milvus/internal/core/unittest/test_indexing.cpp

427 lines
16 KiB
C++
Raw Normal View History

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <gtest/gtest.h>
#include <iostream>
#include <random>
#include <string>
#include <vector>
#include "faiss/utils/distances.h"
#include "query/SearchBruteForce.h"
#include "segcore/Reduce.h"
#include "index/IndexFactory.h"
#include "knowhere/archive/KnowhereConfig.h"
#include "common/QueryResult.h"
#include "test_utils/indexbuilder_test_utils.h"
#include "test_utils/DataGen.h"
#include "test_utils/Timer.h"
#ifdef BUILD_DISK_ANN
#include "storage/MinioChunkManager.h"
#include "storage/DiskFileManagerImpl.h"
using namespace boost::filesystem;
#endif
using namespace milvus;
using namespace milvus::segcore;
namespace {
template <int DIM>
auto
generate_data(int N) {
std::vector<float> raw_data;
std::vector<uint64_t> timestamps;
std::vector<int64_t> uids;
std::default_random_engine er(42);
std::uniform_real_distribution<> distribution(0.0, 1.0);
std::default_random_engine ei(42);
for (int i = 0; i < N; ++i) {
uids.push_back(10 * N + i);
timestamps.push_back(0);
// append vec
std::vector<float> vec(DIM);
for (auto& x : vec) {
x = distribution(er);
}
raw_data.insert(raw_data.end(), std::begin(vec), std::end(vec));
}
return std::make_tuple(raw_data, timestamps, uids);
}
} // namespace
Status
merge_into(int64_t queries,
int64_t topk,
float* distances,
int64_t* uids,
const float* new_distances,
const int64_t* new_uids) {
for (int64_t qn = 0; qn < queries; ++qn) {
auto base = qn * topk;
auto src2_dis = distances + base;
auto src2_uids = uids + base;
auto src1_dis = new_distances + base;
auto src1_uids = new_uids + base;
std::vector<float> buf_dis(topk);
std::vector<int64_t> buf_uids(topk);
auto it1 = 0;
auto it2 = 0;
for (auto buf = 0; buf < topk; ++buf) {
if (src1_dis[it1] <= src2_dis[it2]) {
buf_dis[buf] = src1_dis[it1];
buf_uids[buf] = src1_uids[it1];
++it1;
} else {
buf_dis[buf] = src2_dis[it2];
buf_uids[buf] = src2_uids[it2];
++it2;
}
}
std::copy_n(buf_dis.data(), topk, src2_dis);
std::copy_n(buf_uids.data(), topk, src2_uids);
}
return Status::OK();
}
TEST(Indexing, SmartBruteForce) {
int64_t N = 1000;
auto [raw_data, timestamps, uids] = generate_data<DIM>(N);
constexpr int64_t queries = 3;
auto total_count = queries * K;
auto raw = (const float*)raw_data.data();
EXPECT_NE(raw, nullptr);
auto query_data = raw;
std::vector<int64_t> final_uids(total_count, -1);
std::vector<float> final_dis(total_count, std::numeric_limits<float>::max());
for (int beg = 0; beg < N; beg += TestChunkSize) {
std::vector<int64_t> buf_uids(total_count, -1);
std::vector<float> buf_dis(total_count, std::numeric_limits<float>::max());
faiss::float_maxheap_array_t buf = {queries, K, buf_uids.data(), buf_dis.data()};
auto end = beg + TestChunkSize;
if (end > N) {
end = N;
}
auto nsize = end - beg;
auto src_data = raw + beg * DIM;
faiss::knn_L2sqr(query_data, src_data, DIM, queries, nsize, &buf, nullptr);
for (auto& x : buf_uids) {
x = uids[x + beg];
}
merge_into(queries, K, final_dis.data(), final_uids.data(), buf_dis.data(), buf_uids.data());
}
for (int qn = 0; qn < queries; ++qn) {
for (int kn = 0; kn < K; ++kn) {
auto index = qn * K + kn;
std::cout << final_uids[index] << "->" << final_dis[index] << std::endl;
}
std::cout << std::endl;
}
}
TEST(Indexing, BinaryBruteForce) {
int64_t N = 100000;
int64_t num_queries = 10;
int64_t topk = 5;
int64_t round_decimal = 3;
int64_t dim = 8192;
auto metric_type = knowhere::metric::JACCARD;
auto result_count = topk * num_queries;
auto schema = std::make_shared<Schema>();
auto vec_fid = schema->AddDebugField("vecbin", DataType::VECTOR_BINARY, dim, metric_type);
auto i64_fid = schema->AddDebugField("age", DataType::INT64);
auto dataset = DataGen(schema, N, 10);
auto bin_vec = dataset.get_col<uint8_t>(vec_fid);
auto query_data = 1024 * dim / 8 + bin_vec.data();
query::dataset::SearchDataset search_dataset{
metric_type, //
num_queries, //
topk, //
round_decimal,
dim, //
query_data //
};
auto sub_result = query::BruteForceSearch(search_dataset, bin_vec.data(), N, nullptr);
SearchResult sr;
sr.total_nq_ = num_queries;
sr.unity_topK_ = topk;
sr.seg_offsets_ = std::move(sub_result.mutable_seg_offsets());
sr.distances_ = std::move(sub_result.mutable_distances());
auto json = SearchResultToJson(sr);
std::cout << json.dump(2);
#ifdef __linux__
auto ref = json::parse(R"(
[
[
[ "1024->0.000000", "48942->0.642000", "18494->0.644000", "68225->0.644000", "93557->0.644000" ],
[ "1025->0.000000", "73557->0.641000", "53086->0.643000", "9737->0.643000", "62855->0.644000" ],
[ "1026->0.000000", "62904->0.644000", "46758->0.644000", "57969->0.645000", "98113->0.646000" ],
[ "1027->0.000000", "92446->0.638000", "96034->0.640000", "92129->0.644000", "45887->0.644000" ],
[ "1028->0.000000", "22992->0.643000", "73903->0.644000", "19969->0.645000", "65178->0.645000" ],
[ "1029->0.000000", "19776->0.641000", "15166->0.642000", "85470->0.642000", "16730->0.643000" ],
[ "1030->0.000000", "55939->0.640000", "84253->0.643000", "31958->0.644000", "11667->0.646000" ],
[ "1031->0.000000", "89536->0.637000", "61622->0.638000", "9275->0.639000", "91403->0.640000" ],
[ "1032->0.000000", "69504->0.642000", "23414->0.644000", "48770->0.645000", "23231->0.645000" ],
[ "1033->0.000000", "33540->0.636000", "25310->0.640000", "18576->0.640000", "73729->0.642000" ]
]
]
)");
#else // for mac
auto ref = json::parse(R"(
[
[
[ "1024->0.000000", "59169->0.645000", "98548->0.646000", "3356->0.646000", "90373->0.647000" ],
[ "1025->0.000000", "61245->0.638000", "95271->0.639000", "31087->0.639000", "31549->0.640000" ],
[ "1026->0.000000", "65225->0.648000", "35750->0.648000", "14971->0.649000", "75385->0.649000" ],
[ "1027->0.000000", "70158->0.640000", "27076->0.640000", "3407->0.641000", "59527->0.641000" ],
[ "1028->0.000000", "45757->0.645000", "3356->0.645000", "77230->0.646000", "28690->0.647000" ],
[ "1029->0.000000", "13291->0.642000", "24960->0.643000", "83770->0.643000", "88244->0.643000" ],
[ "1030->0.000000", "96807->0.641000", "39920->0.643000", "62943->0.644000", "12603->0.644000" ],
[ "1031->0.000000", "65769->0.648000", "60493->0.648000", "48738->0.648000", "4353->0.648000" ],
[ "1032->0.000000", "57827->0.637000", "8213->0.638000", "22221->0.639000", "23328->0.640000" ],
[ "1033->0.000000", "676->0.645000", "91430->0.646000", "85353->0.646000", "6014->0.646000" ]
]
]
)");
#endif
auto json_str = json.dump(2);
auto ref_str = ref.dump(2);
ASSERT_EQ(json_str, ref_str);
}
TEST(Indexing, Naive) {
constexpr int N = 10000;
constexpr int TOPK = 10;
auto [raw_data, timestamps, uids] = generate_data<DIM>(N);
milvus::index::CreateIndexInfo create_index_info;
create_index_info.field_type = DataType::VECTOR_FLOAT;
create_index_info.metric_type = knowhere::metric::L2;
create_index_info.index_type = knowhere::IndexEnum::INDEX_FAISS_IVFPQ;
auto index = milvus::index::IndexFactory::GetInstance().CreateIndex(create_index_info, nullptr);
auto build_conf = knowhere::Config{
{knowhere::meta::METRIC_TYPE, knowhere::metric::L2},
{knowhere::meta::DIM, std::to_string(DIM)},
{knowhere::indexparam::NLIST, "100"},
{knowhere::indexparam::M, "4"},
{knowhere::indexparam::NBITS, "8"},
};
auto search_conf = knowhere::Config{
{knowhere::meta::METRIC_TYPE, knowhere::metric::L2},
{knowhere::indexparam::NPROBE, 4},
};
std::vector<knowhere::DatasetPtr> datasets;
std::vector<std::vector<float>> ftrashs;
auto raw = raw_data.data();
for (int beg = 0; beg < N; beg += TestChunkSize) {
auto end = beg + TestChunkSize;
if (end > N) {
end = N;
}
std::vector<float> ft(raw + DIM * beg, raw + DIM * end);
auto ds = knowhere::GenDataset(end - beg, DIM, ft.data());
datasets.push_back(ds);
ftrashs.push_back(std::move(ft));
}
for (auto& ds : datasets) {
index->BuildWithDataset(ds, build_conf);
}
auto bitmap = BitsetType(N, false);
// exclude the first
for (int i = 0; i < N / 2; ++i) {
bitmap.set(i);
}
BitsetView view = bitmap;
auto query_ds = knowhere::GenDataset(1, DIM, raw_data.data());
milvus::SearchInfo searchInfo;
searchInfo.topk_ = TOPK;
searchInfo.metric_type_ = knowhere::metric::L2;
searchInfo.search_params_ = search_conf;
auto vec_index = dynamic_cast<index::VectorIndex*>(index.get());
auto result = vec_index->Query(query_ds, searchInfo, view);
for (int i = 0; i < TOPK; ++i) {
if (result->seg_offsets_[i] < N / 2) {
std::cout << "WRONG: ";
}
std::cout << result->seg_offsets_[i] << "->" << result->distances_[i] << std::endl;
}
}
using Param = std::pair<knowhere::IndexType, knowhere::MetricType>;
class IndexTest : public ::testing::TestWithParam<Param> {
protected:
void
SetUp() override {
knowhere::KnowhereConfig::SetStatisticsLevel(3);
storage_config_ = get_default_storage_config();
auto param = GetParam();
index_type = param.first;
metric_type = param.second;
build_conf = generate_build_conf(index_type, metric_type);
load_conf = generate_load_conf(index_type, metric_type, NB);
search_conf = generate_search_conf(index_type, metric_type);
std::map<knowhere::MetricType, bool> is_binary_map = {
{knowhere::IndexEnum::INDEX_FAISS_IDMAP, false},
{knowhere::IndexEnum::INDEX_FAISS_IVFPQ, false},
{knowhere::IndexEnum::INDEX_FAISS_IVFFLAT, false},
{knowhere::IndexEnum::INDEX_FAISS_IVFSQ8, false},
{knowhere::IndexEnum::INDEX_FAISS_BIN_IVFFLAT, true},
{knowhere::IndexEnum::INDEX_FAISS_BIN_IDMAP, true},
{knowhere::IndexEnum::INDEX_HNSW, false},
{knowhere::IndexEnum::INDEX_ANNOY, false},
{knowhere::IndexEnum::INDEX_DISKANN, false},
};
is_binary = is_binary_map[index_type];
if (is_binary) {
vec_field_data_type = milvus::DataType::VECTOR_BINARY;
} else {
vec_field_data_type = milvus::DataType::VECTOR_FLOAT;
}
auto dataset = GenDataset(NB, metric_type, is_binary);
if (!is_binary) {
xb_data = dataset.get_col<float>(milvus::FieldId(100));
xb_dataset = knowhere::GenDataset(NB, DIM, xb_data.data());
xq_dataset = knowhere::GenDataset(NQ, DIM, xb_data.data() + DIM * query_offset);
} else {
xb_bin_data = dataset.get_col<uint8_t>(milvus::FieldId(100));
xb_dataset = knowhere::GenDataset(NB, DIM, xb_bin_data.data());
xq_dataset = knowhere::GenDataset(NQ, DIM, xb_bin_data.data() + DIM * query_offset);
}
}
void
TearDown() override {
}
protected:
std::string index_type, metric_type;
bool is_binary;
milvus::Config build_conf;
milvus::Config load_conf;
milvus::Config search_conf;
milvus::DataType vec_field_data_type;
knowhere::DatasetPtr xb_dataset;
std::vector<float> xb_data;
std::vector<uint8_t> xb_bin_data;
knowhere::DatasetPtr xq_dataset;
int64_t query_offset = 100;
int64_t NB = 10000;
StorageConfig storage_config_;
};
INSTANTIATE_TEST_CASE_P(
IndexTypeParameters,
IndexTest,
::testing::Values(std::pair(knowhere::IndexEnum::INDEX_FAISS_IDMAP, knowhere::metric::L2),
std::pair(knowhere::IndexEnum::INDEX_FAISS_IVFPQ, knowhere::metric::L2),
std::pair(knowhere::IndexEnum::INDEX_FAISS_IVFFLAT, knowhere::metric::L2),
std::pair(knowhere::IndexEnum::INDEX_FAISS_IVFSQ8, knowhere::metric::L2),
std::pair(knowhere::IndexEnum::INDEX_FAISS_BIN_IVFFLAT, knowhere::metric::JACCARD),
std::pair(knowhere::IndexEnum::INDEX_FAISS_BIN_IVFFLAT, knowhere::metric::TANIMOTO),
std::pair(knowhere::IndexEnum::INDEX_FAISS_BIN_IDMAP, knowhere::metric::JACCARD),
std::pair(knowhere::IndexEnum::INDEX_HNSW, knowhere::metric::L2),
// ci ut not start minio, so not run ut about diskann index for now
//#ifdef BUILD_DISK_ANN
// std::pair(knowhere::IndexEnum::INDEX_DISKANN, knowhere::metric::L2),
//#endif
std::pair(knowhere::IndexEnum::INDEX_ANNOY, knowhere::metric::L2)));
TEST_P(IndexTest, BuildAndQuery) {
milvus::index::CreateIndexInfo create_index_info;
create_index_info.index_type = index_type;
create_index_info.metric_type = metric_type;
create_index_info.field_type = vec_field_data_type;
index::IndexBasePtr index;
if (index_type == knowhere::IndexEnum::INDEX_DISKANN) {
#ifdef BUILD_DISK_ANN
milvus::storage::FieldDataMeta field_data_meta{1, 2, 3, 100};
milvus::storage::IndexMeta index_meta{3, 100, 1000, 1};
auto file_manager =
std::make_shared<milvus::storage::DiskFileManagerImpl>(field_data_meta, index_meta, storage_config_);
index = milvus::index::IndexFactory::GetInstance().CreateIndex(create_index_info, file_manager);
#endif
} else {
index = milvus::index::IndexFactory::GetInstance().CreateIndex(create_index_info, nullptr);
}
ASSERT_NO_THROW(index->BuildWithDataset(xb_dataset, build_conf));
milvus::index::IndexBasePtr new_index;
milvus::index::VectorIndex* vec_index = nullptr;
if (index_type == knowhere::IndexEnum::INDEX_DISKANN) {
#ifdef BUILD_DISK_ANN
// TODO ::diskann.query need load first, ugly
auto binary_set = index->Serialize(milvus::Config{});
index.reset();
milvus::storage::FieldDataMeta field_data_meta{1, 2, 3, 100};
milvus::storage::IndexMeta index_meta{3, 100, 1000, 1};
auto file_manager =
std::make_shared<milvus::storage::DiskFileManagerImpl>(field_data_meta, index_meta, storage_config_);
new_index = milvus::index::IndexFactory::GetInstance().CreateIndex(create_index_info, file_manager);
vec_index = dynamic_cast<milvus::index::VectorIndex*>(new_index.get());
std::vector<std::string> index_files;
for (auto& binary : binary_set.binary_map_) {
index_files.emplace_back(binary.first);
}
load_conf["index_files"] = index_files;
vec_index->Load(binary_set, load_conf);
EXPECT_EQ(vec_index->Count(), NB);
#endif
} else {
vec_index = dynamic_cast<milvus::index::VectorIndex*>(index.get());
}
EXPECT_EQ(vec_index->GetDim(), DIM);
EXPECT_EQ(vec_index->Count(), NB);
milvus::SearchInfo search_info;
search_info.topk_ = K;
search_info.metric_type_ = metric_type;
search_info.search_params_ = search_conf;
auto result = vec_index->Query(xq_dataset, search_info, nullptr);
EXPECT_EQ(result->total_nq_, NQ);
EXPECT_EQ(result->unity_topK_, K);
EXPECT_EQ(result->distances_.size(), NQ * K);
EXPECT_EQ(result->seg_offsets_.size(), NQ * K);
if (!is_binary) {
EXPECT_EQ(result->seg_offsets_[0], query_offset);
}
}