milvus/internal/datacoord/compaction.go

629 lines
18 KiB
Go
Raw Normal View History

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package datacoord
import (
"context"
"fmt"
"sync"
"time"
"github.com/cockroachdb/errors"
"github.com/samber/lo"
"go.uber.org/atomic"
"go.uber.org/zap"
"github.com/milvus-io/milvus-proto/go-api/v2/commonpb"
"github.com/milvus-io/milvus/internal/proto/datapb"
"github.com/milvus-io/milvus/pkg/log"
"github.com/milvus-io/milvus/pkg/metrics"
"github.com/milvus-io/milvus/pkg/util/conc"
"github.com/milvus-io/milvus/pkg/util/tsoutil"
"github.com/milvus-io/milvus/pkg/util/typeutil"
)
// TODO this num should be determined by resources of datanode, for now, we set to a fixed value for simple
// TODO we should split compaction into different priorities, small compaction helps to merge segment, large compaction helps to handle delta and expiration of large segments
const (
tsTimeout = uint64(1)
)
type compactionPlanContext interface {
start()
stop()
// execCompactionPlan start to execute plan and return immediately
execCompactionPlan(signal *compactionSignal, plan *datapb.CompactionPlan) error
// getCompaction return compaction task. If planId does not exist, return nil.
getCompaction(planID int64) *compactionTask
// updateCompaction set the compaction state to timeout or completed
updateCompaction(ts Timestamp) error
// isFull return true if the task pool is full
isFull() bool
// get compaction tasks by signal id
getCompactionTasksBySignalID(signalID int64) []*compactionTask
}
type compactionTaskState int8
const (
executing compactionTaskState = iota + 1
pipelining
completed
failed
timeout
)
var (
errChannelNotWatched = errors.New("channel is not watched")
errChannelInBuffer = errors.New("channel is in buffer")
)
type compactionTask struct {
triggerInfo *compactionSignal
plan *datapb.CompactionPlan
state compactionTaskState
dataNodeID int64
result *datapb.CompactionResult
}
func (t *compactionTask) shadowClone(opts ...compactionTaskOpt) *compactionTask {
task := &compactionTask{
triggerInfo: t.triggerInfo,
plan: t.plan,
state: t.state,
dataNodeID: t.dataNodeID,
}
for _, opt := range opts {
opt(task)
}
return task
}
var _ compactionPlanContext = (*compactionPlanHandler)(nil)
type compactionPlanHandler struct {
plans map[int64]*compactionTask // planID -> task
sessions *SessionManager
meta *meta
chManager *ChannelManager
mu sync.RWMutex
allocator allocator
quit chan struct{}
wg sync.WaitGroup
flushCh chan UniqueID
scheduler *scheduler
}
type scheduler struct {
taskNumber *atomic.Int32
queuingTasks []*compactionTask
parallelTasks map[int64][]*compactionTask
mu sync.RWMutex
}
func newScheduler() *scheduler {
return &scheduler{
taskNumber: atomic.NewInt32(0),
queuingTasks: make([]*compactionTask, 0),
parallelTasks: make(map[int64][]*compactionTask),
}
}
// schedule pick 1 or 0 tasks for 1 node
func (s *scheduler) schedule() []*compactionTask {
nodeTasks := make(map[int64][]*compactionTask) // nodeID
s.mu.Lock()
defer s.mu.Unlock()
for _, task := range s.queuingTasks {
if _, ok := nodeTasks[task.dataNodeID]; !ok {
nodeTasks[task.dataNodeID] = make([]*compactionTask, 0)
}
nodeTasks[task.dataNodeID] = append(nodeTasks[task.dataNodeID], task)
}
executable := make(map[int64]*compactionTask)
pickPriorPolicy := func(tasks []*compactionTask, exclusiveChannels []string, executing []string) *compactionTask {
for _, task := range tasks {
if lo.Contains(exclusiveChannels, task.plan.GetChannel()) {
continue
}
if task.plan.GetType() == datapb.CompactionType_Level0DeleteCompaction {
// Channel of LevelZeroCompaction task with no executing compactions
if !lo.Contains(executing, task.plan.GetChannel()) {
return task
}
// Don't schedule any tasks for channel with LevelZeroCompaction task
// when there're executing compactions
exclusiveChannels = append(exclusiveChannels, task.plan.GetChannel())
continue
}
return task
}
return nil
}
// pick 1 or 0 task for 1 node
for node, tasks := range nodeTasks {
parallel := s.parallelTasks[node]
if len(parallel) >= calculateParallel() {
log.Info("Compaction parallel in DataNode reaches the limit", zap.Int64("nodeID", node), zap.Int("parallel", len(parallel)))
continue
}
var (
executing = typeutil.NewSet[string]()
channelsExecPrior = typeutil.NewSet[string]()
)
for _, t := range parallel {
executing.Insert(t.plan.GetChannel())
if t.plan.GetType() == datapb.CompactionType_Level0DeleteCompaction {
channelsExecPrior.Insert(t.plan.GetChannel())
}
}
picked := pickPriorPolicy(tasks, channelsExecPrior.Collect(), executing.Collect())
if picked != nil {
executable[node] = picked
}
}
var pickPlans []int64
for node, task := range executable {
pickPlans = append(pickPlans, task.plan.PlanID)
if _, ok := s.parallelTasks[node]; !ok {
s.parallelTasks[node] = []*compactionTask{task}
} else {
s.parallelTasks[node] = append(s.parallelTasks[node], task)
}
}
s.queuingTasks = lo.Filter(s.queuingTasks, func(t *compactionTask, _ int) bool {
return !lo.Contains(pickPlans, t.plan.PlanID)
})
// clean parallelTasks with nodes of no running tasks
for node, tasks := range s.parallelTasks {
if len(tasks) == 0 {
delete(s.parallelTasks, node)
}
}
return lo.Values(executable)
}
func (s *scheduler) finish(nodeID, planID UniqueID) {
s.mu.Lock()
if parallel, ok := s.parallelTasks[nodeID]; ok {
tasks := lo.Filter(parallel, func(t *compactionTask, _ int) bool {
return t.plan.PlanID != planID
})
s.parallelTasks[nodeID] = tasks
s.taskNumber.Dec()
}
s.mu.Unlock()
log.Info("Compaction finished", zap.Int64("planID", planID), zap.Int64("nodeID", nodeID))
s.logStatus()
}
func (s *scheduler) logStatus() {
s.mu.RLock()
defer s.mu.RUnlock()
waiting := lo.Map(s.queuingTasks, func(t *compactionTask, _ int) int64 {
return t.plan.PlanID
})
var executing []int64
for _, tasks := range s.parallelTasks {
executing = append(executing, lo.Map(tasks, func(t *compactionTask, _ int) int64 {
return t.plan.PlanID
})...)
}
if len(waiting) > 0 || len(executing) > 0 {
log.Info("Compaction scheduler status", zap.Int64s("waiting", waiting), zap.Int64s("executing", executing))
}
}
func (s *scheduler) submit(tasks ...*compactionTask) {
s.mu.Lock()
s.queuingTasks = append(s.queuingTasks, tasks...)
s.mu.Unlock()
s.taskNumber.Add(int32(len(tasks)))
s.logStatus()
}
func (s *scheduler) getExecutingTaskNum() int {
return int(s.taskNumber.Load())
}
func newCompactionPlanHandler(sessions *SessionManager, cm *ChannelManager, meta *meta,
allocator allocator, flush chan UniqueID,
) *compactionPlanHandler {
return &compactionPlanHandler{
plans: make(map[int64]*compactionTask),
chManager: cm,
meta: meta,
sessions: sessions,
allocator: allocator,
flushCh: flush,
scheduler: newScheduler(),
}
}
func (c *compactionPlanHandler) start() {
interval := Params.DataCoordCfg.CompactionCheckIntervalInSeconds.GetAsDuration(time.Second)
c.quit = make(chan struct{})
c.wg.Add(1)
go func() {
defer c.wg.Done()
checkResultTicker := time.NewTicker(interval)
scheduleTicker := time.NewTicker(200 * time.Millisecond)
log.Info("compaction handler start", zap.Any("check result interval", interval))
defer checkResultTicker.Stop()
defer scheduleTicker.Stop()
for {
select {
case <-c.quit:
log.Info("compaction handler quit")
return
case <-checkResultTicker.C:
// deal results
cctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
ts, err := c.allocator.allocTimestamp(cctx)
if err != nil {
log.Warn("unable to alloc timestamp", zap.Error(err))
cancel()
continue
}
cancel()
_ = c.updateCompaction(ts)
case <-scheduleTicker.C:
// schedule queuing tasks
tasks := c.scheduler.schedule()
c.notifyTasks(tasks)
if len(tasks) > 0 {
c.scheduler.logStatus()
}
}
}
}()
}
func (c *compactionPlanHandler) stop() {
close(c.quit)
c.wg.Wait()
}
func (c *compactionPlanHandler) updateTask(planID int64, opts ...compactionTaskOpt) {
c.mu.Lock()
defer c.mu.Unlock()
c.plans[planID] = c.plans[planID].shadowClone(opts...)
}
func (c *compactionPlanHandler) enqueuePlan(signal *compactionSignal, plan *datapb.CompactionPlan) error {
nodeID, err := c.chManager.FindWatcher(plan.GetChannel())
if err != nil {
log.Error("failed to find watcher", zap.Int64("planID", plan.GetPlanID()), zap.Error(err))
return err
}
log := log.With(zap.Int64("planID", plan.GetPlanID()), zap.Int64("nodeID", nodeID))
c.setSegmentsCompacting(plan, true)
task := &compactionTask{
triggerInfo: signal,
plan: plan,
state: pipelining,
dataNodeID: nodeID,
}
c.mu.Lock()
c.plans[plan.PlanID] = task
c.mu.Unlock()
c.scheduler.submit(task)
log.Info("Compaction plan submited")
return nil
}
func (c *compactionPlanHandler) notifyTasks(tasks []*compactionTask) {
for _, task := range tasks {
getOrCreateIOPool().Submit(func() (any, error) {
plan := task.plan
log := log.With(zap.Int64("planID", plan.GetPlanID()), zap.Int64("nodeID", task.dataNodeID))
log.Info("Notify compaction task to DataNode")
ts, err := c.allocator.allocTimestamp(context.TODO())
if err != nil {
log.Warn("Alloc start time for CompactionPlan failed", zap.Error(err))
// update plan ts to TIMEOUT ts
c.updateTask(plan.PlanID, setState(executing), setStartTime(tsTimeout))
return nil, err
}
c.updateTask(task.plan.PlanID, setStartTime(ts))
err = c.sessions.Compaction(task.dataNodeID, task.plan)
c.updateTask(task.plan.PlanID, setState(executing))
if err != nil {
log.Warn("Failed to notify compaction tasks to DataNode", zap.Error(err))
return nil, err
}
log.Info("Compaction start")
return nil, nil
})
}
}
// execCompactionPlan start to execute plan and return immediately
func (c *compactionPlanHandler) execCompactionPlan(signal *compactionSignal, plan *datapb.CompactionPlan) error {
return c.enqueuePlan(signal, plan)
}
func (c *compactionPlanHandler) setSegmentsCompacting(plan *datapb.CompactionPlan, compacting bool) {
for _, segmentBinlogs := range plan.GetSegmentBinlogs() {
c.meta.SetSegmentCompacting(segmentBinlogs.GetSegmentID(), compacting)
}
}
// complete a compaction task
// not threadsafe, only can be used internally
func (c *compactionPlanHandler) completeCompaction(result *datapb.CompactionResult) error {
planID := result.PlanID
if _, ok := c.plans[planID]; !ok {
return fmt.Errorf("plan %d is not found", planID)
}
if c.plans[planID].state != executing {
return fmt.Errorf("plan %d's state is %v", planID, c.plans[planID].state)
}
plan := c.plans[planID].plan
nodeID := c.plans[planID].dataNodeID
defer c.scheduler.finish(nodeID, plan.PlanID)
switch plan.GetType() {
case datapb.CompactionType_MergeCompaction, datapb.CompactionType_MixCompaction:
if err := c.handleMergeCompactionResult(plan, result); err != nil {
return err
}
default:
return errors.New("unknown compaction type")
}
c.plans[planID] = c.plans[planID].shadowClone(setState(completed), setResult(result))
if c.plans[planID].plan.GetType() == datapb.CompactionType_MergeCompaction ||
c.plans[planID].plan.GetType() == datapb.CompactionType_MixCompaction {
c.flushCh <- result.GetSegmentID()
}
// TODO: when to clean task list
metrics.DataCoordCompactedSegmentSize.WithLabelValues().Observe(float64(getCompactedSegmentSize(result)))
return nil
}
func (c *compactionPlanHandler) handleMergeCompactionResult(plan *datapb.CompactionPlan, result *datapb.CompactionResult) error {
// Also prepare metric updates.
_, modSegments, newSegment, metricMutation, err := c.meta.PrepareCompleteCompactionMutation(plan, result)
if err != nil {
return err
}
log := log.With(zap.Int64("planID", plan.GetPlanID()))
if err := c.meta.alterMetaStoreAfterCompaction(newSegment, modSegments); err != nil {
log.Warn("fail to alert meta store", zap.Error(err))
return err
}
nodeID := c.plans[plan.GetPlanID()].dataNodeID
req := &datapb.SyncSegmentsRequest{
PlanID: plan.PlanID,
CompactedTo: newSegment.GetID(),
CompactedFrom: newSegment.GetCompactionFrom(),
NumOfRows: newSegment.GetNumOfRows(),
StatsLogs: newSegment.GetStatslogs(),
}
log.Info("handleCompactionResult: syncing segments with node", zap.Int64("nodeID", nodeID))
if err := c.sessions.SyncSegments(nodeID, req); err != nil {
log.Warn("handleCompactionResult: fail to sync segments with node, reverting metastore",
zap.Int64("nodeID", nodeID), zap.Error(err))
return err
}
// Apply metrics after successful meta update.
metricMutation.commit()
log.Info("handleCompactionResult: success to handle merge compaction result")
return nil
}
// getCompaction return compaction task. If planId does not exist, return nil.
func (c *compactionPlanHandler) getCompaction(planID int64) *compactionTask {
c.mu.RLock()
defer c.mu.RUnlock()
return c.plans[planID]
}
// expireCompaction set the compaction state to expired
func (c *compactionPlanHandler) updateCompaction(ts Timestamp) error {
// Get executing executingTasks before GetCompactionState from DataNode to prevent false failure,
// for DC might add new task while GetCompactionState.
executingTasks := c.getTasksByState(executing)
timeoutTasks := c.getTasksByState(timeout)
planStates := c.sessions.GetCompactionState()
c.mu.Lock()
defer c.mu.Unlock()
for _, task := range executingTasks {
stateResult, ok := planStates[task.plan.PlanID]
state := stateResult.GetState()
planID := task.plan.PlanID
// check whether the state of CompactionPlan is working
if ok {
if state == commonpb.CompactionState_Completed {
log.Info("complete compaction", zap.Int64("planID", planID), zap.Int64("nodeID", task.dataNodeID))
err := c.completeCompaction(stateResult.GetResult())
if err != nil {
log.Warn("fail to complete compaction", zap.Int64("planID", planID), zap.Int64("nodeID", task.dataNodeID), zap.Error(err))
}
continue
}
// check wether the CompactionPlan is timeout
if state == commonpb.CompactionState_Executing && !c.isTimeout(ts, task.plan.GetStartTime(), task.plan.GetTimeoutInSeconds()) {
continue
}
log.Warn("compaction timeout",
zap.Int64("planID", task.plan.PlanID),
zap.Int64("nodeID", task.dataNodeID),
zap.Uint64("startTime", task.plan.GetStartTime()),
zap.Uint64("now", ts),
)
c.plans[planID] = c.plans[planID].shadowClone(setState(timeout))
continue
}
log.Info("compaction failed", zap.Int64("planID", task.plan.PlanID), zap.Int64("nodeID", task.dataNodeID))
c.plans[planID] = c.plans[planID].shadowClone(setState(failed))
c.setSegmentsCompacting(task.plan, false)
c.scheduler.finish(task.dataNodeID, task.plan.PlanID)
}
// Timeout tasks will be timeout and failed in DataNode
// need to wait for DataNode reporting failure and
// clean the status.
for _, task := range timeoutTasks {
stateResult, ok := planStates[task.plan.PlanID]
planID := task.plan.PlanID
if !ok {
log.Info("compaction failed for timeout", zap.Int64("planID", task.plan.PlanID), zap.Int64("nodeID", task.dataNodeID))
c.plans[planID] = c.plans[planID].shadowClone(setState(failed))
c.setSegmentsCompacting(task.plan, false)
c.scheduler.finish(task.dataNodeID, task.plan.PlanID)
}
// DataNode will check if plan's are timeout but not as sensitive as DataCoord,
// just wait another round.
if ok && stateResult.GetState() == commonpb.CompactionState_Executing {
log.Info("compaction timeout in DataCoord yet DataNode is still running",
zap.Int64("planID", planID),
zap.Int64("nodeID", task.dataNodeID))
continue
}
}
return nil
}
func (c *compactionPlanHandler) isTimeout(now Timestamp, start Timestamp, timeout int32) bool {
startTime, _ := tsoutil.ParseTS(start)
ts, _ := tsoutil.ParseTS(now)
return int32(ts.Sub(startTime).Seconds()) >= timeout
}
// isFull return true if the task pool is full
func (c *compactionPlanHandler) isFull() bool {
return c.scheduler.getExecutingTaskNum() >= Params.DataCoordCfg.CompactionMaxParallelTasks.GetAsInt()
}
func (c *compactionPlanHandler) getTasksByState(state compactionTaskState) []*compactionTask {
c.mu.RLock()
defer c.mu.RUnlock()
tasks := make([]*compactionTask, 0, len(c.plans))
for _, plan := range c.plans {
if plan.state == state {
tasks = append(tasks, plan)
}
}
return tasks
}
// get compaction tasks by signal id; if signalID == 0 return all tasks
func (c *compactionPlanHandler) getCompactionTasksBySignalID(signalID int64) []*compactionTask {
c.mu.RLock()
defer c.mu.RUnlock()
var tasks []*compactionTask
for _, t := range c.plans {
if signalID == 0 {
tasks = append(tasks, t)
continue
}
if t.triggerInfo.id != signalID {
continue
}
tasks = append(tasks, t)
}
return tasks
}
type compactionTaskOpt func(task *compactionTask)
func setState(state compactionTaskState) compactionTaskOpt {
return func(task *compactionTask) {
task.state = state
}
}
func setStartTime(startTime uint64) compactionTaskOpt {
return func(task *compactionTask) {
task.plan.StartTime = startTime
}
}
func setResult(result *datapb.CompactionResult) compactionTaskOpt {
return func(task *compactionTask) {
task.result = result
}
}
// 0.5*min(8, NumCPU/2)
func calculateParallel() int {
// TODO after node memory management enabled, use this config as hard limit
return Params.DataCoordCfg.CompactionWorkerParalleTasks.GetAsInt()
//cores := hardware.GetCPUNum()
//if cores < 16 {
//return 4
//}
//return cores / 2
}
var (
ioPool *conc.Pool[any]
ioPoolInitOnce sync.Once
)
func initIOPool() {
capacity := Params.DataNodeCfg.IOConcurrency.GetAsInt()
if capacity > 32 {
capacity = 32
}
// error only happens with negative expiry duration or with negative pre-alloc size.
ioPool = conc.NewPool[any](capacity)
}
func getOrCreateIOPool() *conc.Pool[any] {
ioPoolInitOnce.Do(initIOPool)
return ioPool
}