2017-09-23 02:15:15 +08:00
|
|
|
|
#!/usr/bin/python
|
|
|
|
|
# -*- coding: utf8 -*-
|
|
|
|
|
# cp936
|
|
|
|
|
#
|
|
|
|
|
# The MIT License (MIT)
|
|
|
|
|
#
|
|
|
|
|
# Copyright (c) 2017 fasiondog
|
|
|
|
|
#
|
|
|
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
|
|
|
# in the Software without restriction, including without limitation the rights
|
|
|
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
|
|
|
# furnished to do so, subject to the following conditions:
|
|
|
|
|
#
|
|
|
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
|
|
|
# copies or substantial portions of the Software.
|
|
|
|
|
#
|
|
|
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
|
# SOFTWARE.
|
|
|
|
|
|
2024-01-26 04:46:44 +08:00
|
|
|
|
from hikyuu.core import *
|
2023-12-30 15:34:28 +08:00
|
|
|
|
from hikyuu import Datetime
|
2024-03-08 02:37:41 +08:00
|
|
|
|
import pandas as pd
|
2017-09-23 02:15:15 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def indicator_iter(indicator):
|
|
|
|
|
for i in range(len(indicator)):
|
|
|
|
|
yield indicator[i]
|
|
|
|
|
|
2017-09-24 03:25:14 +08:00
|
|
|
|
|
2019-05-20 01:45:46 +08:00
|
|
|
|
def indicator_getitem(data, i):
|
2019-05-21 23:10:50 +08:00
|
|
|
|
"""
|
|
|
|
|
:param i: int | Datetime | slice | str 类型
|
2019-05-20 01:45:46 +08:00
|
|
|
|
"""
|
|
|
|
|
if isinstance(i, int):
|
|
|
|
|
length = len(data)
|
|
|
|
|
index = length + i if i < 0 else i
|
|
|
|
|
if index < 0 or index >= length:
|
|
|
|
|
raise IndexError("index out of range: %d" % i)
|
|
|
|
|
return data.get(index)
|
2020-06-25 15:59:37 +08:00
|
|
|
|
|
2019-05-20 01:45:46 +08:00
|
|
|
|
elif isinstance(i, slice):
|
|
|
|
|
return [data.get(x) for x in range(*i.indices(len(data)))]
|
|
|
|
|
|
|
|
|
|
elif isinstance(i, Datetime):
|
2023-12-28 23:58:06 +08:00
|
|
|
|
return data.get_by_datetime(i)
|
2019-05-20 01:45:46 +08:00
|
|
|
|
|
|
|
|
|
elif isinstance(i, str):
|
2023-12-28 23:58:06 +08:00
|
|
|
|
return data.get_by_datetime(Datetime(i))
|
2019-05-20 01:45:46 +08:00
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
raise IndexError("Error index type")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Indicator.__getitem__ = indicator_getitem
|
|
|
|
|
Indicator.__iter__ = indicator_iter
|
2017-09-24 03:25:14 +08:00
|
|
|
|
|
2020-07-11 18:26:23 +08:00
|
|
|
|
|
2024-04-18 00:59:17 +08:00
|
|
|
|
def indicator_to_df(indicator):
|
|
|
|
|
"""转化为pandas.DataFrame"""
|
|
|
|
|
if indicator.get_result_num() == 1:
|
|
|
|
|
return pd.DataFrame(indicator.to_np(), columns=[indicator.name])
|
|
|
|
|
data = {}
|
|
|
|
|
name = indicator.name
|
|
|
|
|
columns = []
|
|
|
|
|
for i in range(indicator.get_result_num()):
|
|
|
|
|
data[name + str(i)] = indicator.get_result(i)
|
|
|
|
|
columns.append(name + str(i + 1))
|
|
|
|
|
return pd.DataFrame(data, columns=columns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Indicator.to_df = indicator_to_df
|
2017-09-25 03:29:18 +08:00
|
|
|
|
|
2024-03-08 02:37:41 +08:00
|
|
|
|
|
|
|
|
|
def concat_to_df(dates, ind_list, head_stock_code=True, head_ind_name=False):
|
|
|
|
|
"""将列表中的指标至合并在一张 pandas DataFrame 中
|
|
|
|
|
|
|
|
|
|
:param DatetimeList dates: 指定的日期列表
|
|
|
|
|
:param sequence ind_list: 已计算的指标列表
|
|
|
|
|
:param bool head_ind_name: 表标题是否使用指标名称
|
|
|
|
|
:param bool head_stock_code: 表标题是否使用证券代码
|
|
|
|
|
:return: 合并后的 DataFrame, 以 dates 为 index(注: dates列 为 Datetime 类型)
|
|
|
|
|
|
|
|
|
|
示例:
|
|
|
|
|
query = Query(-200)
|
|
|
|
|
k_list = [stk.get_kdata(query) for stk in [sm['sz000001'], sm['sz000002']]]
|
|
|
|
|
ma_list = [MA(k) for k in k_list]
|
|
|
|
|
concat_to_df(sm.get_trading_calendar(query), ma_list, head_stock_code=True, head_ind_name=False)
|
|
|
|
|
|
|
|
|
|
输出:
|
|
|
|
|
date SZ000001 SZ000002
|
|
|
|
|
0 2023-05-12 00:00:00 12.620000 15.060000
|
|
|
|
|
1 2023-05-15 00:00:00 12.725000 15.060000
|
|
|
|
|
2 2023-05-16 00:00:00 12.690000 15.010000
|
|
|
|
|
3 2023-05-17 00:00:00 12.640000 14.952500
|
|
|
|
|
4 2023-05-18 00:00:00 12.610000 14.886000
|
|
|
|
|
... ... ... ...
|
|
|
|
|
195 2024-03-01 00:00:00 9.950455 9.837273
|
|
|
|
|
196 2024-03-04 00:00:00 9.995909 9.838182
|
|
|
|
|
197 2024-03-05 00:00:00 10.038182 9.816364
|
|
|
|
|
198 2024-03-06 00:00:00 10.070455 9.776818
|
|
|
|
|
199 2024-03-07 00:00:00 10.101364 9.738182
|
|
|
|
|
"""
|
|
|
|
|
df = pd.DataFrame(dates, columns=['date'])
|
|
|
|
|
for ind in ind_list:
|
|
|
|
|
x = ALIGN(ind, dates)
|
|
|
|
|
if head_ind_name and head_stock_code:
|
|
|
|
|
x.name = f"{ind.name}/{ind.get_context().get_stock().market_code}"
|
|
|
|
|
elif head_ind_name:
|
|
|
|
|
x.name = ind.name
|
|
|
|
|
else:
|
|
|
|
|
x.name = ind.get_context().get_stock().market_code
|
|
|
|
|
df = pd.concat([df, x.to_df()], axis=1)
|
|
|
|
|
df.set_index('date')
|
|
|
|
|
return df
|
2024-04-03 02:34:38 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 避免 python 中公式原型必须加括号
|
|
|
|
|
KDATA = C_KDATA()
|
|
|
|
|
CLOSE = C_CLOSE()
|
|
|
|
|
OPEN = C_OPEN()
|
|
|
|
|
HIGH = C_HIGH()
|
|
|
|
|
LOW = C_LOW()
|
|
|
|
|
AMO = C_AMO()
|
|
|
|
|
VOL = C_VOL()
|
2024-04-06 23:54:06 +08:00
|
|
|
|
|
|
|
|
|
# 同名指标
|
|
|
|
|
VALUE = PRICELIST
|
2024-04-07 00:55:22 +08:00
|
|
|
|
CAPITAL = LIUTONGPAN
|