArray {
a.mu.Lock()
defer a.mu.Unlock()
sort.Slice(a.array, func(i, j int) bool {
return a.comparator(a.array[i], a.array[j]) < 0
})
return a
}
// Add adds one or multiple values to sorted array, the array always keeps sorted.
func (a *SortedArray) Add(values ...interface{}) *SortedArray {
if len(values) == 0 {
return a
}
a.mu.Lock()
defer a.mu.Unlock()
for _, value := range values {
index, cmp := a.binSearch(value, false)
if a.unique.Val() && cmp == 0 {
continue
}
if index < 0 {
a.array = append(a.array, value)
continue
}
if cmp > 0 {
index++
}
rear := append([]interface{}{}, a.array[index:]...)
a.array = append(a.array[0:index], value)
a.array = append(a.array, rear...)
}
return a
}
// Get returns the value of the specified index,
// the caller should notice the boundary of the array.
func (a *SortedArray) Get(index int) interface{} {
a.mu.RLock()
defer a.mu.RUnlock()
value := a.array[index]
return value
}
// Remove removes an item by index.
func (a *SortedArray) Remove(index int) interface{} {
a.mu.Lock()
defer a.mu.Unlock()
// Determine array boundaries when deleting to improve deletion efficiency.
if index == 0 {
value := a.array[0]
a.array = a.array[1:]
return value
} else if index == len(a.array)-1 {
value := a.array[index]
a.array = a.array[:index]
return value
}
// If it is a non-boundary delete,
// it will involve the creation of an array,
// then the deletion is less efficient.
value := a.array[index]
a.array = append(a.array[:index], a.array[index+1:]...)
return value
}
// PopLeft pops and returns an item from the beginning of array.
func (a *SortedArray) PopLeft() interface{} {
a.mu.Lock()
defer a.mu.Unlock()
value := a.array[0]
a.array = a.array[1:]
return value
}
// PopRight pops and returns an item from the end of array.
func (a *SortedArray) PopRight() interface{} {
a.mu.Lock()
defer a.mu.Unlock()
index := len(a.array) - 1
value := a.array[index]
a.array = a.array[:index]
return value
}
// PopRand randomly pops and return an item out of array.
func (a *SortedArray) PopRand() interface{} {
return a.Remove(grand.Intn(len(a.array)))
}
// PopRands randomly pops and returns <size> items out of array.
func (a *SortedArray) PopRands(size int) []interface{} {
a.mu.Lock()
defer a.mu.Unlock()
if size > len(a.array) {
size = len(a.array)
}
array := make([]interface{}, size)
for i := 0; i < size; i++ {
index := grand.Intn(len(a.array))
array[i] = a.array[index]
a.array = append(a.array[:index], a.array[index+1:]...)
}
return array
}
// PopLefts pops and returns <size> items from the beginning of array.
func (a *SortedArray) PopLefts(size int) []interface{} {
a.mu.Lock()
defer a.mu.Unlock()
length := len(a.array)
if size > length {
size = length
}
value := a.array[0:size]
a.array = a.array[size:]
return value
}
// PopRights pops and returns <size> items from the end of array.
func (a *SortedArray) PopRights(size int) []interface{} {
a.mu.Lock()
defer a.mu.Unlock()
index := len(a.array) - size
if index < 0 {
index = 0
}
value := a.array[index:]
a.array = a.array[:index]
return value
}
// Range picks and returns items by range, like array[start:end].
// Notice, if in concurrent-safe usage, it returns a copy of slice;
// else a pointer to the underlying data.
//
// If <end> is negative, then the offset will start from the end of array.
// If <end> is omitted, then the sequence will have everything from start up
// until the end of the array.
func (a *SortedArray) Range(start int, end ...int) []interface{} {
a.mu.RLock()
defer a.mu.RUnlock()
offsetEnd := len(a.array)
if len(end) > 0 && end[0] < offsetEnd {
offsetEnd = end[0]
}
if start > offsetEnd {
return nil
}
if start < 0 {
start = 0
}
array := ([]interface{})(nil)
if a.mu.IsSafe() {
array = make([]interface{}, offsetEnd-start)
copy(array, a.array[start:offsetEnd])
} else {
array = a.array[start:offsetEnd]
}
return array
}
// SubSlice returns a slice of elements from the array as specified
// by the <offset> and <size> parameters.
// If in concurrent safe usage, it returns a copy of the slice; else a pointer.
//
// If offset is non-negative, the sequence will start at that offset in the array.
// If offset is negative, the sequence will start that far from the end of the array.
//
// If length is given and is positive, then the sequence will have up to that many elements in it.
// If the array is shorter than the length, then only the available array elements will be present.
// If length is given and is negative then the sequence will stop that many elements from the end of the array.
// If it is omitted, then the sequence will have everything from offset up until the end of the array.
//
// Any possibility crossing the left border of array, it will fail.
func (a *SortedArray) SubSlice(offset int, length ...int) []interface{} {
a.mu.RLock()
defer a.mu.RUnlock()
size := len(a.array)
if len(length) > 0 {
size = length[0]
}
if offset > len(a.array) {
return nil
}
if offset < 0 {
offset = len(a.array) + offset
if offset < 0 {
return nil
}
}
if size < 0 {
offset += size
size = -size
if offset < 0 {
return nil
}
}
end := offset + size
if end > len(a.array) {
end = len(a.array)
size = len(a.array) - offset
}
if a.mu.IsSafe() {
s := make([]interface{}, size)
copy(s, a.array[offset:])
return s
} else {
return a.array[offset:end]
}
}
// Sum returns the sum of values in an array.
func (a *SortedArray) Sum() (sum int) {
a.mu.RLock()
defer a.mu.RUnlock()
for _, v := range a.array {
sum += gconv.Int(v)
}
return
}
// Len returns the length of array.
func (a *SortedArray) Len() int {
a.mu.RLock()
length := len(a.array)
a.mu.RUnlock()
return length
}
// Slice returns the underlying data of array.
// Notice, if in concurrent-safe usage, it returns a copy of slice;
// else a pointer to the underlying data.
func (a *SortedArray) Slice() []interface{} {
array := ([]interface{})(nil)
if a.mu.IsSafe() {
a.mu.RLock()
defer a.mu.RUnlock()
array = make([]interface{}, len(a.array))
copy(array, a.array)
} else {
array = a.array
}
return array
}
// Contains checks whether a value exists in the array.
func (a *SortedArray) Contains(value interface{}) bool {
return a.Search(value) != -1
}
// Search searches array by <value>, returns the index of <value>,
// or returns -1 if not exists.
func (a *SortedArray) Search(value interface{}) (index int) {
if i, r := a.binSearch(value, true); r == 0 {
return i
}
return -1
}
// Binary search.
// It returns the last compared index and the result.
// If <result> equals to 0, it means the value at <index> is equals to <value>.
// If <result> lesser than 0, it means the value at <index> is lesser than <value>.
// If <result> greater than 0, it means the value at <index> is greater than <value>.
func (a *SortedArray) binSearch(value interface{}, lock bool) (index int, result int) {
if len(a.array) == 0 {
return -1, -2
}
if lock {
a.mu.RLock()
defer a.mu.RUnlock()
}
min := 0
max := len(a.array) - 1
mid := 0
cmp := -2
for min <= max {
mid = int((min + max) / 2)
cmp = a.comparator(value, a.array[mid])
switch {
case cmp < 0:
max = mid - 1
case cmp > 0:
min = mid + 1
default:
return mid, cmp
}
}
return mid, cmp
}
// SetUnique sets unique mark to the array,
// which means it does not contain any repeated items.
// It also do unique check, remove all repeated items.
func (a *SortedArray) SetUnique(unique bool) *SortedArray {
oldUnique := a.unique.Val()
a.unique.Set(unique)
if unique && oldUnique != unique {
a.Unique()
}
return a
}
// Unique uniques the array, clear repeated items.
func (a *SortedArray) Unique() *SortedArray {
a.mu.Lock()
defer a.mu.Unlock()
i := 0
for {
if i == len(a.array)-1 {
break
}
if a.comparator(a.array[i], a.array[i+1]) == 0 {
a.array = append(a.array[:i+1], a.array[i+1+1:]...)
} else {
i++
}
}
return a
}
// Clone returns a new array, which is a copy of current array.
func (a *SortedArray) Clone() (newArray *SortedArray) {
a.mu.RLock()
array := make([]interface{}, len(a.array))
copy(array, a.array)
a.mu.RUnlock()
return NewSortedArrayFrom(array, a.comparator, !a.mu.IsSafe())
}
// Clear deletes all items of current array.
func (a *SortedArray) Clear() *SortedArray {
a.mu.Lock()
if len(a.array) > 0 {
a.array = make([]interface{}, 0)
}
a.mu.Unlock()
return a
}
// LockFunc locks writing by callback function <f>.
func (a *SortedArray) LockFunc(f func(array []interface{})) *SortedArray {
a.mu.Lock()
defer a.mu.Unlock()
f(a.array)
return a
}
// RLockFunc locks reading by callback function <f>.
func (a *SortedArray) RLockFunc(f func(array []interface{})) *SortedArray {
a.mu.RLock()
defer a.mu.RUnlock()
f(a.array)
return a
}
// Merge merges <array> into current array.
// The parameter <array> can be any garray or slice type.
// The difference between Merge and Append is Append supports only specified slice type,
// but Merge supports more parameter types.
func (a *SortedArray) Merge(array interface{}) *SortedArray {
switch v := array.(type) {
case *Array:
a.Add(gconv.Interfaces(v.Slice())...)
case *IntArray:
a.Add(gconv.Interfaces(v.Slice())...)
case *StringArray:
a.Add(gconv.Interfaces(v.Slice())...)
case *SortedArray:
a.Add(gconv.Interfaces(v.Slice())...)
case *SortedIntArray:
a.Add(gconv.Interfaces(v.Slice())...)
case *SortedStringArray:
a.Add(gconv.Interfaces(v.Slice())...)
default:
a.Add(gconv.Interfaces(array)...)
}
return a
}
// Chunk splits an array into multiple arrays,
// the size of each array is determined by <size>.
// The last chunk may contain less than size elements.
func (a *SortedArray) Chunk(size int) [][]interface{} {
if size < 1 {
return nil
}
a.mu.RLock()
defer a.mu.RUnlock()
length := len(a.array)
chunks := int(math.Ceil(float64(length) / float64(size)))
var n [][]interface{}
for i, end := 0, 0; chunks > 0; chunks-- {
end = (i + 1) * size
if end > length {
end = length
}
n = append(n, a.array[i*size:end])
i++
}
return n
}
// Rand randomly returns one item from array(no deleting).
func (a *SortedArray) Rand() interface{} {
a.mu.RLock()
defer a.mu.RUnlock()
return a.array[grand.Intn(len(a.array))]
}
// Rands randomly returns <size> items from array(no deleting).
func (a *SortedArray) Rands(size int) []interface{} {
a.mu.RLock()
defer a.mu.RUnlock()
if size > len(a.array) {
size = len(a.array)
}
n := make([]interface{}, size)
for i, v := range grand.Perm(len(a.array)) {
n[i] = a.array[v]
if i == size-1 {
break
}
}
return n
}
// Join joins array elements with a string <glue>.
func (a *SortedArray) Join(glue string) string {
a.mu.RLock()
defer a.mu.RUnlock()
buffer := bytes.NewBuffer(nil)
for k, v := range a.array {
buffer.WriteString(gconv.String(v))
if k != len(a.array)-1 {
buffer.WriteString(glue)
}
}
return buffer.String()
}
// CountValues counts the number of occurrences of all values in the array.
func (a *SortedArray) CountValues() map[interface{}]int {
m := make(map[interface{}]int)
a.mu.RLock()
defer a.mu.RUnlock()
for _, v := range a.array {
m[v]++
}
return m
}
// String returns current array as a string.
func (a *SortedArray) String() string {
a.mu.RLock()
defer a.mu.RUnlock()
jsonContent, _ := json.Marshal(a.array)
return string(jsonContent)
}
// MarshalJSON implements the interface MarshalJSON for json.Marshal.
func (a *SortedArray) MarshalJSON() ([]byte, error) {
a.mu.RLock()
defer a.mu.RUnlock()
return json.Marshal(a.array)
}