hikyuu2/hikyuu/indicator/indicator.py

136 lines
4.5 KiB
C++
Raw Normal View History

#!/usr/bin/python
# -*- coding: utf8 -*-
# cp936
#
# The MIT License (MIT)
#
# Copyright (c) 2017 fasiondog
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
2024-01-26 04:46:44 +08:00
from hikyuu.core import *
2023-12-30 15:34:28 +08:00
from hikyuu import Datetime
import pandas as pd
def indicator_iter(indicator):
for i in range(len(indicator)):
yield indicator[i]
def indicator_getitem(data, i):
"""
:param i: int | Datetime | slice | str
"""
if isinstance(i, int):
length = len(data)
index = length + i if i < 0 else i
if index < 0 or index >= length:
raise IndexError("index out of range: %d" % i)
return data.get(index)
2020-06-25 15:59:37 +08:00
elif isinstance(i, slice):
return [data.get(x) for x in range(*i.indices(len(data)))]
elif isinstance(i, Datetime):
return data.get_by_datetime(i)
elif isinstance(i, str):
return data.get_by_datetime(Datetime(i))
else:
raise IndexError("Error index type")
Indicator.__getitem__ = indicator_getitem
Indicator.__iter__ = indicator_iter
2020-07-11 18:26:23 +08:00
2020-09-13 21:41:39 +08:00
VALUE = PRICELIST
try:
import numpy as np
import pandas as pd
2020-06-25 15:59:37 +08:00
def indicator_to_df(indicator):
"""转化为pandas.DataFrame"""
2020-07-11 18:26:23 +08:00
if indicator.get_result_num() == 1:
2023-12-30 15:34:28 +08:00
return pd.DataFrame(indicator.to_np(), columns=[indicator.name])
2020-06-25 15:59:37 +08:00
data = {}
name = indicator.name
columns = []
2020-07-11 18:26:23 +08:00
for i in range(indicator.get_result_num()):
data[name + str(i)] = indicator.get_result(i)
2020-06-25 15:59:37 +08:00
columns.append(name + str(i + 1))
return pd.DataFrame(data, columns=columns)
2020-06-25 15:59:37 +08:00
Indicator.to_df = indicator_to_df
except:
2020-06-25 15:59:37 +08:00
print(
"warning:can't import numpy or pandas lib, ",
"you can't use method Inidicator.to_np() and to_df!"
)
2017-09-25 03:29:18 +08:00
2023-12-27 22:48:41 +08:00
VALUE = PRICELIST
def concat_to_df(dates, ind_list, head_stock_code=True, head_ind_name=False):
"""将列表中的指标至合并在一张 pandas DataFrame 中
:param DatetimeList dates:
:param sequence ind_list:
:param bool head_ind_name: 使
:param bool head_stock_code: 使
:return: DataFrame, dates index: dates列 Datetime
:
query = Query(-200)
k_list = [stk.get_kdata(query) for stk in [sm['sz000001'], sm['sz000002']]]
ma_list = [MA(k) for k in k_list]
concat_to_df(sm.get_trading_calendar(query), ma_list, head_stock_code=True, head_ind_name=False)
date SZ000001 SZ000002
0 2023-05-12 00:00:00 12.620000 15.060000
1 2023-05-15 00:00:00 12.725000 15.060000
2 2023-05-16 00:00:00 12.690000 15.010000
3 2023-05-17 00:00:00 12.640000 14.952500
4 2023-05-18 00:00:00 12.610000 14.886000
... ... ... ...
195 2024-03-01 00:00:00 9.950455 9.837273
196 2024-03-04 00:00:00 9.995909 9.838182
197 2024-03-05 00:00:00 10.038182 9.816364
198 2024-03-06 00:00:00 10.070455 9.776818
199 2024-03-07 00:00:00 10.101364 9.738182
"""
df = pd.DataFrame(dates, columns=['date'])
for ind in ind_list:
x = ALIGN(ind, dates)
if head_ind_name and head_stock_code:
x.name = f"{ind.name}/{ind.get_context().get_stock().market_code}"
elif head_ind_name:
x.name = ind.name
else:
x.name = ind.get_context().get_stock().market_code
df = pd.concat([df, x.to_df()], axis=1)
df.set_index('date')
return df