mirror of
https://gitee.com/fasiondog/hikyuu.git
synced 2024-11-30 10:59:43 +08:00
440 lines
14 KiB
C++
440 lines
14 KiB
C++
#!/usr/bin/python
|
||
# -*- coding: utf8 -*-
|
||
# cp936
|
||
#
|
||
# The MIT License (MIT)
|
||
#
|
||
# Copyright (c) 2010-2017 fasiondog
|
||
#
|
||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
# of this software and associated documentation files (the "Software"), to deal
|
||
# in the Software without restriction, including without limitation the rights
|
||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
# copies of the Software, and to permit persons to whom the Software is
|
||
# furnished to do so, subject to the following conditions:
|
||
#
|
||
# The above copyright notice and this permission notice shall be included in all
|
||
# copies or substantial portions of the Software.
|
||
#
|
||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
# SOFTWARE.
|
||
|
||
|
||
import sys
|
||
if sys.version > '3':
|
||
IS_PY3 = True
|
||
else:
|
||
IS_PY3 = False
|
||
|
||
from .core_doc import *
|
||
from hikyuu.util.mylog import escapetime
|
||
from hikyuu.util.slice import list_getitem
|
||
from hikyuu.util.unicode import (unicodeFunc, reprFunc)
|
||
from datetime import date, datetime
|
||
|
||
|
||
#------------------------------------------------------------------
|
||
# 常量定义,各种C++中Null值
|
||
#------------------------------------------------------------------
|
||
|
||
constant = Constant()
|
||
|
||
|
||
#------------------------------------------------------------------
|
||
# 支持Python的__unicode__、__repr
|
||
#------------------------------------------------------------------
|
||
|
||
MarketInfo.__unicode__ = unicodeFunc
|
||
MarketInfo.__repr__ = reprFunc
|
||
|
||
StockTypeInfo.__unicode__ = unicodeFunc
|
||
StockTypeInfo.__repr__ = reprFunc
|
||
|
||
KQuery.__unicode__ = unicodeFunc
|
||
KQuery.__repr__ = reprFunc
|
||
|
||
KRecord.__unicode__ = unicodeFunc
|
||
KRecord.__repr__ = reprFunc
|
||
|
||
KData.__unicode__ = unicodeFunc
|
||
KData.__repr__ = reprFunc
|
||
|
||
TimeLineRecord.__unicode__ = unicodeFunc
|
||
TimeLineRecord.__repr__ = reprFunc
|
||
|
||
TimeLineList.__unicode__ = unicodeFunc
|
||
TimeLineList.__repr__ = reprFunc
|
||
|
||
TransRecord.__unicode__ = unicodeFunc
|
||
TransRecord.__repr__ = reprFunc
|
||
|
||
TransList.__unicode__ = unicodeFunc
|
||
TransList.__repr__ = reprFunc
|
||
|
||
Stock.__unicode__ = unicodeFunc
|
||
Stock.__repr__ = reprFunc
|
||
|
||
Block.__unicode__ = unicodeFunc
|
||
Block.__repr__ = reprFunc
|
||
|
||
Datetime.__unicode__ = unicodeFunc
|
||
Datetime.__repr__ = reprFunc
|
||
|
||
Parameter.__unicode__ = unicodeFunc
|
||
Parameter.__repr__ = reprFunc
|
||
|
||
|
||
#------------------------------------------------------------------
|
||
# 增加Datetime、Stock的hash支持,以便可做为dict的key
|
||
#------------------------------------------------------------------
|
||
|
||
def datetime_hash(self):
|
||
return self.number
|
||
|
||
def stock_hash(self):
|
||
return self.id
|
||
|
||
Datetime.__hash__ = datetime_hash
|
||
Stock.__hash__ = stock_hash
|
||
|
||
|
||
#------------------------------------------------------------------
|
||
# 增强 Datetime
|
||
#------------------------------------------------------------------
|
||
|
||
__old_Datetime_init__ = Datetime.__init__
|
||
|
||
def __new_Datetime_init__(self, var = None):
|
||
"""
|
||
日期时间类(精确到秒),通过以下方式构建:
|
||
|
||
- 通过字符串:Datetime("2010-1-1 10:00:00")
|
||
- 通过 Python 的date:Datetime(date(2010,1,1))
|
||
- 通过 Python 的datetime:Datetime(datetime(2010,1,1,10)
|
||
- 通过 YYYYMMDDHHMM 形式的整数:Datetime(201001011000)
|
||
|
||
获取日期列表参见: :py:func:`getDateRange`
|
||
|
||
获取交易日日期参见: :py:meth:`StockManager.getTradingCalendar`
|
||
"""
|
||
if var is None:
|
||
__old_Datetime_init__(self)
|
||
|
||
#datetime实例同时也是date的实例,判断必须放在date之前
|
||
elif isinstance(var, datetime):
|
||
__old_Datetime_init__(self, str(var))
|
||
elif isinstance(var, date):
|
||
__old_Datetime_init__(self, "{} 00".format(var))
|
||
|
||
elif isinstance(var, str):
|
||
if var.find(' ') == -1:
|
||
__old_Datetime_init__(self, "{} 00".format(var))
|
||
else:
|
||
__old_Datetime_init__(self, var)
|
||
else:
|
||
__old_Datetime_init__(self, var)
|
||
|
||
def Datetime_date(self):
|
||
"""转化生成 python 的 date"""
|
||
return date(self.year, self.month, self.day)
|
||
|
||
def Datetime_datetime(self):
|
||
"""转化生成 python 的 datetime"""
|
||
return datetime(self.year, self.month, self.day,
|
||
self.hour, self.minute, self.second)
|
||
|
||
def Datetime_isNull(self):
|
||
"""是否是Null值, 即是否等于 constant.null_datetime"""
|
||
return True if self == constant.null_datetime else False
|
||
|
||
Datetime.__init__ = __new_Datetime_init__
|
||
Datetime.date = Datetime_date
|
||
Datetime.datetime = Datetime_datetime
|
||
Datetime.isNull = Datetime_isNull
|
||
|
||
|
||
#------------------------------------------------------------------
|
||
#重定义KQuery
|
||
#------------------------------------------------------------------
|
||
KQuery.INDEX = KQuery.QueryType.INDEX
|
||
KQuery.DATE = KQuery.QueryType.DATE
|
||
KQuery.DAY = "DAY"
|
||
KQuery.WEEK = "WEEK"
|
||
KQuery.MONTH = "MONTH"
|
||
KQuery.QUARTER = "QUARTER"
|
||
KQuery.HALFYEAR = "HALFYEAR"
|
||
KQuery.YEAR = "YEAR"
|
||
KQuery.MIN = "MIN"
|
||
KQuery.MIN5 = "MIN5"
|
||
KQuery.MIN15 = "MIN15"
|
||
KQuery.MIN30 = "MIN30"
|
||
KQuery.MIN60 = "MIN60"
|
||
KQuery.HOUR2 = "HOUR2"
|
||
KQuery.HOUR4 = "HOUR4"
|
||
KQuery.HOUR6 = "HOUR6"
|
||
KQuery.HOUR12 = "HOUR12"
|
||
KQuery.NO_RECOVER = KQuery.RecoverType.NO_RECOVER
|
||
KQuery.FORWARD = KQuery.RecoverType.FORWARD
|
||
KQuery.BACKWARD = KQuery.RecoverType.BACKWARD
|
||
KQuery.EQUAL_FORWARD = KQuery.RecoverType.EQUAL_FORWARD
|
||
KQuery.EQUAL_BACKWARD = KQuery.RecoverType.EQUAL_BACKWARD
|
||
|
||
class Query(KQuery):
|
||
"""重新定义KQuery,目的如下:
|
||
1、使用短类名
|
||
2、使用短枚举类型
|
||
3、利用Python命名参数优点
|
||
"""
|
||
INDEX = KQuery.QueryType.INDEX
|
||
DATE = KQuery.QueryType.DATE
|
||
#DAY = KQuery.KType.DAY
|
||
#WEEK = KQuery.KType.WEEK
|
||
#MONTH = KQuery.KType.MONTH
|
||
#QUARTER = KQuery.KType.QUARTER
|
||
#HALFYEAR = KQuery.KType.HALFYEAR
|
||
#YEAR = KQuery.KType.YEAR
|
||
#MIN = KQuery.KType.MIN
|
||
#MIN3 = KQuery.KType.MIN3
|
||
#MIN5 = KQuery.KType.MIN5
|
||
#MIN15 = KQuery.KType.MIN15
|
||
#MIN30 = KQuery.KType.MIN30
|
||
#MIN60 = KQuery.KType.MIN60
|
||
#HOUR2 = KQuery.KType.HOUR2
|
||
#HOUR4 = KQuery.KType.HOUR4
|
||
#HOUR6 = KQuery.KType.HOUR6
|
||
#HOUR12 = KQuery.KType.HOUR12
|
||
NO_RECOVER = KQuery.RecoverType.NO_RECOVER
|
||
FORWARD = KQuery.RecoverType.FORWARD
|
||
BACKWARD = KQuery.RecoverType.BACKWARD
|
||
EQUAL_FORWARD = KQuery.RecoverType.EQUAL_FORWARD
|
||
EQUAL_BACKWARD = KQuery.RecoverType.EQUAL_BACKWARD
|
||
|
||
def __init__(self, start = 0, end = None,
|
||
kType = KQuery.DAY, recoverType = KQuery.RecoverType.NO_RECOVER):
|
||
"""
|
||
构建按索引 [start, end) 方式获取K线数据条件
|
||
|
||
:param ind start: 起始日期
|
||
:param ind end: 结束日期
|
||
:param KQuery.KType kType: K线数据类型(如日线、分钟线等)
|
||
:param KQuery.RecoverType recoverType: 复权类型
|
||
:return: 查询条件
|
||
:rtype: KQuery
|
||
"""
|
||
end_pos = constant.null_int64 if end is None else end
|
||
super(Query, self).__init__(start, end_pos, kType, recoverType)
|
||
|
||
QueryByIndex = Query
|
||
|
||
def QueryByDate(start=None, end=None, kType=Query.DAY,
|
||
recoverType=Query.NO_RECOVER):
|
||
"""
|
||
构建按日期 [start, end) 方式获取K线数据条件
|
||
|
||
:param Datetime start: 起始日期
|
||
:param Datetime end: 结束日期
|
||
:param KQuery.KType kType: K线数据类型(如日线、分钟线等)
|
||
:param KQuery.RecoverType recoverType: 复权类型
|
||
:return: 查询条件
|
||
:rtype: KQuery
|
||
"""
|
||
start_date = Datetime.min() if start is None else start
|
||
end_date = Datetime.max() if end is None else end
|
||
return KQueryByDate(start_date, end_date, kType, recoverType)
|
||
|
||
|
||
#------------------------------------------------------------------
|
||
# 增强 KData 的遍历
|
||
#------------------------------------------------------------------
|
||
|
||
def KData_getitem(kdata, i):
|
||
if isinstance(i, int):
|
||
length = len(kdata)
|
||
index = length + i if i < 0 else i
|
||
if index < 0 or index >= length:
|
||
raise IndexError("index out of range: %d" % i)
|
||
return kdata.getKRecord(index)
|
||
|
||
elif isinstance(i, Datetime):
|
||
return kdata.getKRecordByDate(i)
|
||
|
||
elif isinstance(i, slice):
|
||
return [kdata.getKRecord(x) for x in range(*i.indices(len(kdata)))]
|
||
|
||
else:
|
||
raise IndexError("Error index type")
|
||
return KRecord()
|
||
|
||
def KData_iter(kdata):
|
||
for i in range(len(kdata)):
|
||
yield kdata[i]
|
||
|
||
def KData_getPos(kdata, datetime):
|
||
"""
|
||
获取指定时间对应的索引位置
|
||
|
||
:param Datetime datetime: 指定的时间
|
||
:return: 对应的索引位置,如果不在数据范围内,则返回 None
|
||
"""
|
||
pos = kdata._getPos(datetime)
|
||
return pos if pos != constant.null_size else None
|
||
|
||
|
||
KData.__getitem__ = KData_getitem
|
||
KData.__iter__ = KData_iter
|
||
KData.getPos = KData_getPos
|
||
|
||
|
||
#------------------------------------------------------------------
|
||
# 封装增强其他C++ vector类型的遍历
|
||
#------------------------------------------------------------------
|
||
|
||
PriceList.__getitem__ = list_getitem
|
||
DatetimeList.__getitem__ = list_getitem
|
||
StringList.__getitem__ = list_getitem
|
||
BlockList.__getitem__ = list_getitem
|
||
TimeLineList.__getitem__ = list_getitem
|
||
TransList.__getitem__ = list_getitem
|
||
|
||
|
||
#------------------------------------------------------------------
|
||
# 增加转化为 np.array、pandas.DataFrame 的功能
|
||
#------------------------------------------------------------------
|
||
|
||
try:
|
||
import numpy as np
|
||
import pandas as pd
|
||
|
||
def KData_to_np(kdata):
|
||
"""转化为numpy结构数组"""
|
||
if kdata.getQuery().kType in ('DAY', 'WEEK', 'MONTH', 'QUARTER', 'HALFYEAR', 'YEAR'):
|
||
k_type = np.dtype({'names':['datetime','open', 'high', 'low','close',
|
||
'amount', 'volume'],
|
||
'formats':['datetime64[D]','d','d','d','d','d','d']})
|
||
else:
|
||
k_type = np.dtype({'names':['datetime','open', 'high', 'low','close',
|
||
'amount', 'volume'],
|
||
'formats':['datetime64[ms]','d','d','d','d','d','d']})
|
||
return np.array([(k.datetime.datetime(), k.openPrice, k.highPrice,
|
||
k.lowPrice, k.closePrice, k.transAmount,
|
||
k.transCount) for k in kdata], dtype=k_type)
|
||
|
||
def KData_to_df(kdata):
|
||
"""转化为pandas的DataFrame"""
|
||
return pd.DataFrame.from_records(KData_to_np(kdata), index='datetime')
|
||
|
||
KData.to_np = KData_to_np
|
||
KData.to_df = KData_to_df
|
||
|
||
def PriceList_to_np(data):
|
||
"""仅在安装了numpy模块时生效,转换为numpy.array"""
|
||
return np.array(data, dtype='d')
|
||
|
||
def PriceList_to_df(data):
|
||
"""仅在安装了pandas模块时生效,转换为pandas.DataFrame"""
|
||
return pd.DataFrame(data.to_np(), columns=('Value',))
|
||
|
||
PriceList.to_np = PriceList_to_np
|
||
PriceList.to_df = PriceList_to_df
|
||
|
||
def DatetimeList_to_np(data):
|
||
"""仅在安装了numpy模块时生效,转换为numpy.array"""
|
||
return np.array(data, dtype='datetime64[D]')
|
||
|
||
def DatetimeList_to_df(data):
|
||
"""仅在安装了pandas模块时生效,转换为pandas.DataFrame"""
|
||
return pd.DataFrame(data.to_np(), columns=('Datetime',))
|
||
|
||
DatetimeList.to_np = DatetimeList_to_np
|
||
DatetimeList.to_df = DatetimeList_to_df
|
||
|
||
def TimeLine_to_np(data):
|
||
"""转化为numpy结构数组"""
|
||
t_type = np.dtype({'names':['datetime','price', 'vol'],
|
||
'formats':['datetime64[ms]','d','d']})
|
||
return np.array([(t.datetime.datetime(), t.price, t.vol) for t in data], dtype=t_type)
|
||
|
||
def TimeLine_to_df(kdata):
|
||
"""转化为pandas的DataFrame"""
|
||
return pd.DataFrame.from_records(TimeLine_to_np(kdata), index='datetime')
|
||
|
||
TimeLineList.to_np = TimeLine_to_np
|
||
TimeLineList.to_df = TimeLine_to_df
|
||
|
||
def TransList_to_np(data):
|
||
"""转化为numpy结构数组"""
|
||
t_type = np.dtype({'names':['datetime','price', 'vol', 'direct'],
|
||
'formats':['datetime64[ms]','d','d', 'd']})
|
||
return np.array([(t.datetime.datetime(), t.price, t.vol, t.direct) for t in data], dtype=t_type)
|
||
|
||
def TransList_to_df(kdata):
|
||
"""转化为pandas的DataFrame"""
|
||
return pd.DataFrame.from_records(TransList_to_np(kdata), index='datetime')
|
||
|
||
TransList.to_np = TransList_to_np
|
||
TransList.to_df = TransList_to_df
|
||
|
||
except:
|
||
pass
|
||
|
||
|
||
#------------------------------------------------------------------
|
||
# 净化命名空间
|
||
#------------------------------------------------------------------
|
||
|
||
__all__ = [#类
|
||
'Block',
|
||
'BlockList',
|
||
'Datetime',
|
||
'DatetimeList',
|
||
'KData',
|
||
'KQuery',
|
||
'KQueryByDate',
|
||
'KQueryByIndex',
|
||
'KRecord',
|
||
'KRecordList',
|
||
'LOG_LEVEL',
|
||
'MarketInfo',
|
||
'OstreamRedirect',
|
||
'Parameter',
|
||
'PriceList',
|
||
'Query',
|
||
'QueryByDate',
|
||
'QueryByIndex',
|
||
'Stock',
|
||
'StockManager',
|
||
'StockTypeInfo',
|
||
'StockWeight',
|
||
'StockWeightList',
|
||
'StringList',
|
||
'TimeLineRecord',
|
||
'TimeLineList',
|
||
'TransRecord',
|
||
'TransList',
|
||
|
||
#变量
|
||
'constant',
|
||
'IS_PY3',
|
||
|
||
#函数
|
||
'getVersion',
|
||
'getDateRange',
|
||
'getStock',
|
||
'hikyuu_init',
|
||
'hku_load',
|
||
'hku_save',
|
||
'roundDown',
|
||
'roundUp',
|
||
'get_log_level',
|
||
'set_log_level',
|
||
'toPriceList',
|
||
|
||
#包
|
||
#'util'
|
||
]
|