milvus/tests/python_client/milvus_client/test_milvus_client_index.py

620 lines
32 KiB
Python
Raw Normal View History

import multiprocessing
import numbers
import random
import numpy
import threading
import pytest
import pandas as pd
import decimal
from decimal import Decimal, getcontext
from time import sleep
import heapq
from base.client_base import TestcaseBase
from utils.util_log import test_log as log
from common import common_func as cf
from common import common_type as ct
from common.common_type import CaseLabel, CheckTasks
from utils.util_pymilvus import *
from common.constants import *
from pymilvus.orm.types import CONSISTENCY_STRONG, CONSISTENCY_BOUNDED, CONSISTENCY_SESSION, CONSISTENCY_EVENTUALLY
from base.high_level_api_wrapper import HighLevelApiWrapper
client_w = HighLevelApiWrapper()
prefix = "milvus_client_api_index"
epsilon = ct.epsilon
default_nb = ct.default_nb
default_nb_medium = ct.default_nb_medium
default_nq = ct.default_nq
default_dim = ct.default_dim
default_limit = ct.default_limit
default_search_exp = "id >= 0"
exp_res = "exp_res"
default_search_string_exp = "varchar >= \"0\""
default_search_mix_exp = "int64 >= 0 && varchar >= \"0\""
default_invaild_string_exp = "varchar >= 0"
default_json_search_exp = "json_field[\"number\"] >= 0"
perfix_expr = 'varchar like "0%"'
default_search_field = ct.default_float_vec_field_name
default_search_params = ct.default_search_params
default_primary_key_field_name = "id"
default_vector_field_name = "vector"
default_multiple_vector_field_name = "vector_new"
default_float_field_name = ct.default_float_field_name
default_bool_field_name = ct.default_bool_field_name
default_string_field_name = ct.default_string_field_name
default_int32_array_field_name = ct.default_int32_array_field_name
default_string_array_field_name = ct.default_string_array_field_name
class TestMilvusClientIndexInvalid(TestcaseBase):
""" Test case of search interface """
@pytest.fixture(scope="function", params=[False, True])
def auto_id(self, request):
yield request.param
@pytest.fixture(scope="function", params=["COSINE", "L2"])
def metric_type(self, request):
yield request.param
"""
******************************************************************
# The following are invalid base cases
******************************************************************
"""
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("name", ["12-s", "12 s", "(mn)", "中文", "%$#"])
def test_milvus_client_index_invalid_collection_name(self, name):
"""
target: test search (high level api) normal case
method: create connection, collection, insert and search
expected: search/query successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
client_w.release_collection(client, collection_name)
client_w.drop_index(client, collection_name, "vector")
# 2. prepare index params
index_params = client_w.prepare_index_params(client)[0]
index_params.add_index(field_name = "vector")
# 3. create index
error = {ct.err_code: 1100, ct.err_msg: f"Invalid collection name: {name}. the first character of a collection "
f"name must be an underscore or letter: invalid parameter"}
client_w.create_index(client, name, index_params,
check_task=CheckTasks.err_res, check_items=error)
client_w.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("name", ["a".join("a" for i in range(256))])
def test_milvus_client_index_collection_name_over_max_length(self, name):
"""
target: test search (high level api) normal case
method: create connection, collection, insert and search
expected: search/query successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
client_w.release_collection(client, collection_name)
client_w.drop_index(client, collection_name, "vector")
# 2. prepare index params
index_params = client_w.prepare_index_params(client)[0]
index_params.add_index(field_name = "vector")
# 3. create index
error = {ct.err_code: 1100, ct.err_msg: f"Invalid collection name: {name}. the length of a collection name "
f"must be less than 255 characters: invalid parameter"}
client_w.create_index(client, name, index_params,
check_task=CheckTasks.err_res, check_items=error)
client_w.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_index_not_exist_collection_name(self):
"""
target: test search (high level api) normal case
method: create connection, collection, insert and search
expected: search/query successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
not_existed_collection_name = cf.gen_unique_str("not_existed_collection")
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
client_w.release_collection(client, collection_name)
client_w.drop_index(client, collection_name, "vector")
# 2. prepare index params
index_params = client_w.prepare_index_params(client)[0]
index_params.add_index(field_name = "vector")
# 3. create index
error = {ct.err_code: 100, ct.err_msg: f"can't find collection collection not "
f"found[database=default][collection=not_existed]"}
client_w.create_index(client, not_existed_collection_name, index_params,
check_task=CheckTasks.err_res, check_items=error)
client_w.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.skip(reason="pymilvus issue 1885")
@pytest.mark.parametrize("index", ["12-s", "12 s", "(mn)", "中文", "%$#", "a".join("a" for i in range(256))])
def test_milvus_client_index_invalid_index_type(self, index):
"""
target: test search (high level api) normal case
method: create connection, collection, insert and search
expected: search/query successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
client_w.release_collection(client, collection_name)
client_w.drop_index(client, collection_name, "vector")
# 2. prepare index params
index_params = client_w.prepare_index_params(client)[0]
index_params.add_index(field_name = "vector", index_type=index)
# 3. create index
error = {ct.err_code: 100, ct.err_msg: f"can't find collection collection not "
f"found[database=default][collection=not_existed]"}
client_w.create_index(client, collection_name, index_params,
check_task=CheckTasks.err_res, check_items=error)
client_w.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.skip(reason="pymilvus issue 1885")
@pytest.mark.parametrize("metric", ["12-s", "12 s", "(mn)", "中文", "%$#", "a".join("a" for i in range(256))])
def test_milvus_client_index_invalid_metric_type(self, metric):
"""
target: test search (high level api) normal case
method: create connection, collection, insert and search
expected: search/query successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
client_w.release_collection(client, collection_name)
client_w.drop_index(client, collection_name, "vector")
# 2. prepare index params
index_params = client_w.prepare_index_params(client)[0]
index_params.add_index(field_name = "vector", metric_type = metric)
# 3. create index
error = {ct.err_code: 100, ct.err_msg: f"can't find collection collection not "
f"found[database=default][collection=not_existed]"}
client_w.create_index(client, collection_name, index_params,
check_task=CheckTasks.err_res, check_items=error)
client_w.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_index_drop_index_before_release(self):
"""
target: test search (high level api) normal case
method: create connection, collection, insert and search
expected: search/query successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
error = {ct.err_code: 65535, ct.err_msg: f"index cannot be dropped, collection is loaded, "
f"please release it first"}
client_w.drop_index(client, collection_name, "vector",
check_task=CheckTasks.err_res, check_items=error)
client_w.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.skip(reason="pymilvus issue 1886")
def test_milvus_client_index_multiple_indexes_one_field(self):
"""
target: test search (high level api) normal case
method: create connection, collection, insert and search
expected: search/query successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
# 2. prepare index params
index_params = client_w.prepare_index_params(client)[0]
index_params.add_index(field_name = "vector", index_type="HNSW", metric_type="IP")
# 3. create index
client_w.create_index(client, collection_name, index_params)
# 4. prepare index params
index_params = client_w.prepare_index_params(client)[0]
index_params.add_index(field_name="vector", index_type="IVF_FLAT", metric_type="L2")
error = {ct.err_code: 1100, ct.err_msg: f""}
# 5. create another index
client_w.create_index(client, collection_name, index_params,
check_task=CheckTasks.err_res, check_items=error)
client_w.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.skip(reason="pymilvus issue 1886")
def test_milvus_client_create_diff_index_without_release(self):
"""
target: test search (high level api) normal case
method: create connection, collection, insert and search
expected: raise exception
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
# 2. prepare index params
index_params = client_w.prepare_index_params(client)[0]
index_params.add_index(field_name = "vector", index_type="HNSW", metric_type="L2")
# 3. create index
client_w.create_index(client, collection_name, index_params)
client_w.drop_collection(client, collection_name)
class TestMilvusClientIndexValid(TestcaseBase):
""" Test case of search interface """
@pytest.fixture(scope="function", params=[False, True])
def auto_id(self, request):
yield request.param
@pytest.fixture(scope="function", params=["COSINE", "L2", "IP"])
def metric_type(self, request):
yield request.param
@pytest.fixture(scope="function", params=["TRIE", "STL_SORT", "AUTOINDEX"])
def scalar_index(self, request):
yield request.param
"""
******************************************************************
# The following are valid base cases
******************************************************************
"""
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.skip("https://github.com/milvus-io/pymilvus/issues/1886")
@pytest.mark.parametrize("index, params",
zip(ct.all_index_types[:7],
ct.default_index_params[:7]))
def test_milvus_client_index_default(self, index, params, metric_type):
"""
target: test search (high level api) normal case
method: create connection, collection, insert and search
expected: search/query successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
client_w.release_collection(client, collection_name)
client_w.drop_index(client, collection_name, "vector")
res = client_w.list_indexes(client, collection_name)[0]
assert res == []
# 2. prepare index params
index_params = client_w.prepare_index_params(client)[0]
index_params.add_index(field_name="vector", index_type=index, metric_type=metric_type)
# 3. create index
client_w.create_index(client, collection_name, index_params)
# 4. create same index twice
client_w.create_index(client, collection_name, index_params)
# 5. insert
rng = np.random.default_rng(seed=19530)
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
client_w.insert(client, collection_name, rows)
# 6. load collection
client_w.load_collection(client, collection_name)
# 7. search
vectors_to_search = rng.random((1, default_dim))
insert_ids = [i for i in range(default_nb)]
client_w.search(client, collection_name, vectors_to_search,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"ids": insert_ids,
"limit": default_limit})
# 8. query
client_w.query(client, collection_name, filter=default_search_exp,
check_task=CheckTasks.check_query_results,
check_items={exp_res: rows,
"with_vec": True,
"primary_field": default_primary_key_field_name})
client_w.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.skip(reason="pymilvus issue 1884")
@pytest.mark.parametrize("index, params",
zip(ct.all_index_types[:7],
ct.default_index_params[:7]))
def test_milvus_client_index_with_params(self, index, params, metric_type):
"""
target: test search (high level api) normal case
method: create connection, collection, insert and search
expected: search/query successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
client_w.release_collection(client, collection_name)
client_w.drop_index(client, collection_name, "vector")
res = client_w.list_indexes(client, collection_name)[0]
assert res == []
# 2. prepare index params
index_params = client_w.prepare_index_params(client)[0]
index_params.add_index(field_name = "vector", index_type=index, params=params,metric_type = metric_type)
# 3. create index
client_w.create_index(client, collection_name, index_params)
# 4. insert
rng = np.random.default_rng(seed=19530)
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
client_w.insert(client, collection_name, rows)
# 5. load collection
client_w.load_collection(client, collection_name)
# 6. search
vectors_to_search = rng.random((1, default_dim))
insert_ids = [i for i in range(default_nb)]
client_w.search(client, collection_name, vectors_to_search,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"ids": insert_ids,
"limit": default_limit})
# 7. query
client_w.query(client, collection_name, filter=default_search_exp,
check_task=CheckTasks.check_query_results,
check_items={exp_res: rows,
"with_vec": True,
"primary_field": default_primary_key_field_name})
client_w.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.skip("wait for modification")
@pytest.mark.parametrize("index, params",
zip(ct.all_index_types[:7],
ct.default_index_params[:7]))
def test_milvus_client_index_after_insert(self, index, params, metric_type):
"""
target: test search (high level api) normal case
method: create connection, collection, insert and search
expected: search/query successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
client_w.release_collection(client, collection_name)
client_w.drop_index(client, collection_name, "vector")
# 2. insert
rng = np.random.default_rng(seed=19530)
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
client_w.insert(client, collection_name, rows)
# 3. prepare index params
index_params = client_w.prepare_index_params(client)[0]
index_params.add_index(field_name = "vector", index_type=index, metric_type = metric_type)
# 4. create index
client_w.create_index(client, collection_name, index_params)
# 5. load collection
client_w.load_collection(client, collection_name)
# 5. search
vectors_to_search = rng.random((1, default_dim))
insert_ids = [i for i in range(default_nb)]
client_w.search(client, collection_name, vectors_to_search,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"ids": insert_ids,
"limit": default_limit})
# 4. query
client_w.query(client, collection_name, filter=default_search_exp,
check_task=CheckTasks.check_query_results,
check_items={exp_res: rows,
"with_vec": True,
"primary_field": default_primary_key_field_name})
client_w.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.skip("wait for modification")
def test_milvus_client_index_auto_index(self, scalar_index, metric_type):
"""
target: test search (high level api) normal case
method: create connection, collection, insert and search
expected: search/query successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
client_w.release_collection(client, collection_name)
client_w.drop_index(client, collection_name, "vector")
res = client_w.list_indexes(client, collection_name)[0]
assert res == []
# 2. prepare index params
index = "AUTOINDEX"
index_params = client_w.prepare_index_params(client)[0]
index_params.add_index(field_name = "vector", index_type=index, metric_type = metric_type)
index_params.add_index(field_name="id", index_type=scalar_index, metric_type=metric_type)
# 3. create index
client_w.create_index(client, collection_name, index_params)
# 4. drop index
client_w.drop_index(client, collection_name, "vector")
client_w.drop_index(client, collection_name, "id")
# 5. create index
client_w.create_index(client, collection_name, index_params)
# 6. insert
rng = np.random.default_rng(seed=19530)
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
client_w.insert(client, collection_name, rows)
# 7. load collection
client_w.load_collection(client, collection_name)
# 8. search
vectors_to_search = rng.random((1, default_dim))
insert_ids = [i for i in range(default_nb)]
client_w.search(client, collection_name, vectors_to_search,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"ids": insert_ids,
"limit": default_limit})
# 9. query
client_w.query(client, collection_name, filter=default_search_exp,
check_task=CheckTasks.check_query_results,
check_items={exp_res: rows,
"with_vec": True,
"primary_field": default_primary_key_field_name})
client_w.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.skip("wait for modification")
def test_milvus_client_index_multiple_vectors(self, scalar_index, metric_type):
"""
target: test search (high level api) normal case
method: create connection, collection, insert and search
expected: search/query successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
client_w.release_collection(client, collection_name)
client_w.drop_index(client, collection_name, "vector")
res = client_w.list_indexes(client, collection_name)[0]
assert res == []
# 2. prepare index params
index = "AUTOINDEX"
index_params = client_w.prepare_index_params(client)[0]
index_params.add_index(field_name = "vector", index_type=index, metric_type = metric_type)
index_params.add_index(field_name="id", index_type=scalar_index, metric_type=metric_type)
# 3. create index
client_w.create_index(client, collection_name, index_params)
# 4. insert
rng = np.random.default_rng(seed=19530)
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: i * 1.0, default_string_field_name: str(i),
default_multiple_vector_field_name: list(rng.random((1, default_dim))[0])} for i in range(default_nb)]
client_w.insert(client, collection_name, rows)
# 5. load collection
client_w.load_collection(client, collection_name)
# 6. search
vectors_to_search = rng.random((1, default_dim))
insert_ids = [i for i in range(default_nb)]
client_w.search(client, collection_name, vectors_to_search,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"ids": insert_ids,
"limit": default_limit})
# 7. query
client_w.query(client, collection_name, filter=default_search_exp,
check_task=CheckTasks.check_query_results,
check_items={exp_res: rows,
"with_vec": True,
"primary_field": default_primary_key_field_name})
client_w.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.skip("wait for modification")
@pytest.mark.parametrize("index, params",
zip(ct.all_index_types[:7],
ct.default_index_params[:7]))
def test_milvus_client_index_drop_create_same_index(self, index, params, metric_type):
"""
target: test search (high level api) normal case
method: create connection, collection, insert and search
expected: search/query successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
client_w.release_collection(client, collection_name)
client_w.drop_index(client, collection_name, "vector")
res = client_w.list_indexes(client, collection_name)[0]
assert res == []
# 2. prepare index params
index_params = client_w.prepare_index_params(client)[0]
index_params.add_index(field_name = "vector", index_type=index, metric_type = metric_type)
# 3. create index
client_w.create_index(client, collection_name, index_params)
# 4. drop index
client_w.drop_index(client, collection_name, "vector")
# 4. create same index twice
client_w.create_index(client, collection_name, index_params)
# 5. insert
rng = np.random.default_rng(seed=19530)
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
client_w.insert(client, collection_name, rows)
# 6. load collection
client_w.load_collection(client, collection_name)
# 7. search
vectors_to_search = rng.random((1, default_dim))
insert_ids = [i for i in range(default_nb)]
client_w.search(client, collection_name, vectors_to_search,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"ids": insert_ids,
"limit": default_limit})
# 8. query
client_w.query(client, collection_name, filter=default_search_exp,
check_task=CheckTasks.check_query_results,
check_items={exp_res: rows,
"with_vec": True,
"primary_field": default_primary_key_field_name})
client_w.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.skip("wait for modification")
@pytest.mark.parametrize("index, params",
zip(ct.all_index_types[:7],
ct.default_index_params[:7]))
def test_milvus_client_index_drop_create_different_index(self, index, params, metric_type):
"""
target: test search (high level api) normal case
method: create connection, collection, insert and search
expected: search/query successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
client_w.release_collection(client, collection_name)
client_w.drop_index(client, collection_name, "vector")
res = client_w.list_indexes(client, collection_name)[0]
assert res == []
# 2. prepare index params
index_params = client_w.prepare_index_params(client)[0]
index_params.add_index(field_name="vector", metric_type=metric_type)
# 3. create index
client_w.create_index(client, collection_name, index_params)
# 4. drop index
client_w.drop_index(client, collection_name, "vector")
# 4. create different index
index_params.add_index(field_name="vector", index_type=index, metric_type=metric_type)
client_w.create_index(client, collection_name, index_params)
# 5. insert
rng = np.random.default_rng(seed=19530)
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
client_w.insert(client, collection_name, rows)
# 6. load collection
client_w.load_collection(client, collection_name)
# 7. search
vectors_to_search = rng.random((1, default_dim))
insert_ids = [i for i in range(default_nb)]
client_w.search(client, collection_name, vectors_to_search,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"ids": insert_ids,
"limit": default_limit})
# 8. query
client_w.query(client, collection_name, filter=default_search_exp,
check_task=CheckTasks.check_query_results,
check_items={exp_res: rows,
"with_vec": True,
"primary_field": default_primary_key_field_name})
client_w.drop_collection(client, collection_name)