gf/container/gmap/gmap_hash_int_int_map.go
2019-11-30 18:33:51 +08:00

412 lines
9.7 KiB
Go

// Copyright 2017 gf Author(https://github.com/gogf/gf). All Rights Reserved.
//
// This Source Code Form is subject to the terms of the MIT License.
// If a copy of the MIT was not distributed with gm file,
// You can obtain one at https://github.com/gogf/gf.
package gmap
import (
"encoding/json"
"github.com/gogf/gf/util/gconv"
"github.com/gogf/gf/internal/empty"
"github.com/gogf/gf/internal/rwmutex"
)
type IntIntMap struct {
mu *rwmutex.RWMutex
data map[int]int
}
// NewIntIntMap returns an empty IntIntMap object.
// The parameter <safe> is used to specify whether using map in concurrent-safety,
// which is false in default.
func NewIntIntMap(safe ...bool) *IntIntMap {
return &IntIntMap{
mu: rwmutex.New(safe...),
data: make(map[int]int),
}
}
// NewIntIntMapFrom creates and returns a hash map from given map <data>.
// Note that, the param <data> map will be set as the underlying data map(no deep copy),
// there might be some concurrent-safe issues when changing the map outside.
func NewIntIntMapFrom(data map[int]int, safe ...bool) *IntIntMap {
return &IntIntMap{
mu: rwmutex.New(safe...),
data: data,
}
}
// Iterator iterates the hash map with custom callback function <f>.
// If <f> returns true, then it continues iterating; or false to stop.
func (m *IntIntMap) Iterator(f func(k int, v int) bool) {
m.mu.RLock()
defer m.mu.RUnlock()
for k, v := range m.data {
if !f(k, v) {
break
}
}
}
// Clone returns a new hash map with copy of current map data.
func (m *IntIntMap) Clone() *IntIntMap {
return NewIntIntMapFrom(m.MapCopy(), !m.mu.IsSafe())
}
// Map returns the underlying data map.
// Note that, if it's in concurrent-safe usage, it returns a copy of underlying data,
// or else a pointer to the underlying data.
func (m *IntIntMap) Map() map[int]int {
m.mu.RLock()
defer m.mu.RUnlock()
if !m.mu.IsSafe() {
return m.data
}
data := make(map[int]int, len(m.data))
for k, v := range m.data {
data[k] = v
}
return data
}
// MapStrAny returns a copy of the underlying data of the map as map[string]interface{}.
func (m *IntIntMap) MapStrAny() map[string]interface{} {
m.mu.RLock()
data := make(map[string]interface{}, len(m.data))
for k, v := range m.data {
data[gconv.String(k)] = v
}
m.mu.RUnlock()
return data
}
// MapCopy returns a copy of the underlying data of the hash map.
func (m *IntIntMap) MapCopy() map[int]int {
m.mu.RLock()
defer m.mu.RUnlock()
data := make(map[int]int, len(m.data))
for k, v := range m.data {
data[k] = v
}
return data
}
// FilterEmpty deletes all key-value pair of which the value is empty.
func (m *IntIntMap) FilterEmpty() {
m.mu.Lock()
for k, v := range m.data {
if empty.IsEmpty(v) {
delete(m.data, k)
}
}
m.mu.Unlock()
}
// Set sets key-value to the hash map.
func (m *IntIntMap) Set(key int, val int) {
m.mu.Lock()
m.data[key] = val
m.mu.Unlock()
}
// Sets batch sets key-values to the hash map.
func (m *IntIntMap) Sets(data map[int]int) {
m.mu.Lock()
for k, v := range data {
m.data[k] = v
}
m.mu.Unlock()
}
// Search searches the map with given <key>.
// Second return parameter <found> is true if key was found, otherwise false.
func (m *IntIntMap) Search(key int) (value int, found bool) {
m.mu.RLock()
value, found = m.data[key]
m.mu.RUnlock()
return
}
// Get returns the value by given <key>.
func (m *IntIntMap) Get(key int) int {
m.mu.RLock()
val, _ := m.data[key]
m.mu.RUnlock()
return val
}
// Pop retrieves and deletes an item from the map.
func (m *IntIntMap) Pop() (key, value int) {
m.mu.Lock()
defer m.mu.Unlock()
for key, value = range m.data {
delete(m.data, key)
return
}
return
}
// Pops retrieves and deletes <size> items from the map.
// It returns all items if size == -1.
func (m *IntIntMap) Pops(size int) map[int]int {
m.mu.Lock()
defer m.mu.Unlock()
if size > len(m.data) || size == -1 {
size = len(m.data)
}
if size == 0 {
return nil
}
index := 0
newMap := make(map[int]int, size)
for k, v := range m.data {
delete(m.data, k)
newMap[k] = v
index++
if index == size {
break
}
}
return newMap
}
// doSetWithLockCheck checks whether value of the key exists with mutex.Lock,
// if not exists, set value to the map with given <key>,
// or else just return the existing value.
//
// It returns value with given <key>.
func (m *IntIntMap) doSetWithLockCheck(key int, value int) int {
m.mu.Lock()
if v, ok := m.data[key]; ok {
m.mu.Unlock()
return v
}
m.data[key] = value
m.mu.Unlock()
return value
}
// GetOrSet returns the value by key,
// or sets value with given <value> if it does not exist and then returns this value.
func (m *IntIntMap) GetOrSet(key int, value int) int {
if v, ok := m.Search(key); !ok {
return m.doSetWithLockCheck(key, value)
} else {
return v
}
}
// GetOrSetFunc returns the value by key,
// or sets value with returned value of callback function <f> if it does not exist and returns this value.
func (m *IntIntMap) GetOrSetFunc(key int, f func() int) int {
if v, ok := m.Search(key); !ok {
return m.doSetWithLockCheck(key, f())
} else {
return v
}
}
// GetOrSetFuncLock returns the value by key,
// or sets value with returned value of callback function <f> if it does not exist and returns this value.
//
// GetOrSetFuncLock differs with GetOrSetFunc function is that it executes function <f>
// with mutex.Lock of the hash map.
func (m *IntIntMap) GetOrSetFuncLock(key int, f func() int) int {
if v, ok := m.Search(key); !ok {
m.mu.Lock()
defer m.mu.Unlock()
if v, ok = m.data[key]; ok {
return v
}
v = f()
m.data[key] = v
return v
} else {
return v
}
}
// SetIfNotExist sets <value> to the map if the <key> does not exist, and then returns true.
// It returns false if <key> exists, and <value> would be ignored.
func (m *IntIntMap) SetIfNotExist(key int, value int) bool {
if !m.Contains(key) {
m.doSetWithLockCheck(key, value)
return true
}
return false
}
// SetIfNotExistFunc sets value with return value of callback function <f>, and then returns true.
// It returns false if <key> exists, and <value> would be ignored.
func (m *IntIntMap) SetIfNotExistFunc(key int, f func() int) bool {
if !m.Contains(key) {
m.doSetWithLockCheck(key, f())
return true
}
return false
}
// SetIfNotExistFuncLock sets value with return value of callback function <f>, and then returns true.
// It returns false if <key> exists, and <value> would be ignored.
//
// SetIfNotExistFuncLock differs with SetIfNotExistFunc function is that
// it executes function <f> with mutex.Lock of the hash map.
func (m *IntIntMap) SetIfNotExistFuncLock(key int, f func() int) bool {
if !m.Contains(key) {
m.mu.Lock()
defer m.mu.Unlock()
if _, ok := m.data[key]; !ok {
m.data[key] = f()
}
return true
}
return false
}
// Removes batch deletes values of the map by keys.
func (m *IntIntMap) Removes(keys []int) {
m.mu.Lock()
for _, key := range keys {
delete(m.data, key)
}
m.mu.Unlock()
}
// Remove deletes value from map by given <key>, and return this deleted value.
func (m *IntIntMap) Remove(key int) int {
m.mu.Lock()
val, exists := m.data[key]
if exists {
delete(m.data, key)
}
m.mu.Unlock()
return val
}
// Keys returns all keys of the map as a slice.
func (m *IntIntMap) Keys() []int {
m.mu.RLock()
keys := make([]int, len(m.data))
index := 0
for key := range m.data {
keys[index] = key
index++
}
m.mu.RUnlock()
return keys
}
// Values returns all values of the map as a slice.
func (m *IntIntMap) Values() []int {
m.mu.RLock()
values := make([]int, len(m.data))
index := 0
for _, value := range m.data {
values[index] = value
index++
}
m.mu.RUnlock()
return values
}
// Contains checks whether a key exists.
// It returns true if the <key> exists, or else false.
func (m *IntIntMap) Contains(key int) bool {
m.mu.RLock()
_, exists := m.data[key]
m.mu.RUnlock()
return exists
}
// Size returns the size of the map.
func (m *IntIntMap) Size() int {
m.mu.RLock()
length := len(m.data)
m.mu.RUnlock()
return length
}
// IsEmpty checks whether the map is empty.
// It returns true if map is empty, or else false.
func (m *IntIntMap) IsEmpty() bool {
return m.Size() == 0
}
// Clear deletes all data of the map, it will remake a new underlying data map.
func (m *IntIntMap) Clear() {
m.mu.Lock()
m.data = make(map[int]int)
m.mu.Unlock()
}
// Replace the data of the map with given <data>.
func (m *IntIntMap) Replace(data map[int]int) {
m.mu.Lock()
m.data = data
m.mu.Unlock()
}
// LockFunc locks writing with given callback function <f> within RWMutex.Lock.
func (m *IntIntMap) LockFunc(f func(m map[int]int)) {
m.mu.Lock()
defer m.mu.Unlock()
f(m.data)
}
// RLockFunc locks reading with given callback function <f> within RWMutex.RLock.
func (m *IntIntMap) RLockFunc(f func(m map[int]int)) {
m.mu.RLock()
defer m.mu.RUnlock()
f(m.data)
}
// Flip exchanges key-value of the map to value-key.
func (m *IntIntMap) Flip() {
m.mu.Lock()
defer m.mu.Unlock()
n := make(map[int]int, len(m.data))
for k, v := range m.data {
n[v] = k
}
m.data = n
}
// Merge merges two hash maps.
// The <other> map will be merged into the map <m>.
func (m *IntIntMap) Merge(other *IntIntMap) {
m.mu.Lock()
defer m.mu.Unlock()
if other != m {
other.mu.RLock()
defer other.mu.RUnlock()
}
for k, v := range other.data {
m.data[k] = v
}
}
// MarshalJSON implements the interface MarshalJSON for json.Marshal.
func (m *IntIntMap) MarshalJSON() ([]byte, error) {
m.mu.RLock()
defer m.mu.RUnlock()
return json.Marshal(m.data)
}
// UnmarshalJSON implements the interface UnmarshalJSON for json.Unmarshal.
func (m *IntIntMap) UnmarshalJSON(b []byte) error {
if m.mu == nil {
m.mu = rwmutex.New()
m.data = make(map[int]int)
}
m.mu.Lock()
defer m.mu.Unlock()
if err := json.Unmarshal(b, &m.data); err != nil {
return err
}
return nil
}