mirror of
https://gitee.com/fasiondog/hikyuu.git
synced 2024-11-29 18:39:10 +08:00
388 lines
12 KiB
Python
388 lines
12 KiB
Python
#
|
||
# 对 C++ 引出类和函数进行扩展, pybind11 对小函数到导出效率不如 python 直接执行
|
||
#
|
||
|
||
# 优先加载 hikyuu 库,防止 windows 公共依赖库不同导致DLL初始化失败
|
||
from .core import *
|
||
import numpy as np
|
||
import pandas as pd
|
||
from datetime import *
|
||
|
||
# ------------------------------------------------------------------
|
||
# 增加Datetime、Stock的hash支持,以便可做为dict的key
|
||
# ------------------------------------------------------------------
|
||
|
||
Datetime.__hash__ = lambda self: self.ticks
|
||
TimeDelta.__hash__ = lambda self: self.ticks
|
||
Stock.__hash__ = lambda self: self.id
|
||
|
||
# ------------------------------------------------------------------
|
||
# 增强 Datetime
|
||
# ------------------------------------------------------------------
|
||
|
||
__old_Datetime_init__ = Datetime.__init__
|
||
__old_Datetime_add__ = Datetime.__add__
|
||
__old_Datetime_sub__ = Datetime.__sub__
|
||
|
||
|
||
def __new_Datetime_add__(self, td):
|
||
"""加上指定时长,时长对象可为 TimeDelta 或 datetime.timedelta 类型
|
||
|
||
:param TimeDelta td: 时长
|
||
:rtype: Datetime
|
||
"""
|
||
if isinstance(td, TimeDelta):
|
||
return __old_Datetime_add__(self, td)
|
||
elif isinstance(td, timedelta):
|
||
return __old_Datetime_add__(self, TimeDelta(td))
|
||
else:
|
||
raise TypeError("unsupported operand type(s) for +: 'TimeDelta' and '{}'".format(type(td)))
|
||
|
||
|
||
def __new_Datetime_sub__(self, td):
|
||
"""减去指定的时长, 时长对象可为 TimeDelta 或 datetime.timedelta 类型
|
||
|
||
:param TimeDelta td: 指定时长
|
||
:rtype: Datetime
|
||
"""
|
||
if isinstance(td, TimeDelta):
|
||
return __old_Datetime_sub__(self, td)
|
||
elif isinstance(td, timedelta):
|
||
return __old_Datetime_sub__(self, TimeDelta(td))
|
||
elif isinstance(td, Datetime):
|
||
return __old_Datetime_sub__(self, td)
|
||
else:
|
||
raise TypeError("unsupported operand type(s) for +: 'TimeDelta' and '{}'".format(type(td)))
|
||
|
||
|
||
def Datetime_date(self):
|
||
"""转化生成 python 的 date"""
|
||
return date(self.year, self.month, self.day)
|
||
|
||
|
||
def Datetime_datetime(self):
|
||
"""转化生成 python 的 datetime"""
|
||
return datetime(self.year, self.month, self.day, self.hour, self.minute, self.second, self.microsecond)
|
||
|
||
|
||
Datetime.__add__ = __new_Datetime_add__
|
||
Datetime.__radd__ = __new_Datetime_add__
|
||
Datetime.__sub__ = __new_Datetime_sub__
|
||
Datetime.date = Datetime_date
|
||
Datetime.datetime = Datetime_datetime
|
||
|
||
# ------------------------------------------------------------------
|
||
# 增强 TimeDelta
|
||
# ------------------------------------------------------------------
|
||
|
||
__old_TimeDelta_init__ = TimeDelta.__init__
|
||
__old_TimeDelta_add__ = TimeDelta.__add__
|
||
__old_TimeDelta_sub__ = TimeDelta.__sub__
|
||
|
||
|
||
def __new_TimeDelta_init__(self, *args, **kwargs):
|
||
"""
|
||
可通过以下方式构建:
|
||
|
||
- 通过 datetime.timedelta 构建。TimdeDelta(timedelta实例)
|
||
- TimeDelta(days=0, hours=0, minutes=0, seconds=0, milliseconds=0, microseconds=0)
|
||
|
||
- -99999999 <= days <= 99999999
|
||
- -100000 <= hours <= 100000
|
||
- -100000 <= minutes <= 100000
|
||
- -8639900 <= seconds <= 8639900
|
||
- -86399000000 <= milliseconds <= 86399000000
|
||
- -86399000000 <= microseconds <= 86399000000
|
||
"""
|
||
if not args:
|
||
__old_TimeDelta_init__(self, **kwargs)
|
||
elif isinstance(args[0], timedelta):
|
||
days = args[0].days
|
||
secs = args[0].seconds
|
||
hours = secs // 3600
|
||
mins = secs // 60 - hours * 60
|
||
secs = secs - mins * 60 - hours * 3600
|
||
microsecs = args[0].microseconds
|
||
millisecs = microsecs // 1000
|
||
microsecs = microsecs - millisecs * 1000
|
||
__old_TimeDelta_init__(self, days, hours, mins, secs, millisecs, microsecs)
|
||
else:
|
||
__old_TimeDelta_init__(self, *args)
|
||
|
||
|
||
def __new_TimeDelta_add__(self, td):
|
||
"""可和 TimeDelta, datetime.timedelta, Datetime执行相加操作"""
|
||
if isinstance(td, TimeDelta):
|
||
return __old_TimeDelta_add__(self, td)
|
||
elif isinstance(td, timedelta):
|
||
return __old_TimeDelta_add__(self, TimeDelta(td))
|
||
elif isinstance(td, Datetime):
|
||
return td + self
|
||
elif isinstance(td, datetime):
|
||
return td + Datetime(datetime)
|
||
else:
|
||
raise TypeError("unsupported operand type(s) for +: 'TimeDelta' and '{}'".format(type(td)))
|
||
|
||
|
||
def __new_TimeDelta_sub__(self, td):
|
||
"""可减去TimeDelta, datetime.timedelta"""
|
||
return __old_TimeDelta_sub__(self, td) if isinstance(td, TimeDelta) else __old_TimeDelta_sub__(self, TimeDelta(td))
|
||
|
||
|
||
def TimeDelta_timedelta(self):
|
||
""" 转化为 datetime.timedelta """
|
||
return timedelta(
|
||
days=self.days,
|
||
hours=self.hours,
|
||
minutes=self.minutes,
|
||
seconds=self.seconds,
|
||
milliseconds=self.milliseconds,
|
||
microseconds=self.microseconds
|
||
)
|
||
|
||
|
||
TimeDelta.__init__ = __new_TimeDelta_init__
|
||
TimeDelta.__add__ = __new_TimeDelta_add__
|
||
TimeDelta.__sub__ = __new_TimeDelta_sub__
|
||
TimeDelta.timedelta = TimeDelta_timedelta
|
||
|
||
# ------------------------------------------------------------------
|
||
# 增强 KData 的遍历
|
||
# ------------------------------------------------------------------
|
||
|
||
|
||
def KData_getitem(kdata, i):
|
||
"""
|
||
:param i: int | Datetime | slice | str 类型
|
||
"""
|
||
if isinstance(i, int):
|
||
length = len(kdata)
|
||
index = length + i if i < 0 else i
|
||
if index < 0 or index >= length:
|
||
raise IndexError("index out of range: %d" % i)
|
||
return kdata.get(index)
|
||
|
||
elif isinstance(i, Datetime):
|
||
return kdata.get_by_datetime(i)
|
||
|
||
elif isinstance(i, str):
|
||
return kdata.get_by_datetime(Datetime(i))
|
||
|
||
elif isinstance(i, slice):
|
||
return [kdata.get(x) for x in range(*i.indices(len(kdata)))]
|
||
|
||
else:
|
||
raise IndexError("Error index type")
|
||
|
||
|
||
def KData_iter(kdata):
|
||
for i in range(len(kdata)):
|
||
yield kdata[i]
|
||
|
||
|
||
def KData_getPos(kdata, datetime):
|
||
"""
|
||
获取指定时间对应的索引位置
|
||
|
||
:param Datetime datetime: 指定的时间
|
||
:return: 对应的索引位置,如果不在数据范围内,则返回 None
|
||
"""
|
||
pos = kdata._getPos(datetime)
|
||
return pos if pos != constant.null_size else None
|
||
|
||
|
||
def KData_getPosInStock(kdata, datetime):
|
||
"""
|
||
获取指定时间对应的原始K线中的索引位置
|
||
|
||
:param Datetime datetime: 指定的时间
|
||
:return: 对应的索引位置,如果不在数据范围内,则返回 None
|
||
"""
|
||
pos = kdata._getPosInStock(datetime)
|
||
return pos if pos != constant.null_size else None
|
||
|
||
|
||
KData.__getitem__ = KData_getitem
|
||
KData.__iter__ = KData_iter
|
||
KData.get_pos = KData_getPos
|
||
KData.get_pos_in_stock = KData_getPosInStock
|
||
|
||
|
||
# ------------------------------------------------------------------
|
||
# 重定义Query
|
||
# ------------------------------------------------------------------
|
||
|
||
Query.INDEX = Query.QueryType.INDEX
|
||
Query.DATE = Query.QueryType.DATE
|
||
Query.DAY = "DAY"
|
||
Query.WEEK = "WEEK"
|
||
Query.MONTH = "MONTH"
|
||
Query.QUARTER = "QUARTER"
|
||
Query.HALFYEAR = "HALFYEAR"
|
||
Query.YEAR = "YEAR"
|
||
Query.MIN = "MIN"
|
||
Query.MIN3 = "MIN3"
|
||
Query.MIN5 = "MIN5"
|
||
Query.MIN15 = "MIN15"
|
||
Query.MIN30 = "MIN30"
|
||
Query.MIN60 = "MIN60"
|
||
Query.HOUR2 = "HOUR2"
|
||
Query.HOUR4 = "HOUR4"
|
||
Query.HOUR6 = "HOUR6"
|
||
Query.HOUR12 = "HOUR12"
|
||
Query.NO_RECOVER = Query.RecoverType.NO_RECOVER
|
||
Query.FORWARD = Query.RecoverType.FORWARD
|
||
Query.BACKWARD = Query.RecoverType.BACKWARD
|
||
Query.EQUAL_FORWARD = Query.RecoverType.EQUAL_FORWARD
|
||
Query.EQUAL_BACKWARD = Query.RecoverType.EQUAL_BACKWARD
|
||
|
||
old_Query_init = Query.__init__
|
||
|
||
|
||
def new_Query_init(self, start=0, end=None, ktype=Query.DAY, recover_type=Query.NO_RECOVER):
|
||
"""
|
||
构建按索引 [start, end) 方式获取K线数据条件。start,end应同为 int 或 同为 Datetime 类型。
|
||
|
||
:param int|Datetime start: 起始索引位置或起始日期
|
||
:param int|Datetime end: 结束索引位置或结束日期
|
||
:param Query.KType ktype: K线数据类型(如日线、分钟线等)
|
||
:param Query.RecoverType recover_type: 复权类型
|
||
:return: 查询条件
|
||
:rtype: KQuery
|
||
"""
|
||
if isinstance(start, int):
|
||
end_pos = constant.null_int64 if end is None else end
|
||
elif isinstance(start, Datetime):
|
||
end_pos = constant.null_datetime if end is None else end
|
||
else:
|
||
raise TypeError('Incorrect parameter type error!')
|
||
old_Query_init(self, start, end_pos, ktype, recover_type)
|
||
|
||
|
||
Query.__init__ = new_Query_init
|
||
|
||
|
||
# ------------------------------------------------------------------
|
||
# 增加转化为 np.array、pandas.DataFrame 的功能
|
||
# ------------------------------------------------------------------
|
||
def KData_to_np(kdata):
|
||
"""转化为numpy结构数组"""
|
||
if kdata.get_query().ktype in ('DAY', 'WEEK', 'MONTH', 'QUARTER', 'HALFYEAR', 'YEAR'):
|
||
k_type = np.dtype(
|
||
{
|
||
'names': ['datetime', 'open', 'high', 'low', 'close', 'amount', 'volume'],
|
||
'formats': ['datetime64[D]', 'd', 'd', 'd', 'd', 'd', 'd']
|
||
}
|
||
)
|
||
else:
|
||
k_type = np.dtype(
|
||
{
|
||
'names': ['datetime', 'open', 'high', 'low', 'close', 'amount', 'volume'],
|
||
'formats': ['datetime64[ms]', 'd', 'd', 'd', 'd', 'd', 'd']
|
||
}
|
||
)
|
||
return np.array(
|
||
[(k.datetime.datetime(), k.open, k.high, k.low, k.close, k.amount, k.volume) for k in kdata], dtype=k_type
|
||
)
|
||
|
||
|
||
def KData_to_df(kdata):
|
||
"""转化为pandas的DataFrame"""
|
||
return pd.DataFrame.from_records(KData_to_np(kdata), index='datetime')
|
||
|
||
|
||
KData.to_np = KData_to_np
|
||
KData.to_df = KData_to_df
|
||
|
||
|
||
def DatetimeList_to_np(data):
|
||
"""仅在安装了numpy模块时生效,转换为numpy.array"""
|
||
return np.array(data, dtype='datetime64[D]')
|
||
|
||
|
||
def DatetimeList_to_df(data):
|
||
"""仅在安装了pandas模块时生效,转换为pandas.DataFrame"""
|
||
return pd.DataFrame(data.to_np(), columns=('Datetime', ))
|
||
|
||
|
||
DatetimeList.to_np = DatetimeList_to_np
|
||
DatetimeList.to_df = DatetimeList_to_df
|
||
|
||
|
||
def TimeLine_to_np(data):
|
||
"""转化为numpy结构数组"""
|
||
t_type = np.dtype({'names': ['datetime', 'price', 'vol'], 'formats': ['datetime64[ms]', 'd', 'd']})
|
||
return np.array([(t.date.datetime(), t.price, t.vol) for t in data], dtype=t_type)
|
||
|
||
|
||
def TimeLine_to_df(kdata):
|
||
"""转化为pandas的DataFrame"""
|
||
return pd.DataFrame.from_records(TimeLine_to_np(kdata), index='datetime')
|
||
|
||
|
||
TimeLineList.to_np = TimeLine_to_np
|
||
TimeLineList.to_df = TimeLine_to_df
|
||
|
||
|
||
def TransList_to_np(data):
|
||
"""转化为numpy结构数组"""
|
||
t_type = np.dtype(
|
||
{
|
||
'names': ['datetime', 'price', 'vol', 'direct'],
|
||
'formats': ['datetime64[ms]', 'd', 'd', 'd']
|
||
}
|
||
)
|
||
return np.array([(t.date.datetime(), t.price, t.vol, t.direct) for t in data], dtype=t_type)
|
||
|
||
|
||
def TransList_to_df(kdata):
|
||
"""转化为pandas的DataFrame"""
|
||
return pd.DataFrame.from_records(TransList_to_np(kdata), index='datetime')
|
||
|
||
|
||
TransList.to_np = TransList_to_np
|
||
TransList.to_df = TransList_to_df
|
||
|
||
# ------------------------------------------------------------------
|
||
# 增强 Parameter
|
||
# ------------------------------------------------------------------
|
||
|
||
|
||
def Parameter_iter(self):
|
||
name_list = self.get_name_list()
|
||
for key in name_list:
|
||
yield self[key]
|
||
|
||
|
||
def Parameter_keys(self):
|
||
return list(self.get_name_list())
|
||
|
||
|
||
def Parameter_items(self):
|
||
return [(key, self[key]) for key in self.get_name_list()]
|
||
|
||
|
||
def Parameter_to_dict(self):
|
||
"""转化为 Python dict 对象"""
|
||
return dict(self.items())
|
||
|
||
|
||
Parameter.__iter__ = Parameter_iter
|
||
Parameter.keys = Parameter_keys
|
||
Parameter.items = Parameter_items
|
||
Parameter.to_dict = Parameter_to_dict
|
||
|
||
# ------------------------------------------------------------------
|
||
# 增强 StrategyContext
|
||
# ------------------------------------------------------------------
|
||
__old_StrategyContext_init__ = StrategyContext.__init__
|
||
|
||
|
||
def __new_StrategyContext_init__(self, stock_code_list=None):
|
||
__old_StrategyContext_init__(self)
|
||
if stock_code_list is not None:
|
||
self.stock_list = stock_code_list
|
||
|
||
|
||
StrategyContext.__init__ = __new_StrategyContext_init__
|