2022-05-10 14:35:52 +08:00
|
|
|
import multiprocessing
|
|
|
|
import numbers
|
2022-08-02 11:48:33 +08:00
|
|
|
import random
|
2022-05-10 14:35:52 +08:00
|
|
|
|
|
|
|
import pytest
|
2022-08-29 09:52:59 +08:00
|
|
|
import pandas as pd
|
2022-05-10 14:35:52 +08:00
|
|
|
from time import sleep
|
|
|
|
|
|
|
|
from base.client_base import TestcaseBase
|
|
|
|
from utils.util_log import test_log as log
|
|
|
|
from common import common_func as cf
|
|
|
|
from common import common_type as ct
|
|
|
|
from common.common_type import CaseLabel, CheckTasks
|
|
|
|
from utils.util_pymilvus import *
|
|
|
|
from common.constants import *
|
|
|
|
from pymilvus.orm.types import CONSISTENCY_STRONG, CONSISTENCY_BOUNDED, CONSISTENCY_SESSION, CONSISTENCY_EVENTUALLY
|
|
|
|
|
|
|
|
prefix = "search_collection"
|
|
|
|
search_num = 10
|
|
|
|
max_dim = ct.max_dim
|
2022-08-02 11:48:33 +08:00
|
|
|
min_dim = ct.min_dim
|
2022-05-10 14:35:52 +08:00
|
|
|
epsilon = ct.epsilon
|
|
|
|
gracefulTime = ct.gracefulTime
|
|
|
|
default_nb = ct.default_nb
|
|
|
|
default_nb_medium = ct.default_nb_medium
|
|
|
|
default_nq = ct.default_nq
|
|
|
|
default_dim = ct.default_dim
|
|
|
|
default_limit = ct.default_limit
|
|
|
|
default_search_exp = "int64 >= 0"
|
2022-09-02 10:10:59 +08:00
|
|
|
default_search_string_exp = "varchar >= \"0\""
|
2022-05-10 14:35:52 +08:00
|
|
|
default_search_mix_exp = "int64 >= 0 && varchar >= \"0\""
|
|
|
|
default_invaild_string_exp = "varchar >= 0"
|
2022-05-19 17:15:57 +08:00
|
|
|
perfix_expr = 'varchar like "0%"'
|
2022-05-10 14:35:52 +08:00
|
|
|
default_search_field = ct.default_float_vec_field_name
|
|
|
|
default_search_params = ct.default_search_params
|
|
|
|
default_int64_field_name = ct.default_int64_field_name
|
|
|
|
default_float_field_name = ct.default_float_field_name
|
|
|
|
default_bool_field_name = ct.default_bool_field_name
|
|
|
|
default_string_field_name = ct.default_string_field_name
|
|
|
|
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
|
|
|
|
|
|
|
|
uid = "test_search"
|
|
|
|
nq = 1
|
|
|
|
epsilon = 0.001
|
|
|
|
field_name = default_float_vec_field_name
|
|
|
|
binary_field_name = default_binary_vec_field_name
|
|
|
|
search_param = {"nprobe": 1}
|
|
|
|
entity = gen_entities(1, is_normal=True)
|
|
|
|
entities = gen_entities(default_nb, is_normal=True)
|
|
|
|
raw_vectors, binary_entities = gen_binary_entities(default_nb)
|
|
|
|
default_query, _ = gen_search_vectors_params(field_name, entities, default_top_k, nq)
|
2022-07-11 17:08:25 +08:00
|
|
|
index_name1 = cf.gen_unique_str("float")
|
|
|
|
index_name2 = cf.gen_unique_str("varhar")
|
2022-05-10 14:35:52 +08:00
|
|
|
|
|
|
|
|
|
|
|
class TestCollectionSearchInvalid(TestcaseBase):
|
|
|
|
""" Test case of search interface """
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_vectors)
|
|
|
|
def get_invalid_vectors(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
|
|
|
|
def get_invalid_fields_type(self, request):
|
|
|
|
if isinstance(request.param, str):
|
|
|
|
pytest.skip("string is valid type for field")
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
|
|
|
|
def get_invalid_fields_value(self, request):
|
|
|
|
if not isinstance(request.param, str):
|
|
|
|
pytest.skip("field value only support string")
|
|
|
|
if request.param == "":
|
|
|
|
pytest.skip("empty field is valid")
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
|
|
|
|
def get_invalid_metric_type(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_ints)
|
|
|
|
def get_invalid_limit(self, request):
|
|
|
|
if isinstance(request.param, int) and request.param >= 0:
|
|
|
|
pytest.skip("positive int is valid type for limit")
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
|
|
|
|
def get_invalid_expr_type(self, request):
|
|
|
|
if isinstance(request.param, str):
|
|
|
|
pytest.skip("string is valid type for expr")
|
|
|
|
if request.param is None:
|
|
|
|
pytest.skip("None is valid for expr")
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
|
|
|
|
def get_invalid_expr_value(self, request):
|
|
|
|
if not isinstance(request.param, str):
|
|
|
|
pytest.skip("expression value only support string")
|
|
|
|
if request.param == "":
|
|
|
|
pytest.skip("empty field is valid")
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
|
|
|
|
def get_invalid_expr_bool_value(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
|
|
|
|
def get_invalid_partition(self, request):
|
|
|
|
if request.param == []:
|
|
|
|
pytest.skip("empty is valid for partition")
|
|
|
|
if request.param is None:
|
|
|
|
pytest.skip("None is valid for partition")
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
|
|
|
|
def get_invalid_output_fields(self, request):
|
|
|
|
if request.param == []:
|
|
|
|
pytest.skip("empty is valid for output_fields")
|
|
|
|
if request.param is None:
|
|
|
|
pytest.skip("None is valid for output_fields")
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_ints)
|
|
|
|
def get_invalid_travel_timestamp(self, request):
|
|
|
|
if request.param == 9999999999:
|
|
|
|
pytest.skip("9999999999 is valid for travel timestamp")
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_ints)
|
|
|
|
def get_invalid_guarantee_timestamp(self, request):
|
|
|
|
if request.param == 9999999999:
|
|
|
|
pytest.skip("9999999999 is valid for guarantee_timestamp")
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
"""
|
|
|
|
******************************************************************
|
|
|
|
# The followings are invalid cases
|
|
|
|
******************************************************************
|
|
|
|
"""
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_no_connection(self):
|
|
|
|
"""
|
|
|
|
target: test search without connection
|
|
|
|
method: create and delete connection, then search
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix)[0]
|
|
|
|
# 2. remove connection
|
|
|
|
log.info("test_search_no_connection: removing connection")
|
|
|
|
self.connection_wrap.remove_connection(alias='default')
|
|
|
|
log.info("test_search_no_connection: removed connection")
|
|
|
|
# 3. search without connection
|
|
|
|
log.info("test_search_no_connection: searching without connection")
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "should create connect first"})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_no_collection(self):
|
|
|
|
"""
|
|
|
|
target: test the scenario which search the non-exist collection
|
|
|
|
method: 1. create collection
|
|
|
|
2. drop collection
|
|
|
|
3. search the dropped collection
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize without data
|
|
|
|
collection_w = self.init_collection_general(prefix)[0]
|
|
|
|
# 2. Drop collection
|
|
|
|
collection_w.drop()
|
|
|
|
# 3. Search without collection
|
|
|
|
log.info("test_search_no_collection: Searching without collection ")
|
|
|
|
collection_w.search(vectors, default_search_field,
|
|
|
|
default_search_params, default_limit, default_search_exp,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "collection %s doesn't exist!" % collection_w.name})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_param_missing(self):
|
|
|
|
"""
|
|
|
|
target: test search with incomplete parameters
|
|
|
|
method: search with incomplete parameters
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize without data
|
|
|
|
collection_w = self.init_collection_general(prefix)[0]
|
|
|
|
# 2. search collection with missing parameters
|
|
|
|
log.info("test_search_param_missing: Searching collection %s "
|
|
|
|
"with missing parameters" % collection_w.name)
|
|
|
|
try:
|
|
|
|
collection_w.search()
|
|
|
|
except TypeError as e:
|
|
|
|
assert "missing 4 required positional arguments: 'data', " \
|
|
|
|
"'anns_field', 'param', and 'limit'" in str(e)
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_param_invalid_vectors(self, get_invalid_vectors):
|
|
|
|
"""
|
|
|
|
target: test search with invalid parameter values
|
|
|
|
method: search with invalid data
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix)[0]
|
|
|
|
# 2. search with invalid field
|
|
|
|
invalid_vectors = get_invalid_vectors
|
|
|
|
log.info("test_search_param_invalid_vectors: searching with "
|
|
|
|
"invalid vectors: {}".format(invalid_vectors))
|
|
|
|
collection_w.search(invalid_vectors, default_search_field, default_search_params,
|
|
|
|
default_limit, default_search_exp,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "`search_data` value {} is illegal".format(invalid_vectors)})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_param_invalid_dim(self):
|
|
|
|
"""
|
|
|
|
target: test search with invalid parameter values
|
|
|
|
method: search with invalid dim
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix, True)[0]
|
|
|
|
# 2. search with invalid dim
|
|
|
|
log.info("test_search_param_invalid_dim: searching with invalid dim")
|
|
|
|
wrong_dim = 129
|
|
|
|
vectors = [[random.random() for _ in range(wrong_dim)] for _ in range(default_nq)]
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit, default_search_exp,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "The dimension of query entities "
|
|
|
|
"is different from schema"})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_param_invalid_field_type(self, get_invalid_fields_type):
|
|
|
|
"""
|
|
|
|
target: test search with invalid parameter type
|
|
|
|
method: search with invalid field type
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix)[0]
|
|
|
|
# 2. search with invalid field
|
|
|
|
invalid_search_field = get_invalid_fields_type
|
|
|
|
log.info("test_search_param_invalid_field_type: searching with "
|
|
|
|
"invalid field: %s" % invalid_search_field)
|
|
|
|
collection_w.search(vectors[:default_nq], invalid_search_field, default_search_params,
|
|
|
|
default_limit, default_search_exp,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "`anns_field` value {} is illegal".format(invalid_search_field)})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_param_invalid_field_value(self, get_invalid_fields_value):
|
|
|
|
"""
|
|
|
|
target: test search with invalid parameter values
|
|
|
|
method: search with invalid field value
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix)[0]
|
|
|
|
# 2. search with invalid field
|
|
|
|
invalid_search_field = get_invalid_fields_value
|
|
|
|
log.info("test_search_param_invalid_field_value: searching with "
|
|
|
|
"invalid field: %s" % invalid_search_field)
|
|
|
|
collection_w.search(vectors[:default_nq], invalid_search_field, default_search_params,
|
|
|
|
default_limit, default_search_exp,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "Field %s doesn't exist in schema"
|
|
|
|
% invalid_search_field})
|
|
|
|
|
2022-07-04 08:56:20 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
2022-05-10 14:35:52 +08:00
|
|
|
def test_search_param_invalid_metric_type(self, get_invalid_metric_type):
|
|
|
|
"""
|
|
|
|
target: test search with invalid parameter values
|
|
|
|
method: search with invalid metric type
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix, True, 10)[0]
|
|
|
|
# 2. search with invalid metric_type
|
|
|
|
log.info("test_search_param_invalid_metric_type: searching with invalid metric_type")
|
|
|
|
invalid_metric = get_invalid_metric_type
|
|
|
|
search_params = {"metric_type": invalid_metric, "params": {"nprobe": 10}}
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field, search_params,
|
|
|
|
default_limit, default_search_exp,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "metric type not found"})
|
|
|
|
|
2022-07-04 08:56:20 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
2022-05-10 14:35:52 +08:00
|
|
|
@pytest.mark.parametrize("index, params",
|
2022-09-05 10:41:11 +08:00
|
|
|
zip(ct.all_index_types[:6],
|
|
|
|
ct.default_index_params[:6]))
|
2022-05-10 14:35:52 +08:00
|
|
|
def test_search_invalid_params_type(self, index, params):
|
|
|
|
"""
|
|
|
|
target: test search with invalid search params
|
|
|
|
method: test search with invalid params type
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
if index == "FLAT":
|
|
|
|
pytest.skip("skip in FLAT index")
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, 5000,
|
|
|
|
is_index=True)[0:4]
|
|
|
|
# 2. create index and load
|
|
|
|
default_index = {"index_type": index, "params": params, "metric_type": "L2"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
# 3. search
|
|
|
|
invalid_search_params = cf.gen_invaild_search_params_type()
|
|
|
|
message = "Search params check failed"
|
|
|
|
for invalid_search_param in invalid_search_params:
|
|
|
|
if index == invalid_search_param["index_type"]:
|
|
|
|
search_params = {"metric_type": "L2", "params": invalid_search_param["search_params"]}
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
search_params, default_limit,
|
|
|
|
default_search_exp,
|
|
|
|
check_task=CheckTasks.err_res,
|
2022-06-25 09:54:15 +08:00
|
|
|
check_items={"err_code": 1,
|
2022-05-10 14:35:52 +08:00
|
|
|
"err_msg": message})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_param_invalid_limit_type(self, get_invalid_limit):
|
|
|
|
"""
|
|
|
|
target: test search with invalid limit type
|
|
|
|
method: search with invalid limit type
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix)[0]
|
|
|
|
# 2. search with invalid field
|
|
|
|
invalid_limit = get_invalid_limit
|
|
|
|
log.info("test_search_param_invalid_limit_type: searching with "
|
|
|
|
"invalid limit: %s" % invalid_limit)
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field, default_search_params,
|
|
|
|
invalid_limit, default_search_exp,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "`limit` value %s is illegal" % invalid_limit})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("limit", [0, 16385])
|
|
|
|
def test_search_param_invalid_limit_value(self, limit):
|
|
|
|
"""
|
|
|
|
target: test search with invalid limit value
|
|
|
|
method: search with invalid limit: 0 and maximum
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix)[0]
|
|
|
|
# 2. search with invalid limit (topK)
|
|
|
|
log.info("test_search_param_invalid_limit_value: searching with "
|
|
|
|
"invalid limit (topK) = %s" % limit)
|
|
|
|
err_msg = "limit %d is too large!" % limit
|
|
|
|
if limit == 0:
|
|
|
|
err_msg = "`limit` value 0 is illegal"
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field, default_search_params,
|
|
|
|
limit, default_search_exp,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": err_msg})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_param_invalid_expr_type(self, get_invalid_expr_type):
|
|
|
|
"""
|
|
|
|
target: test search with invalid parameter type
|
|
|
|
method: search with invalid search expressions
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix)[0]
|
|
|
|
# 2 search with invalid expr
|
|
|
|
invalid_search_expr = get_invalid_expr_type
|
|
|
|
log.info("test_search_param_invalid_expr_type: searching with "
|
|
|
|
"invalid expr: {}".format(invalid_search_expr))
|
|
|
|
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit, invalid_search_expr,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "The type of expr must be string ,"
|
|
|
|
"but {} is given".format(type(invalid_search_expr))})
|
|
|
|
|
2022-08-29 09:52:59 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
@pytest.mark.parametrize("expression", cf.gen_field_compare_expressions())
|
|
|
|
def test_search_with_expression_join_two_fields(self, expression):
|
|
|
|
"""
|
|
|
|
target: test search with expressions linking two fields such as 'and'
|
|
|
|
method: create a collection and search with different conjunction
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. create a collection
|
|
|
|
nb = 1000
|
|
|
|
dim = 1
|
|
|
|
fields = [cf.gen_int64_field("int64_1"), cf.gen_int64_field("int64_2"),
|
|
|
|
cf.gen_float_vec_field(dim=dim)]
|
|
|
|
schema = cf.gen_collection_schema(fields=fields, primary_field="int64_1")
|
|
|
|
collection_w = self.init_collection_wrap(schema=schema)
|
|
|
|
|
|
|
|
# 2. insert data
|
|
|
|
values = pd.Series(data=[i for i in range(0, nb)])
|
|
|
|
dataframe = pd.DataFrame({"int64_1": values, "int64_2": values,
|
|
|
|
ct.default_float_vec_field_name: cf.gen_vectors(nb, dim)})
|
|
|
|
collection_w.insert(dataframe)
|
|
|
|
|
|
|
|
# 3. search with expression
|
|
|
|
log.info("test_search_with_expression: searching with expression: %s" % expression)
|
|
|
|
collection_w.load()
|
|
|
|
expression = expression.replace("&&", "and").replace("||", "or")
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, nb, expression,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "failed to create query plan: "
|
|
|
|
"cannot parse expression: %s" % expression})
|
|
|
|
|
2022-05-10 14:35:52 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_param_invalid_expr_value(self, get_invalid_expr_value):
|
|
|
|
"""
|
|
|
|
target: test search with invalid parameter values
|
|
|
|
method: search with invalid search expressions
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix)[0]
|
|
|
|
# 2 search with invalid expr
|
|
|
|
invalid_search_expr = get_invalid_expr_value
|
|
|
|
log.info("test_search_param_invalid_expr_value: searching with "
|
|
|
|
"invalid expr: %s" % invalid_search_expr)
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit, invalid_search_expr,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "invalid expression %s"
|
|
|
|
% invalid_search_expr})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_param_invalid_expr_bool(self, get_invalid_expr_bool_value):
|
|
|
|
"""
|
|
|
|
target: test search with invalid parameter values
|
|
|
|
method: search with invalid bool search expressions
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix, True, is_all_data_type=True)[0]
|
|
|
|
# 2 search with invalid bool expr
|
|
|
|
invalid_search_expr_bool = f"{default_bool_field_name} == {get_invalid_expr_bool_value}"
|
|
|
|
log.info("test_search_param_invalid_expr_bool: searching with "
|
|
|
|
"invalid expr: %s" % invalid_search_expr_bool)
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit, invalid_search_expr_bool,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "failed to create query plan"})
|
|
|
|
|
2022-08-30 16:56:56 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
@pytest.mark.parametrize("expression", ["int64 like 33", "float LIKE 33"])
|
|
|
|
def test_search_with_expression_invalid_like(self, expression):
|
|
|
|
"""
|
|
|
|
target: test search int64 and float with like
|
|
|
|
method: test search int64 and float with like
|
|
|
|
expected: searched failed
|
|
|
|
"""
|
|
|
|
nb = 1000
|
|
|
|
dim = 8
|
|
|
|
collection_w, _vectors, _, insert_ids = self.init_collection_general(prefix, True,
|
|
|
|
nb, dim=dim,
|
|
|
|
is_index=True)[0:4]
|
|
|
|
index_param = {"index_type": "IVF_FLAT", "metric_type": "L2", "params": {"nlist": 100}}
|
|
|
|
collection_w.create_index("float_vector", index_param)
|
|
|
|
collection_w.load()
|
|
|
|
log.info("test_search_with_expression: searching with expression: %s" % expression)
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
search_res, _ = collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, nb, expression,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "failed to create query plan: cannot parse "
|
|
|
|
"expression: %s" % expression})
|
|
|
|
|
2022-05-10 14:35:52 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_partition_invalid_type(self, get_invalid_partition):
|
|
|
|
"""
|
|
|
|
target: test search invalid partition
|
|
|
|
method: search with invalid partition type
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix)[0]
|
|
|
|
# 2. search the invalid partition
|
|
|
|
partition_name = get_invalid_partition
|
|
|
|
err_msg = "`partition_name_array` value {} is illegal".format(partition_name)
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field, default_search_params,
|
|
|
|
default_limit, default_search_exp, partition_name,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": err_msg})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_with_output_fields_invalid_type(self, get_invalid_output_fields):
|
|
|
|
"""
|
|
|
|
target: test search with output fields
|
|
|
|
method: search with invalid output_field
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix)[0]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_with_output_fields_invalid_type: Searching collection %s" % collection_w.name)
|
|
|
|
output_fields = get_invalid_output_fields
|
|
|
|
err_msg = "`output_fields` value {} is illegal".format(output_fields)
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, output_fields=output_fields,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={ct.err_code: 1,
|
|
|
|
ct.err_msg: err_msg})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_release_collection(self):
|
|
|
|
"""
|
|
|
|
target: test the scenario which search the released collection
|
|
|
|
method: 1. create collection
|
|
|
|
2. release collection
|
|
|
|
3. search the released collection
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize without data
|
|
|
|
collection_w = self.init_collection_general(prefix, True, 10)[0]
|
|
|
|
# 2. release collection
|
|
|
|
collection_w.release()
|
|
|
|
# 3. Search the released collection
|
|
|
|
log.info("test_search_release_collection: Searching without collection ")
|
|
|
|
collection_w.search(vectors, default_search_field,
|
|
|
|
default_search_params, default_limit, default_search_exp,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "collection %s was not loaded "
|
|
|
|
"into memory" % collection_w.name})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_release_partition(self):
|
|
|
|
"""
|
|
|
|
target: test the scenario which search the released collection
|
|
|
|
method: 1. create collection
|
|
|
|
2. release partition
|
|
|
|
3. search the released partition
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
partition_num = 1
|
|
|
|
collection_w = self.init_collection_general(prefix, True, 10, partition_num, is_index=True)[0]
|
|
|
|
par = collection_w.partitions
|
|
|
|
par_name = par[partition_num].name
|
|
|
|
par[partition_num].load()
|
|
|
|
# 2. release partition
|
|
|
|
par[partition_num].release()
|
|
|
|
# 3. Search the released partition
|
|
|
|
log.info("test_search_release_partition: Searching the released partition")
|
|
|
|
limit = 10
|
|
|
|
collection_w.search(vectors, default_search_field,
|
|
|
|
default_search_params, limit, default_search_exp,
|
|
|
|
[par_name],
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "partition has been released"})
|
|
|
|
|
|
|
|
@pytest.mark.skip("enable this later using session/strong consistency")
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_with_empty_collection(self):
|
|
|
|
"""
|
|
|
|
target: test search with empty connection
|
|
|
|
method: 1. search the empty collection before load
|
|
|
|
2. search the empty collection after load
|
|
|
|
3. search collection with data inserted but not load again
|
|
|
|
expected: 1. raise exception if not loaded
|
|
|
|
2. return topk=0 if loaded
|
|
|
|
3. return topk successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize without data
|
|
|
|
collection_w = self.init_collection_general(prefix)[0]
|
|
|
|
# 2. search collection without data before load
|
|
|
|
log.info("test_search_with_empty_collection: Searching empty collection %s"
|
|
|
|
% collection_w.name)
|
|
|
|
err_msg = "collection" + collection_w.name + "was not loaded into memory"
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field, default_search_params,
|
|
|
|
default_limit, default_search_exp, timeout=1,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": err_msg})
|
|
|
|
# 3. search collection without data after load
|
|
|
|
collection_w.load()
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field, default_search_params,
|
|
|
|
default_limit, default_search_exp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": [],
|
|
|
|
"limit": 0})
|
|
|
|
# 4. search with data inserted but not load again
|
|
|
|
data = cf.gen_default_dataframe_data(nb=2000)
|
|
|
|
insert_res = collection_w.insert(data)[0]
|
|
|
|
# Using bounded staleness, maybe we cannot search the "inserted" requests,
|
|
|
|
# since the search requests arrived query nodes earlier than query nodes consume the insert requests.
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field, default_search_params,
|
|
|
|
default_limit, default_search_exp,
|
|
|
|
guarantee_timestamp=insert_res.timestamp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_res.primary_keys,
|
|
|
|
"limit": default_limit})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_with_empty_collection_with_partition(self):
|
|
|
|
"""
|
|
|
|
target: test search with empty collection
|
|
|
|
method: 1. collection an empty collection with partitions
|
|
|
|
2. load
|
|
|
|
3. search
|
|
|
|
expected: return 0 result
|
|
|
|
"""
|
|
|
|
# 1. initialize without data
|
|
|
|
collection_w = self.init_collection_general(prefix, partition_num=1)[0]
|
|
|
|
par = collection_w.partitions
|
|
|
|
# 2. search collection without data after load
|
|
|
|
collection_w.load()
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field, default_search_params,
|
|
|
|
default_limit, default_search_exp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": [],
|
|
|
|
"limit": 0})
|
|
|
|
# 2. search a partition without data after load
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field, default_search_params,
|
|
|
|
default_limit, default_search_exp,
|
|
|
|
[par[1].name],
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": [],
|
|
|
|
"limit": 0})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_partition_deleted(self):
|
|
|
|
"""
|
|
|
|
target: test search deleted partition
|
|
|
|
method: 1. create a collection with partitions
|
|
|
|
2. delete a partition
|
|
|
|
3. search the deleted partition
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
partition_num = 1
|
|
|
|
collection_w = self.init_collection_general(prefix, True, 1000, partition_num)[0]
|
|
|
|
# 2. delete partitions
|
|
|
|
log.info("test_search_partition_deleted: deleting a partition")
|
|
|
|
par = collection_w.partitions
|
|
|
|
deleted_par_name = par[partition_num].name
|
|
|
|
collection_w.drop_partition(deleted_par_name)
|
|
|
|
log.info("test_search_partition_deleted: deleted a partition")
|
|
|
|
collection_w.load()
|
|
|
|
# 3. search after delete partitions
|
|
|
|
log.info("test_search_partition_deleted: searching deleted partition")
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit, default_search_exp,
|
|
|
|
[deleted_par_name],
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "PartitonName: %s not found" % deleted_par_name})
|
|
|
|
|
2022-07-04 08:56:20 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
2022-05-10 14:35:52 +08:00
|
|
|
@pytest.mark.parametrize("index, params",
|
2022-09-05 10:41:11 +08:00
|
|
|
zip(ct.all_index_types[1:6],
|
|
|
|
ct.default_index_params[1:6]))
|
2022-05-10 14:35:52 +08:00
|
|
|
def test_search_different_index_invalid_params(self, index, params):
|
|
|
|
"""
|
|
|
|
target: test search with different index
|
|
|
|
method: test search with different index
|
|
|
|
expected: searched successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, 5000,
|
|
|
|
partition_num=1,
|
|
|
|
is_index=True)[0:4]
|
|
|
|
# 2. create different index
|
|
|
|
if params.get("m"):
|
|
|
|
if (default_dim % params["m"]) != 0:
|
|
|
|
params["m"] = default_dim // 4
|
|
|
|
log.info("test_search_different_index_invalid_params: Creating index-%s" % index)
|
|
|
|
default_index = {"index_type": index, "params": params, "metric_type": "L2"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
log.info("test_search_different_index_invalid_params: Created index-%s" % index)
|
|
|
|
collection_w.load()
|
|
|
|
# 3. search
|
|
|
|
log.info("test_search_different_index_invalid_params: Searching after creating index-%s" % index)
|
2022-07-04 08:56:20 +08:00
|
|
|
search_params = cf.gen_invalid_search_param(index)
|
2022-05-10 14:35:52 +08:00
|
|
|
collection_w.search(vectors, default_search_field,
|
2022-07-04 08:56:20 +08:00
|
|
|
search_params[0], default_limit,
|
2022-05-10 14:35:52 +08:00
|
|
|
default_search_exp,
|
2022-07-04 08:56:20 +08:00
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "Search params check failed"})
|
2022-05-10 14:35:52 +08:00
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_index_partition_not_existed(self):
|
|
|
|
"""
|
|
|
|
target: test search not existed partition
|
|
|
|
method: search with not existed partition
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix, True)[0]
|
|
|
|
# 2. create index
|
|
|
|
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
# 3. search the non exist partition
|
|
|
|
partition_name = "search_non_exist"
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field, default_search_params,
|
|
|
|
default_limit, default_search_exp, [partition_name],
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "PartitonName: %s not found" % partition_name})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.xfail(reason="issue 15407")
|
|
|
|
def test_search_param_invalid_binary(self):
|
|
|
|
"""
|
|
|
|
target: test search within binary data (invalid parameter)
|
|
|
|
method: search with wrong metric type
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with binary data
|
|
|
|
collection_w = self.init_collection_general(prefix, True, is_binary=True)[0]
|
|
|
|
# 2. create index
|
|
|
|
default_index = {"index_type": "BIN_IVF_FLAT", "params": {"nlist": 128}, "metric_type": "JACCARD"}
|
|
|
|
collection_w.create_index("binary_vector", default_index)
|
|
|
|
# 3. search with exception
|
|
|
|
binary_vectors = cf.gen_binary_vectors(3000, default_dim)[1]
|
|
|
|
wrong_search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
|
|
|
|
collection_w.search(binary_vectors[:default_nq], "binary_vector", wrong_search_params,
|
|
|
|
default_limit, default_search_exp,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "unsupported"})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.xfail(reason="issue 15407")
|
|
|
|
def test_search_binary_flat_with_L2(self):
|
|
|
|
"""
|
|
|
|
target: search binary collection using FlAT with L2
|
|
|
|
method: search binary collection using FLAT with L2
|
|
|
|
expected: raise exception and report error
|
|
|
|
"""
|
|
|
|
# 1. initialize with binary data
|
|
|
|
collection_w = self.init_collection_general(prefix, True, is_binary=True)[0]
|
|
|
|
# 2. search and assert
|
|
|
|
query_raw_vector, binary_vectors = cf.gen_binary_vectors(2, default_dim)
|
|
|
|
search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
|
|
|
|
collection_w.search(binary_vectors[:default_nq], "binary_vector",
|
|
|
|
search_params, default_limit, "int64 >= 0",
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "Search failed"})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_with_output_fields_not_exist(self):
|
|
|
|
"""
|
|
|
|
target: test search with output fields
|
|
|
|
method: search with non-exist output_field
|
|
|
|
expected: raise exception
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True)[0:4]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_with_output_fields_not_exist: Searching collection %s" % collection_w.name)
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, output_fields=["int63"],
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={ct.err_code: 1,
|
|
|
|
ct.err_msg: "Field int63 not exist"})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
@pytest.mark.parametrize("output_fields", [[default_search_field], ["%"]])
|
|
|
|
def test_search_output_field_vector(self, output_fields):
|
|
|
|
"""
|
|
|
|
target: test search with vector as output field
|
|
|
|
method: search with one vector output_field or
|
|
|
|
wildcard for vector
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix, True)[0]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_output_field_vector: Searching collection %s" % collection_w.name)
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, output_fields=output_fields,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "Search doesn't support "
|
|
|
|
"vector field as output_fields"})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("output_fields", [["*%"], ["**"], ["*", "@"]])
|
|
|
|
def test_search_output_field_invalid_wildcard(self, output_fields):
|
|
|
|
"""
|
|
|
|
target: test search with invalid output wildcard
|
|
|
|
method: search with invalid output_field wildcard
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix, True)[0]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_output_field_invalid_wildcard: Searching collection %s" % collection_w.name)
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, output_fields=output_fields,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": f"Field {output_fields[-1]} not exist"})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_param_invalid_travel_timestamp(self, get_invalid_travel_timestamp):
|
|
|
|
"""
|
|
|
|
target: test search with invalid travel timestamp
|
|
|
|
method: search with invalid travel timestamp
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix, True, 10)[0]
|
|
|
|
# 2. search with invalid travel timestamp
|
|
|
|
log.info("test_search_param_invalid_travel_timestamp: searching with invalid travel timestamp")
|
|
|
|
invalid_travel_time = get_invalid_travel_timestamp
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field, default_search_params,
|
|
|
|
default_limit, default_search_exp,
|
|
|
|
travel_timestamp=invalid_travel_time,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "`travel_timestamp` value %s is illegal" % invalid_travel_time})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_param_invalid_guarantee_timestamp(self, get_invalid_guarantee_timestamp):
|
|
|
|
"""
|
|
|
|
target: test search with invalid guarantee timestamp
|
|
|
|
method: search with invalid guarantee timestamp
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix, True, 10)[0]
|
|
|
|
# 2. search with invalid travel timestamp
|
|
|
|
log.info("test_search_param_invalid_guarantee_timestamp: searching with invalid guarantee timestamp")
|
|
|
|
invalid_guarantee_time = get_invalid_guarantee_timestamp
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field, default_search_params,
|
|
|
|
default_limit, default_search_exp,
|
|
|
|
guarantee_timestamp=invalid_guarantee_time,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "`guarantee_timestamp` value %s is illegal"
|
|
|
|
% invalid_guarantee_time})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("round_decimal", [7, -2, 999, 1.0, None, [1], "string", {}])
|
|
|
|
def test_search_invalid_round_decimal(self, round_decimal):
|
|
|
|
"""
|
|
|
|
target: test search with invalid round decimal
|
|
|
|
method: search with invalid round decimal
|
|
|
|
expected: raise exception and report the error
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix, True, nb=10)[0]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_invalid_round_decimal: Searching collection %s" % collection_w.name)
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, round_decimal=round_decimal,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": f"`round_decimal` value {round_decimal} is illegal"})
|
|
|
|
|
|
|
|
|
|
|
|
class TestCollectionSearch(TestcaseBase):
|
|
|
|
""" Test case of search interface """
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function",
|
|
|
|
params=[default_nb, default_nb_medium])
|
|
|
|
def nb(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=[2, 500])
|
|
|
|
def nq(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=[8, 128])
|
|
|
|
def dim(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
|
|
def auto_id(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
|
|
def _async(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
2022-06-28 20:00:24 +08:00
|
|
|
@pytest.fixture(scope="function", params=["JACCARD", "HAMMING", "TANIMOTO"])
|
|
|
|
def metrics(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
|
|
def is_flush(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
2022-05-10 14:35:52 +08:00
|
|
|
"""
|
|
|
|
******************************************************************
|
|
|
|
# The following are valid base cases
|
|
|
|
******************************************************************
|
|
|
|
"""
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
2022-06-28 20:00:24 +08:00
|
|
|
def test_search_normal(self, nq, dim, auto_id, is_flush):
|
2022-05-10 14:35:52 +08:00
|
|
|
"""
|
|
|
|
target: test search normal case
|
|
|
|
method: create connection, collection, insert and search
|
|
|
|
expected: 1. search returned with 0 before travel timestamp
|
|
|
|
2. search successfully with limit(topK) after travel timestamp
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = \
|
2022-06-28 20:00:24 +08:00
|
|
|
self.init_collection_general(prefix, True, auto_id=auto_id, dim=dim, is_flush=is_flush)[0:5]
|
2022-05-10 14:35:52 +08:00
|
|
|
# 2. search before insert time_stamp
|
|
|
|
log.info("test_search_normal: searching collection %s" % collection_w.name)
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp,
|
|
|
|
travel_timestamp=time_stamp - 1,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": [],
|
|
|
|
"limit": 0})
|
|
|
|
# 3. search after insert time_stamp
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp,
|
|
|
|
travel_timestamp=time_stamp,
|
|
|
|
guarantee_timestamp=0,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
|
|
def test_search_with_hit_vectors(self, nq, dim, auto_id):
|
|
|
|
"""
|
|
|
|
target: test search with vectors in collections
|
|
|
|
method: create connections,collection insert and search vectors in collections
|
|
|
|
expected: search successfully with limit(topK) and can be hit at top 1 (min distance is 0)
|
|
|
|
"""
|
|
|
|
collection_w, _vectors, _, insert_ids = \
|
|
|
|
self.init_collection_general(prefix, True, auto_id=auto_id, dim=dim)[0:4]
|
|
|
|
# get vectors that inserted into collection
|
|
|
|
vectors = np.array(_vectors[0]).tolist()
|
|
|
|
vectors = [vectors[i][-1] for i in range(nq)]
|
|
|
|
log.info("test_search_with_hit_vectors: searching collection %s" % collection_w.name)
|
|
|
|
search_res, _ = collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit})
|
|
|
|
log.info("test_search_with_hit_vectors: checking the distance of top 1")
|
|
|
|
for hits in search_res:
|
|
|
|
# verify that top 1 hit is itself,so min distance is 0
|
|
|
|
assert hits.distances[0] == 0.0
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
@pytest.mark.parametrize("dup_times", [1, 2, 3])
|
|
|
|
def test_search_with_dup_primary_key(self, dim, auto_id, _async, dup_times):
|
|
|
|
"""
|
|
|
|
target: test search with duplicate primary key
|
|
|
|
method: 1.insert same data twice
|
|
|
|
2.search
|
|
|
|
expected: search results are de-duplicated
|
|
|
|
"""
|
|
|
|
# initialize with data
|
|
|
|
nb = ct.default_nb
|
|
|
|
nq = ct.default_nq
|
|
|
|
collection_w, insert_data, _, insert_ids = self.init_collection_general(prefix, True, nb,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:4]
|
|
|
|
# insert dup data multi times
|
|
|
|
for i in range(dup_times):
|
|
|
|
insert_res, _ = collection_w.insert(insert_data[0])
|
|
|
|
insert_ids.extend(insert_res.primary_keys)
|
|
|
|
# search
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
search_res, _ = collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
if _async:
|
|
|
|
search_res.done()
|
|
|
|
search_res = search_res.result()
|
|
|
|
# assert that search results are de-duplicated
|
|
|
|
for hits in search_res:
|
|
|
|
ids = hits.ids
|
|
|
|
assert sorted(list(set(ids))) == sorted(ids)
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_with_empty_vectors(self, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with empty query vector
|
|
|
|
method: search using empty query vector
|
|
|
|
expected: search successfully with 0 results
|
|
|
|
"""
|
|
|
|
# 1. initialize without data
|
|
|
|
collection_w = self.init_collection_general(prefix, True,
|
|
|
|
auto_id=auto_id, dim=dim)[0]
|
|
|
|
# 2. search collection without data
|
|
|
|
log.info("test_search_with_empty_vectors: Searching collection %s "
|
|
|
|
"using empty vector" % collection_w.name)
|
|
|
|
collection_w.search([], default_search_field, default_search_params,
|
|
|
|
default_limit, default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": 0,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_with_ndarray(self, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with ndarray
|
|
|
|
method: search using ndarray data
|
|
|
|
expected: search successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize without data
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:4]
|
|
|
|
# 2. search collection without data
|
|
|
|
log.info("test_search_with_ndarray: Searching collection %s "
|
|
|
|
"using ndarray" % collection_w.name)
|
|
|
|
vectors = np.random.randn(default_nq, dim)
|
|
|
|
collection_w.search(vectors, default_search_field, default_search_params,
|
|
|
|
default_limit, default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("search_params", [{}, {"params": {}}, {"params": {"nprobe": 10}}])
|
|
|
|
def test_search_normal_default_params(self, dim, auto_id, search_params, _async):
|
|
|
|
"""
|
|
|
|
target: test search normal case
|
|
|
|
method: create connection, collection, insert and search
|
|
|
|
expected: search successfully with limit(topK)
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = \
|
|
|
|
self.init_collection_general(prefix, True, auto_id=auto_id, dim=dim)[0:4]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_normal_default_params: searching collection %s" % collection_w.name)
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
search_params, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
travel_timestamp=0,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
@pytest.mark.xfail(reason="issue #13611")
|
|
|
|
def test_search_before_after_delete(self, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search function before and after deletion
|
|
|
|
method: 1. search the collection
|
|
|
|
2. delete a partition
|
|
|
|
3. search the collection
|
|
|
|
expected: the deleted entities should not be searched
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
nb = 1000
|
|
|
|
limit = 1000
|
|
|
|
partition_num = 1
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, nb,
|
|
|
|
partition_num,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:4]
|
|
|
|
# 2. search all the partitions before partition deletion
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
log.info("test_search_before_after_delete: searching before deleting partitions")
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": limit,
|
|
|
|
"_async": _async})
|
|
|
|
# 3. delete partitions
|
|
|
|
log.info("test_search_before_after_delete: deleting a partition")
|
|
|
|
par = collection_w.partitions
|
|
|
|
deleted_entity_num = par[partition_num].num_entities
|
|
|
|
print(deleted_entity_num)
|
|
|
|
entity_num = nb - deleted_entity_num
|
|
|
|
collection_w.drop_partition(par[partition_num].name)
|
|
|
|
log.info("test_search_before_after_delete: deleted a partition")
|
|
|
|
collection_w.load()
|
|
|
|
# 4. search non-deleted part after delete partitions
|
|
|
|
log.info("test_search_before_after_delete: searching after deleting partitions")
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids[:entity_num],
|
|
|
|
"limit": limit - deleted_entity_num,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_collection_after_release_load(self, nb, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: search the pre-released collection after load
|
|
|
|
method: 1. create collection
|
|
|
|
2. release collection
|
|
|
|
3. load collection
|
|
|
|
4. search the pre-released collection
|
|
|
|
expected: search successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize without data
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True, nb,
|
|
|
|
1, auto_id=auto_id,
|
|
|
|
dim=dim)[0:5]
|
|
|
|
# 2. release collection
|
|
|
|
log.info("test_search_collection_after_release_load: releasing collection %s" % collection_w.name)
|
|
|
|
collection_w.release()
|
|
|
|
log.info("test_search_collection_after_release_load: released collection %s" % collection_w.name)
|
|
|
|
# 3. Search the pre-released collection after load
|
|
|
|
log.info("test_search_collection_after_release_load: loading collection %s" % collection_w.name)
|
|
|
|
collection_w.load()
|
|
|
|
log.info("test_search_collection_after_release_load: searching after load")
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
collection_w.search(vectors[:nq], default_search_field, default_search_params,
|
|
|
|
default_limit, default_search_exp, _async=_async,
|
|
|
|
travel_timestamp=time_stamp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_load_flush_load(self, nb, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search when load before flush
|
|
|
|
method: 1. insert data and load
|
|
|
|
2. flush, and load
|
|
|
|
3. search the collection
|
|
|
|
expected: search success with limit(topK)
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix, auto_id=auto_id, dim=dim)[0]
|
|
|
|
# 2. insert data
|
|
|
|
insert_ids = cf.insert_data(collection_w, nb, auto_id=auto_id, dim=dim)[3]
|
|
|
|
# 3. load data
|
|
|
|
collection_w.load()
|
|
|
|
# 4. flush and load
|
|
|
|
collection_w.num_entities
|
|
|
|
collection_w.load()
|
|
|
|
# 5. search
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.skip("enable this later using session/strong consistency")
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_new_data(self, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search new inserted data without load
|
|
|
|
method: 1. search the collection
|
|
|
|
2. insert new data
|
|
|
|
3. search the collection without load again
|
|
|
|
4. Use guarantee_timestamp to guarantee data consistency
|
|
|
|
expected: new data should be searched
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
limit = 1000
|
|
|
|
nb_old = 500
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True, nb_old,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:5]
|
|
|
|
# 2. search for original data after load
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
log.info("test_search_new_data: searching for original data after load")
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
travel_timestamp=time_stamp + 1,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": nb_old,
|
|
|
|
"_async": _async})
|
|
|
|
# 3. insert new data
|
|
|
|
nb_new = 300
|
|
|
|
_, _, _, insert_ids_new, time_stamp = cf.insert_data(collection_w, nb_new,
|
|
|
|
auto_id=auto_id, dim=dim,
|
|
|
|
insert_offset=nb_old)
|
|
|
|
insert_ids.extend(insert_ids_new)
|
|
|
|
# 4. search for new data without load
|
|
|
|
# Using bounded staleness, maybe we could not search the "inserted" entities,
|
|
|
|
# since the search requests arrived query nodes earlier than query nodes consume the insert requests.
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
guarantee_timestamp=time_stamp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": nb_old + nb_new,
|
|
|
|
"_async": _async})
|
|
|
|
|
2022-09-13 09:20:30 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_different_data_distribution_without_index(self, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search different data distribution without index
|
|
|
|
method: 1. connect milvus
|
|
|
|
2. create a collection
|
|
|
|
3. insert data
|
|
|
|
4. Load and search
|
|
|
|
expected: Search successfully
|
|
|
|
"""
|
|
|
|
# 1. connect, create collection and insert data
|
|
|
|
self._connect()
|
|
|
|
collection_w = self.init_collection_general(prefix, False, dim=dim)[0]
|
|
|
|
dataframe = cf.gen_default_dataframe_data(dim=dim, start=-1500)
|
|
|
|
collection_w.insert(dataframe)
|
|
|
|
|
|
|
|
# 2. load and search
|
|
|
|
collection_w.load()
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
_async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_different_data_distribution_with_index(self, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search different data distribution with index
|
|
|
|
method: 1. connect milvus
|
|
|
|
2. create a collection
|
|
|
|
3. insert data
|
|
|
|
4. create an index
|
|
|
|
5. Load and search
|
|
|
|
expected: Search successfully
|
|
|
|
"""
|
|
|
|
# 1. connect, create collection and insert data
|
|
|
|
self._connect()
|
|
|
|
collection_w = self.init_collection_general(prefix, False, dim=dim)[0]
|
|
|
|
dataframe = cf.gen_default_dataframe_data(dim=dim, start=-1500)
|
|
|
|
collection_w.insert(dataframe)
|
|
|
|
|
|
|
|
# 2. create index
|
|
|
|
index_param = {"index_type": "IVF_FLAT", "metric_type": "L2", "params": {"nlist": 100}}
|
|
|
|
collection_w.create_index("float_vector", index_param)
|
|
|
|
|
|
|
|
# 3. load and search
|
|
|
|
collection_w.load()
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
_async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
2022-05-10 14:35:52 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.skip(reason="debug")
|
|
|
|
def test_search_max_dim(self, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with max configuration
|
|
|
|
method: create connection, collection, insert and search with max dim
|
|
|
|
expected: search successfully with limit(topK)
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, 100,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=max_dim)[0:4]
|
|
|
|
# 2. search
|
|
|
|
nq = 2
|
|
|
|
log.info("test_search_max_dim: searching collection %s" % collection_w.name)
|
|
|
|
vectors = [[random.random() for _ in range(max_dim)] for _ in range(nq)]
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, nq,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": nq,
|
|
|
|
"_async": _async})
|
|
|
|
|
2022-08-02 11:48:33 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_min_dim(self, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with min configuration
|
|
|
|
method: create connection, collection, insert and search with dim=1
|
|
|
|
expected: search successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, 100,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=min_dim)[0:4]
|
|
|
|
# 2. search
|
|
|
|
nq = 2
|
|
|
|
log.info("test_search_min_dim: searching collection %s" % collection_w.name)
|
|
|
|
vectors = [[random.random() for _ in range(min_dim)] for _ in range(nq)]
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, nq,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": nq,
|
|
|
|
"_async": _async})
|
|
|
|
|
2022-09-13 09:20:30 +08:00
|
|
|
@pytest.mark.xfail(reason="issue #19129")
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_max_nq(self, auto_id, dim, _async):
|
|
|
|
"""
|
|
|
|
target: test search with max nq
|
|
|
|
method: connect milvus, create collection, insert, load and search with max nq
|
|
|
|
expected: search successfully with max nq
|
|
|
|
"""
|
|
|
|
self._connect()
|
|
|
|
nq = 17000
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:4]
|
|
|
|
collection_w.load()
|
|
|
|
log.info("test_search_max_nq: searching collection %s" % collection_w.name)
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.xfail(reason="issue #19130")
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("shards_num", [1, 10, 128, 256])
|
|
|
|
def test_search_with_non_default_shard_nums(self, auto_id, shards_num, _async):
|
|
|
|
"""
|
|
|
|
target: test search with non_default shards_num
|
|
|
|
method: connect milvus, create collection with several shard numbers , insert, load and search
|
|
|
|
expected: search successfully with the non_default shards_num
|
|
|
|
"""
|
|
|
|
self._connect()
|
|
|
|
name = cf.gen_unique_str(prefix)
|
|
|
|
collection_w = self.init_collection_wrap(name=name, shards_num=shards_num)
|
|
|
|
dataframe = cf.gen_default_dataframe_data()
|
|
|
|
collection_w.insert(dataframe)
|
|
|
|
collection_w.load()
|
|
|
|
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
@pytest.mark.parametrize("M", [4, 64])
|
|
|
|
@pytest.mark.parametrize("efConstruction", [8, 512])
|
|
|
|
def test_search_HNSW_index_with_max_ef(self, M, efConstruction, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search HNSW index with max ef
|
|
|
|
method: connect milvus, create collection , insert, create index, load and search
|
|
|
|
expected: search successfully
|
|
|
|
"""
|
|
|
|
dim = M * 4
|
|
|
|
self._connect()
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True,
|
|
|
|
partition_num=1,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim, is_index=True)[0:5]
|
|
|
|
HNSW_index_params = {"M": M, "efConstruction": efConstruction}
|
|
|
|
HNSW_index = {"index_type": "HNSW", "params": HNSW_index_params, "metric_type": "L2"}
|
|
|
|
collection_w.create_index("float_vector", HNSW_index)
|
|
|
|
collection_w.load()
|
|
|
|
search_param = {"metric_type": "L2", "params": {"ef": 32768}}
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
search_param, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
travel_timestamp=time_stamp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
@pytest.mark.parametrize("M", [4, 64])
|
|
|
|
@pytest.mark.parametrize("efConstruction", [8, 512])
|
|
|
|
@pytest.mark.parametrize("limit", [1, 10, 3000])
|
|
|
|
def test_search_HNSW_index_with_min_ef(self, M, efConstruction, limit, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search HNSW index with min ef
|
|
|
|
method: connect milvus, create collection , insert, create index, load and search
|
|
|
|
expected: search successfully
|
|
|
|
"""
|
|
|
|
dim = M * 4
|
|
|
|
ef = limit
|
|
|
|
self._connect()
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True,
|
|
|
|
partition_num=1,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim, is_index=True)[0:5]
|
|
|
|
HNSW_index_params = {"M": M, "efConstruction": efConstruction}
|
|
|
|
HNSW_index = {"index_type": "HNSW", "params": HNSW_index_params, "metric_type": "L2"}
|
|
|
|
collection_w.create_index("float_vector", HNSW_index)
|
|
|
|
collection_w.load()
|
|
|
|
search_param = {"metric_type": "L2", "params": {"ef": ef}}
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
search_param, limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
travel_timestamp=time_stamp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
2022-05-10 14:35:52 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
@pytest.mark.parametrize("index, params",
|
2022-09-05 10:41:11 +08:00
|
|
|
zip(ct.all_index_types[:6],
|
|
|
|
ct.default_index_params[:6]))
|
2022-05-10 14:35:52 +08:00
|
|
|
def test_search_after_different_index_with_params(self, dim, index, params, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search after different index
|
|
|
|
method: test search after different index and corresponding search params
|
|
|
|
expected: search successfully with limit(topK)
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True, 5000,
|
|
|
|
partition_num=1,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim, is_index=True)[0:5]
|
|
|
|
# 2. create index and load
|
|
|
|
if params.get("m"):
|
|
|
|
if (dim % params["m"]) != 0:
|
|
|
|
params["m"] = dim // 4
|
|
|
|
if params.get("PQM"):
|
|
|
|
if (dim % params["PQM"]) != 0:
|
|
|
|
params["PQM"] = dim // 4
|
|
|
|
default_index = {"index_type": index, "params": params, "metric_type": "L2"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
# 3. search
|
|
|
|
search_params = cf.gen_search_param(index)
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
for search_param in search_params:
|
|
|
|
log.info("Searching with search params: {}".format(search_param))
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
search_param, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
travel_timestamp=time_stamp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
2022-08-02 11:48:33 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("index, params",
|
2022-09-05 10:41:11 +08:00
|
|
|
zip(ct.all_index_types[:6],
|
|
|
|
ct.default_index_params[:6]))
|
2022-08-02 11:48:33 +08:00
|
|
|
def test_search_after_different_index_with_min_dim(self, index, params, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search after different index with min dim
|
|
|
|
method: test search after different index and corresponding search params with dim = 1
|
|
|
|
expected: search successfully with limit(topK)
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True, 5000,
|
|
|
|
partition_num=1,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=min_dim, is_index=True)[0:5]
|
|
|
|
# 2. create index and load
|
|
|
|
if params.get("m"):
|
2022-09-01 17:05:07 +08:00
|
|
|
params["m"] = min_dim
|
2022-08-02 11:48:33 +08:00
|
|
|
if params.get("PQM"):
|
2022-09-01 17:05:07 +08:00
|
|
|
params["PQM"] = min_dim
|
2022-08-02 11:48:33 +08:00
|
|
|
default_index = {"index_type": index, "params": params, "metric_type": "L2"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
# 3. search
|
|
|
|
search_params = cf.gen_search_param(index)
|
|
|
|
vectors = [[random.random() for _ in range(min_dim)] for _ in range(default_nq)]
|
|
|
|
for search_param in search_params:
|
|
|
|
log.info("Searching with search params: {}".format(search_param))
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
search_param, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
travel_timestamp=time_stamp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
2022-05-10 14:35:52 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("index, params",
|
2022-09-05 10:41:11 +08:00
|
|
|
zip(ct.all_index_types[:6],
|
|
|
|
ct.default_index_params[:6]))
|
2022-05-10 14:35:52 +08:00
|
|
|
def test_search_after_index_different_metric_type(self, dim, index, params, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with different metric type
|
|
|
|
method: test search with different metric type
|
|
|
|
expected: searched successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True, 5000,
|
|
|
|
partition_num=1,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim, is_index=True)[0:5]
|
|
|
|
# 2. create different index
|
|
|
|
if params.get("m"):
|
|
|
|
if (dim % params["m"]) != 0:
|
|
|
|
params["m"] = dim // 4
|
|
|
|
if params.get("PQM"):
|
|
|
|
if (dim % params["PQM"]) != 0:
|
|
|
|
params["PQM"] = dim // 4
|
|
|
|
log.info("test_search_after_index_different_metric_type: Creating index-%s" % index)
|
|
|
|
default_index = {"index_type": index, "params": params, "metric_type": "IP"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
log.info("test_search_after_index_different_metric_type: Created index-%s" % index)
|
|
|
|
collection_w.load()
|
|
|
|
# 3. search
|
|
|
|
search_params = cf.gen_search_param(index, "IP")
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
for search_param in search_params:
|
|
|
|
log.info("Searching with search params: {}".format(search_param))
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
search_param, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
travel_timestamp=time_stamp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_collection_multiple_times(self, nb, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search for multiple times
|
|
|
|
method: search for multiple times
|
|
|
|
expected: searched successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, nb,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:4]
|
|
|
|
# 2. search for multiple times
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
for i in range(search_num):
|
|
|
|
log.info("test_search_collection_multiple_times: searching round %d" % (i + 1))
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_sync_async_multiple_times(self, nb, nq, dim, auto_id):
|
|
|
|
"""
|
|
|
|
target: test async search after sync search case
|
|
|
|
method: create connection, collection, insert,
|
|
|
|
sync search and async search
|
|
|
|
expected: search successfully with limit(topK)
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True, nb,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:5]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_sync_async_multiple_times: searching collection %s" % collection_w.name)
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
for i in range(search_num):
|
|
|
|
log.info("test_search_sync_async_multiple_times: searching round %d" % (i + 1))
|
|
|
|
for _async in [False, True]:
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
travel_timestamp=time_stamp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
@pytest.mark.skip(reason="issue #12680")
|
|
|
|
# TODO: add one more for binary vectors
|
|
|
|
# @pytest.mark.parametrize("vec_fields", [[cf.gen_float_vec_field(name="test_vector1")],
|
|
|
|
# [cf.gen_binary_vec_field(name="test_vector1")],
|
|
|
|
# [cf.gen_binary_vec_field(), cf.gen_binary_vec_field("test_vector1")]])
|
|
|
|
def test_search_multiple_vectors_with_one_indexed(self):
|
|
|
|
"""
|
|
|
|
target: test indexing on one vector fields when there are multi float vec fields
|
|
|
|
method: 1. create collection with multiple float vector fields
|
|
|
|
2. insert data and build index on one of float vector fields
|
|
|
|
3. load collection and search
|
|
|
|
expected: load and search successfully
|
|
|
|
"""
|
|
|
|
vec_fields = [cf.gen_float_vec_field(name="test_vector1")]
|
|
|
|
schema = cf.gen_schema_multi_vector_fields(vec_fields)
|
|
|
|
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), schema=schema)
|
|
|
|
df = cf.gen_dataframe_multi_vec_fields(vec_fields=vec_fields)
|
|
|
|
collection_w.insert(df)
|
|
|
|
assert collection_w.num_entities == ct.default_nb
|
|
|
|
_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
|
|
|
|
res, ch = collection_w.create_index(field_name="test_vector1", index_params=_index)
|
|
|
|
assert ch is True
|
|
|
|
collection_w.load()
|
|
|
|
vectors = [[random.random() for _ in range(default_dim)] for _ in range(2)]
|
|
|
|
search_params = {"metric_type": "L2", "params": {"nprobe": 16}}
|
|
|
|
res_1, _ = collection_w.search(data=vectors, anns_field="test_vector1",
|
|
|
|
param=search_params, limit=1)
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_index_one_partition(self, nb, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search from partition
|
|
|
|
method: search from one partition
|
|
|
|
expected: searched successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True, nb,
|
|
|
|
partition_num=1,
|
|
|
|
auto_id=auto_id,
|
|
|
|
is_index=True)[0:5]
|
|
|
|
|
|
|
|
# 2. create index
|
|
|
|
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
# 3. search in one partition
|
|
|
|
log.info("test_search_index_one_partition: searching (1000 entities) through one partition")
|
|
|
|
limit = 1000
|
|
|
|
par = collection_w.partitions
|
|
|
|
if limit > par[1].num_entities:
|
|
|
|
limit_check = par[1].num_entities
|
|
|
|
else:
|
|
|
|
limit_check = limit
|
|
|
|
search_params = {"metric_type": "L2", "params": {"nprobe": 128}}
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
search_params, limit, default_search_exp,
|
|
|
|
[par[1].name], _async=_async,
|
|
|
|
travel_timestamp=time_stamp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids[par[0].num_entities:],
|
|
|
|
"limit": limit_check,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_index_partitions(self, nb, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search from partitions
|
|
|
|
method: search from partitions
|
|
|
|
expected: searched successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, nb,
|
|
|
|
partition_num=1,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim,
|
|
|
|
is_index=True)[0:4]
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
# 2. create index
|
|
|
|
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
# 3. search through partitions
|
|
|
|
log.info("test_search_index_partitions: searching (1000 entities) through partitions")
|
|
|
|
par = collection_w.partitions
|
|
|
|
log.info("test_search_index_partitions: partitions: %s" % par)
|
|
|
|
limit = 1000
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, limit, default_search_exp,
|
|
|
|
[par[0].name, par[1].name], _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("partition_names",
|
|
|
|
[["(.*)"], ["search(.*)"]])
|
|
|
|
def test_search_index_partitions_fuzzy(self, nb, nq, dim, partition_names, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search from partitions
|
|
|
|
method: search from partitions with fuzzy
|
|
|
|
partition name
|
|
|
|
expected: searched successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, nb,
|
|
|
|
partition_num=1,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:4]
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
# 2. create index
|
|
|
|
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
# 3. search through partitions
|
|
|
|
log.info("test_search_index_partitions_fuzzy: searching through partitions")
|
|
|
|
limit = 1000
|
|
|
|
limit_check = limit
|
|
|
|
par = collection_w.partitions
|
|
|
|
if partition_names == ["search(.*)"]:
|
|
|
|
insert_ids = insert_ids[par[0].num_entities:]
|
|
|
|
if limit > par[1].num_entities:
|
|
|
|
limit_check = par[1].num_entities
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, limit, default_search_exp,
|
|
|
|
partition_names, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": limit_check,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_index_partition_empty(self, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search the empty partition
|
|
|
|
method: search from the empty partition
|
|
|
|
expected: searched successfully with 0 results
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix, True, auto_id=auto_id,
|
|
|
|
dim=dim, is_index=True)[0]
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
# 2. create empty partition
|
|
|
|
partition_name = "search_partition_empty"
|
|
|
|
collection_w.create_partition(partition_name=partition_name, description="search partition empty")
|
|
|
|
par = collection_w.partitions
|
|
|
|
log.info("test_search_index_partition_empty: partitions: %s" % par)
|
|
|
|
collection_w.load()
|
|
|
|
# 3. create index
|
|
|
|
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
# 4. search the empty partition
|
|
|
|
log.info("test_search_index_partition_empty: searching %s "
|
|
|
|
"entities through empty partition" % default_limit)
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, [partition_name],
|
|
|
|
_async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": [],
|
|
|
|
"limit": 0,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("index", ["BIN_FLAT", "BIN_IVF_FLAT"])
|
2022-06-28 20:00:24 +08:00
|
|
|
def test_search_binary_jaccard_flat_index(self, nq, dim, auto_id, _async, index, is_flush):
|
2022-05-10 14:35:52 +08:00
|
|
|
"""
|
|
|
|
target: search binary_collection, and check the result: distance
|
|
|
|
method: compare the return distance value with value computed with JACCARD
|
|
|
|
expected: the return distance equals to the computed value
|
|
|
|
"""
|
|
|
|
# 1. initialize with binary data
|
|
|
|
collection_w, _, binary_raw_vector, insert_ids, time_stamp = self.init_collection_general(prefix, True, 2,
|
|
|
|
is_binary=True,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim,
|
2022-06-28 20:00:24 +08:00
|
|
|
is_index=True,
|
|
|
|
is_flush=is_flush)[0:5]
|
2022-05-10 14:35:52 +08:00
|
|
|
# 2. create index
|
|
|
|
default_index = {"index_type": index, "params": {"nlist": 128}, "metric_type": "JACCARD"}
|
|
|
|
collection_w.create_index("binary_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
# 3. compute the distance
|
|
|
|
query_raw_vector, binary_vectors = cf.gen_binary_vectors(3000, dim)
|
|
|
|
distance_0 = cf.jaccard(query_raw_vector[0], binary_raw_vector[0])
|
|
|
|
distance_1 = cf.jaccard(query_raw_vector[0], binary_raw_vector[1])
|
|
|
|
# 4. search and compare the distance
|
|
|
|
search_params = {"metric_type": "JACCARD", "params": {"nprobe": 10}}
|
|
|
|
res = collection_w.search(binary_vectors[:nq], "binary_vector",
|
|
|
|
search_params, default_limit, "int64 >= 0",
|
|
|
|
_async=_async,
|
|
|
|
travel_timestamp=time_stamp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": 2,
|
|
|
|
"_async": _async})[0]
|
|
|
|
if _async:
|
|
|
|
res.done()
|
|
|
|
res = res.result()
|
|
|
|
assert abs(res[0].distances[0] - min(distance_0, distance_1)) <= epsilon
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("index", ["BIN_FLAT", "BIN_IVF_FLAT"])
|
2022-06-28 20:00:24 +08:00
|
|
|
def test_search_binary_hamming_flat_index(self, nq, dim, auto_id, _async, index, is_flush):
|
2022-05-10 14:35:52 +08:00
|
|
|
"""
|
|
|
|
target: search binary_collection, and check the result: distance
|
|
|
|
method: compare the return distance value with value computed with HAMMING
|
|
|
|
expected: the return distance equals to the computed value
|
|
|
|
"""
|
|
|
|
# 1. initialize with binary data
|
|
|
|
collection_w, _, binary_raw_vector, insert_ids = self.init_collection_general(prefix, True, 2,
|
|
|
|
is_binary=True,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim,
|
2022-06-28 20:00:24 +08:00
|
|
|
is_index=True,
|
|
|
|
is_flush=is_flush)[0:4]
|
2022-05-10 14:35:52 +08:00
|
|
|
# 2. create index
|
|
|
|
default_index = {"index_type": index, "params": {"nlist": 128}, "metric_type": "HAMMING"}
|
|
|
|
collection_w.create_index("binary_vector", default_index)
|
|
|
|
# 3. compute the distance
|
|
|
|
collection_w.load()
|
|
|
|
query_raw_vector, binary_vectors = cf.gen_binary_vectors(3000, dim)
|
|
|
|
distance_0 = cf.hamming(query_raw_vector[0], binary_raw_vector[0])
|
|
|
|
distance_1 = cf.hamming(query_raw_vector[0], binary_raw_vector[1])
|
|
|
|
# 4. search and compare the distance
|
|
|
|
search_params = {"metric_type": "HAMMING", "params": {"nprobe": 10}}
|
|
|
|
res = collection_w.search(binary_vectors[:nq], "binary_vector",
|
|
|
|
search_params, default_limit, "int64 >= 0",
|
|
|
|
_async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": 2,
|
|
|
|
"_async": _async})[0]
|
|
|
|
if _async:
|
|
|
|
res.done()
|
|
|
|
res = res.result()
|
|
|
|
assert abs(res[0].distances[0] - min(distance_0, distance_1)) <= epsilon
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.xfail(reason="issue 6843")
|
|
|
|
@pytest.mark.parametrize("index", ["BIN_FLAT", "BIN_IVF_FLAT"])
|
2022-06-28 20:00:24 +08:00
|
|
|
def test_search_binary_tanimoto_flat_index(self, nq, dim, auto_id, _async, index, is_flush):
|
2022-05-10 14:35:52 +08:00
|
|
|
"""
|
|
|
|
target: search binary_collection, and check the result: distance
|
|
|
|
method: compare the return distance value with value computed with TANIMOTO
|
|
|
|
expected: the return distance equals to the computed value
|
|
|
|
"""
|
|
|
|
# 1. initialize with binary data
|
|
|
|
collection_w, _, binary_raw_vector, insert_ids = self.init_collection_general(prefix, True, 2,
|
|
|
|
is_binary=True,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim,
|
2022-06-28 20:00:24 +08:00
|
|
|
is_index=True,
|
|
|
|
is_flush=is_flush)[0:4]
|
2022-05-10 14:35:52 +08:00
|
|
|
log.info("auto_id= %s, _async= %s" % (auto_id, _async))
|
|
|
|
# 2. create index
|
|
|
|
default_index = {"index_type": index, "params": {"nlist": 128}, "metric_type": "TANIMOTO"}
|
|
|
|
collection_w.create_index("binary_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
# 3. compute the distance
|
|
|
|
query_raw_vector, binary_vectors = cf.gen_binary_vectors(3000, dim)
|
|
|
|
distance_0 = cf.tanimoto(query_raw_vector[0], binary_raw_vector[0])
|
|
|
|
distance_1 = cf.tanimoto(query_raw_vector[0], binary_raw_vector[1])
|
|
|
|
# 4. search and compare the distance
|
|
|
|
search_params = {"metric_type": "TANIMOTO", "params": {"nprobe": 10}}
|
|
|
|
res = collection_w.search(binary_vectors[:nq], "binary_vector",
|
|
|
|
search_params, default_limit, "int64 >= 0",
|
|
|
|
_async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": 2,
|
|
|
|
"_async": _async})[0]
|
|
|
|
if _async:
|
|
|
|
res.done()
|
|
|
|
res = res.result()
|
|
|
|
assert abs(res[0].distances[0] - min(distance_0, distance_1)) <= epsilon
|
|
|
|
|
2022-07-15 14:02:27 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("index", ["BIN_FLAT"])
|
2022-07-19 08:58:28 +08:00
|
|
|
def test_search_binary_substructure_flat_index(self, auto_id, _async, index, is_flush):
|
2022-07-15 14:02:27 +08:00
|
|
|
"""
|
|
|
|
target: search binary_collection, and check the result: distance
|
2022-07-19 08:58:28 +08:00
|
|
|
method: compare the return distance value with value computed with SUBSTRUCTURE.
|
2022-07-20 15:46:32 +08:00
|
|
|
(1) The returned limit(topK) are impacted by dimension (dim) of data
|
2022-07-19 08:58:28 +08:00
|
|
|
(2) Searched topK is smaller than set limit when dim is large
|
2022-07-20 15:46:32 +08:00
|
|
|
(3) It does not support "BIN_IVF_FLAT" index
|
|
|
|
(4) Only two values for distance: 0 and 1, 0 means hits, 1 means not
|
2022-07-15 14:02:27 +08:00
|
|
|
expected: the return distance equals to the computed value
|
|
|
|
"""
|
|
|
|
# 1. initialize with binary data
|
2022-07-19 08:58:28 +08:00
|
|
|
nq = 1
|
|
|
|
dim = 8
|
|
|
|
collection_w, _, binary_raw_vector, insert_ids, time_stamp \
|
|
|
|
= self.init_collection_general(prefix, True, default_nb, is_binary=True, auto_id=auto_id,
|
|
|
|
dim=dim, is_index=True, is_flush=is_flush)[0:5]
|
2022-07-15 14:02:27 +08:00
|
|
|
# 2. create index
|
|
|
|
default_index = {"index_type": index, "params": {"nlist": 128}, "metric_type": "SUBSTRUCTURE"}
|
|
|
|
collection_w.create_index("binary_vector", default_index)
|
|
|
|
collection_w.load()
|
2022-07-20 15:46:32 +08:00
|
|
|
# 3. generate search vectors
|
|
|
|
_, binary_vectors = cf.gen_binary_vectors(nq, dim)
|
2022-07-15 14:02:27 +08:00
|
|
|
# 4. search and compare the distance
|
|
|
|
search_params = {"metric_type": "SUBSTRUCTURE", "params": {"nprobe": 10}}
|
|
|
|
res = collection_w.search(binary_vectors[:nq], "binary_vector",
|
|
|
|
search_params, default_limit, "int64 >= 0",
|
|
|
|
_async=_async,
|
2022-09-02 18:41:03 +08:00
|
|
|
travel_timestamp=time_stamp)[0]
|
2022-07-15 14:02:27 +08:00
|
|
|
if _async:
|
|
|
|
res.done()
|
|
|
|
res = res.result()
|
2022-07-20 15:46:32 +08:00
|
|
|
assert res[0].distances[0] == 0.0
|
2022-09-02 18:41:03 +08:00
|
|
|
assert len(res) <= default_limit
|
2022-07-15 14:02:27 +08:00
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("index", ["BIN_FLAT"])
|
2022-07-19 08:58:28 +08:00
|
|
|
def test_search_binary_superstructure_flat_index(self, auto_id, _async, index, is_flush):
|
2022-07-15 14:02:27 +08:00
|
|
|
"""
|
|
|
|
target: search binary_collection, and check the result: distance
|
|
|
|
method: compare the return distance value with value computed with SUPERSTRUCTURE
|
2022-07-20 15:46:32 +08:00
|
|
|
(1) The returned limit(topK) are impacted by dimension (dim) of data
|
2022-07-19 08:58:28 +08:00
|
|
|
(2) Searched topK is smaller than set limit when dim is large
|
2022-07-20 15:46:32 +08:00
|
|
|
(3) It does not support "BIN_IVF_FLAT" index
|
|
|
|
(4) Only two values for distance: 0 and 1, 0 means hits, 1 means not
|
2022-07-15 14:02:27 +08:00
|
|
|
expected: the return distance equals to the computed value
|
|
|
|
"""
|
|
|
|
# 1. initialize with binary data
|
2022-07-19 08:58:28 +08:00
|
|
|
nq = 1
|
|
|
|
dim = 8
|
|
|
|
collection_w, _, binary_raw_vector, insert_ids, time_stamp \
|
|
|
|
= self.init_collection_general(prefix, True, default_nb, is_binary=True, auto_id=auto_id,
|
|
|
|
dim=dim, is_index=True, is_flush=is_flush)[0:5]
|
2022-07-15 14:02:27 +08:00
|
|
|
# 2. create index
|
|
|
|
default_index = {"index_type": index, "params": {"nlist": 128}, "metric_type": "SUPERSTRUCTURE"}
|
|
|
|
collection_w.create_index("binary_vector", default_index)
|
|
|
|
collection_w.load()
|
2022-07-20 15:46:32 +08:00
|
|
|
# 3. generate search vectors
|
|
|
|
_, binary_vectors = cf.gen_binary_vectors(nq, dim)
|
2022-07-15 14:02:27 +08:00
|
|
|
# 4. search and compare the distance
|
|
|
|
search_params = {"metric_type": "SUPERSTRUCTURE", "params": {"nprobe": 10}}
|
|
|
|
res = collection_w.search(binary_vectors[:nq], "binary_vector",
|
|
|
|
search_params, default_limit, "int64 >= 0",
|
|
|
|
_async=_async,
|
|
|
|
travel_timestamp=time_stamp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
2022-07-19 08:58:28 +08:00
|
|
|
"limit": default_limit,
|
2022-07-15 14:02:27 +08:00
|
|
|
"_async": _async})[0]
|
|
|
|
if _async:
|
|
|
|
res.done()
|
|
|
|
res = res.result()
|
2022-07-20 15:46:32 +08:00
|
|
|
assert res[0].distances[0] == 0.0
|
2022-07-15 14:02:27 +08:00
|
|
|
|
2022-06-28 20:00:24 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_binary_without_flush(self, metrics, auto_id):
|
|
|
|
"""
|
|
|
|
target: test search without flush for binary data (no index)
|
|
|
|
method: create connection, collection, insert, load and search
|
|
|
|
expected: search successfully with limit(topK)
|
|
|
|
"""
|
|
|
|
# 1. initialize a collection without data
|
|
|
|
collection_w = self.init_collection_general(prefix, is_binary=True, auto_id=auto_id)[0]
|
|
|
|
# 2. insert data
|
|
|
|
insert_ids = cf.insert_data(collection_w, default_nb, is_binary=True, auto_id=auto_id)[3]
|
|
|
|
# 3. load data
|
|
|
|
collection_w.load()
|
|
|
|
# 4. search
|
|
|
|
log.info("test_search_binary_without_flush: searching collection %s" % collection_w.name)
|
|
|
|
binary_vectors = cf.gen_binary_vectors(default_nq, default_dim)[1]
|
|
|
|
search_params = {"metric_type": metrics, "params": {"nprobe": 10}}
|
|
|
|
collection_w.search(binary_vectors[:default_nq], "binary_vector",
|
|
|
|
search_params, default_limit,
|
|
|
|
default_search_exp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit})
|
|
|
|
|
2022-05-10 14:35:52 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_travel_time_without_expression(self, auto_id):
|
|
|
|
"""
|
|
|
|
target: test search using travel time without expression
|
|
|
|
method: 1. create connections,collection
|
|
|
|
2. first insert, and return with timestamp1
|
|
|
|
3. second insert, and return with timestamp2
|
|
|
|
4. search before timestamp1 and timestamp2
|
|
|
|
expected: 1 data inserted at a timestamp could not be searched before it
|
|
|
|
2 data inserted at a timestamp could be searched after it
|
|
|
|
"""
|
|
|
|
# 1. create connection, collection and insert
|
|
|
|
nb = 10
|
|
|
|
collection_w, _, _, insert_ids_1, time_stamp_1 = \
|
|
|
|
self.init_collection_general(prefix, True, nb, auto_id=auto_id, dim=default_dim)[0:5]
|
|
|
|
# 2. insert for the second time
|
|
|
|
log.info("test_search_travel_time_without_expression: inserting for the second time")
|
|
|
|
_, entities, _, insert_ids_2, time_stamp_2 = cf.insert_data(collection_w, nb, auto_id=auto_id,
|
|
|
|
dim=default_dim, insert_offset=nb)[0:5]
|
|
|
|
# 3. extract vectors inserted for the second time
|
|
|
|
entities_list = np.array(entities[0]).tolist()
|
|
|
|
vectors = [entities_list[i][-1] for i in range(default_nq)]
|
|
|
|
# 4. search with insert timestamp1
|
|
|
|
log.info("test_search_travel_time_without_expression: searching collection %s with time_stamp_1 '%d'"
|
|
|
|
% (collection_w.name, time_stamp_1))
|
|
|
|
search_res = collection_w.search(vectors, default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
travel_timestamp=time_stamp_1,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids_1,
|
|
|
|
"limit": default_limit})[0]
|
|
|
|
log.info("test_search_travel_time_without_expression: checking that data inserted "
|
|
|
|
"after time_stamp_2 is not searched at time_stamp_1")
|
|
|
|
for i in range(len(search_res)):
|
|
|
|
assert insert_ids_2[i] not in search_res[i].ids
|
|
|
|
# 5. search with insert timestamp2
|
|
|
|
log.info("test_search_travel_time_without_expression: searching collection %s with time_stamp_2 '%d'"
|
|
|
|
% (collection_w.name, time_stamp_2))
|
|
|
|
search_res = collection_w.search(vectors, default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
travel_timestamp=time_stamp_2,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids_1 + insert_ids_2,
|
|
|
|
"limit": default_limit})[0]
|
|
|
|
log.info("test_search_travel_time_without_expression: checking that data inserted "
|
|
|
|
"after time_stamp_2 is searched at time_stamp_2")
|
|
|
|
for i in range(len(search_res)):
|
|
|
|
assert insert_ids_2[i] in search_res[i].ids
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
@pytest.mark.parametrize("expression", cf.gen_normal_expressions())
|
|
|
|
def test_search_with_expression(self, dim, expression, _async):
|
|
|
|
"""
|
|
|
|
target: test search with different expressions
|
|
|
|
method: test search with different expressions
|
|
|
|
expected: searched successfully with correct limit(topK)
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
nb = 1000
|
|
|
|
collection_w, _vectors, _, insert_ids = self.init_collection_general(prefix, True,
|
|
|
|
nb, dim=dim,
|
|
|
|
is_index=True)[0:4]
|
|
|
|
|
|
|
|
# filter result with expression in collection
|
|
|
|
_vectors = _vectors[0]
|
|
|
|
expression = expression.replace("&&", "and").replace("||", "or")
|
|
|
|
filter_ids = []
|
|
|
|
for i, _id in enumerate(insert_ids):
|
|
|
|
int64 = _vectors.int64[i]
|
|
|
|
float = _vectors.float[i]
|
|
|
|
if not expression or eval(expression):
|
|
|
|
filter_ids.append(_id)
|
|
|
|
|
|
|
|
# 2. create index
|
|
|
|
index_param = {"index_type": "IVF_FLAT", "metric_type": "L2", "params": {"nlist": 100}}
|
|
|
|
collection_w.create_index("float_vector", index_param)
|
|
|
|
collection_w.load()
|
|
|
|
|
|
|
|
# 3. search with expression
|
|
|
|
log.info("test_search_with_expression: searching with expression: %s" % expression)
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
search_res, _ = collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, nb, expression,
|
|
|
|
_async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": min(nb, len(filter_ids)),
|
|
|
|
"_async": _async})
|
|
|
|
if _async:
|
|
|
|
search_res.done()
|
|
|
|
search_res = search_res.result()
|
|
|
|
|
|
|
|
filter_ids_set = set(filter_ids)
|
|
|
|
for hits in search_res:
|
|
|
|
ids = hits.ids
|
|
|
|
assert set(ids).issubset(filter_ids_set)
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("bool_type", [True, False, "true", "false"])
|
|
|
|
def test_search_with_expression_bool(self, dim, auto_id, _async, bool_type):
|
|
|
|
"""
|
|
|
|
target: test search with different bool expressions
|
|
|
|
method: search with different bool expressions
|
|
|
|
expected: searched successfully with correct limit(topK)
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
nb = 1000
|
|
|
|
collection_w, _vectors, _, insert_ids = self.init_collection_general(prefix, True, nb,
|
|
|
|
is_all_data_type=True,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:4]
|
|
|
|
|
|
|
|
# 2. create index
|
|
|
|
index_param = {"index_type": "IVF_FLAT", "metric_type": "L2", "params": {"nlist": 100}}
|
|
|
|
collection_w.create_index("float_vector", index_param)
|
|
|
|
collection_w.load()
|
|
|
|
|
|
|
|
# 3. filter result with expression in collection
|
|
|
|
filter_ids = []
|
|
|
|
bool_type_cmp = bool_type
|
|
|
|
if bool_type == "true":
|
|
|
|
bool_type_cmp = True
|
|
|
|
if bool_type == "false":
|
|
|
|
bool_type_cmp = False
|
|
|
|
for i, _id in enumerate(insert_ids):
|
|
|
|
if _vectors[0][f"{default_bool_field_name}"][i] == bool_type_cmp:
|
|
|
|
filter_ids.append(_id)
|
|
|
|
|
|
|
|
# 4. search with different expressions
|
|
|
|
expression = f"{default_bool_field_name} == {bool_type}"
|
|
|
|
log.info("test_search_with_expression_bool: searching with bool expression: %s" % expression)
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
|
|
|
|
search_res, _ = collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, nb, expression,
|
|
|
|
_async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": min(nb, len(filter_ids)),
|
|
|
|
"_async": _async})
|
|
|
|
if _async:
|
|
|
|
search_res.done()
|
|
|
|
search_res = search_res.result()
|
|
|
|
|
|
|
|
filter_ids_set = set(filter_ids)
|
|
|
|
for hits in search_res:
|
|
|
|
ids = hits.ids
|
|
|
|
assert set(ids).issubset(filter_ids_set)
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("expression", cf.gen_normal_expressions_field(default_float_field_name))
|
|
|
|
def test_search_with_expression_auto_id(self, dim, expression, _async):
|
|
|
|
"""
|
|
|
|
target: test search with different expressions
|
|
|
|
method: test search with different expressions with auto id
|
|
|
|
expected: searched successfully with correct limit(topK)
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
nb = 1000
|
|
|
|
collection_w, _vectors, _, insert_ids = self.init_collection_general(prefix, True, nb,
|
|
|
|
auto_id=True,
|
|
|
|
dim=dim,
|
|
|
|
is_index=True)[0:4]
|
|
|
|
|
|
|
|
# filter result with expression in collection
|
|
|
|
_vectors = _vectors[0]
|
|
|
|
expression = expression.replace("&&", "and").replace("||", "or")
|
|
|
|
filter_ids = []
|
|
|
|
for i, _id in enumerate(insert_ids):
|
|
|
|
exec(f"{default_float_field_name} = _vectors.{default_float_field_name}[i]")
|
|
|
|
if not expression or eval(expression):
|
|
|
|
filter_ids.append(_id)
|
|
|
|
|
|
|
|
# 2. create index
|
|
|
|
index_param = {"index_type": "IVF_FLAT", "metric_type": "L2", "params": {"nlist": 100}}
|
|
|
|
collection_w.create_index("float_vector", index_param)
|
|
|
|
collection_w.load()
|
|
|
|
|
|
|
|
# 3. search with different expressions
|
|
|
|
log.info("test_search_with_expression_auto_id: searching with expression: %s" % expression)
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
search_res, _ = collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, nb, expression,
|
|
|
|
_async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": min(nb, len(filter_ids)),
|
|
|
|
"_async": _async})
|
|
|
|
if _async:
|
|
|
|
search_res.done()
|
|
|
|
search_res = search_res.result()
|
|
|
|
|
|
|
|
filter_ids_set = set(filter_ids)
|
|
|
|
for hits in search_res:
|
|
|
|
ids = hits.ids
|
|
|
|
assert set(ids).issubset(filter_ids_set)
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_expression_all_data_type(self, nb, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search using all supported data types
|
|
|
|
method: search using different supported data types
|
|
|
|
expected: search success
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, nb,
|
|
|
|
is_all_data_type=True,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:4]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_expression_all_data_type: Searching collection %s" % collection_w.name)
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
search_exp = "int64 >= 0 && int32 >= 0 && int16 >= 0 " \
|
|
|
|
"&& int8 >= 0 && float >= 0 && double >= 0"
|
|
|
|
res = collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
search_exp, _async=_async,
|
|
|
|
output_fields=[default_int64_field_name,
|
2022-08-16 08:50:52 +08:00
|
|
|
default_float_field_name,
|
|
|
|
default_bool_field_name],
|
2022-05-10 14:35:52 +08:00
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})[0]
|
|
|
|
if _async:
|
|
|
|
res.done()
|
|
|
|
res = res.result()
|
|
|
|
assert len(res[0][0].entity._row_data) != 0
|
2022-08-16 08:50:52 +08:00
|
|
|
assert (default_int64_field_name and default_float_field_name and default_bool_field_name) \
|
|
|
|
in res[0][0].entity._row_data
|
2022-05-10 14:35:52 +08:00
|
|
|
|
2022-08-30 16:56:56 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_with_comparative_expression(self, _async):
|
|
|
|
"""
|
|
|
|
target: test search with expression comparing two fields
|
|
|
|
method: create a collection, insert data and search with comparative expression
|
|
|
|
expected: search successfully
|
|
|
|
"""
|
|
|
|
#1. create a collection
|
|
|
|
nb = 10
|
|
|
|
dim = 1
|
|
|
|
fields = [cf.gen_int64_field("int64_1"), cf.gen_int64_field("int64_2"),
|
|
|
|
cf.gen_float_vec_field(dim=dim)]
|
|
|
|
schema = cf.gen_collection_schema(fields=fields, primary_field="int64_1")
|
|
|
|
collection_w = self.init_collection_wrap(name="comparison", schema=schema)
|
|
|
|
|
|
|
|
#2. inset data
|
|
|
|
values = pd.Series(data=[i for i in range(0, nb)])
|
|
|
|
dataframe = pd.DataFrame({"int64_1": values, "int64_2": values,
|
|
|
|
ct.default_float_vec_field_name: cf.gen_vectors(nb, dim)})
|
|
|
|
insert_res = collection_w.insert(dataframe)[0]
|
|
|
|
|
|
|
|
insert_ids = []
|
|
|
|
filter_ids = []
|
|
|
|
insert_ids.extend(insert_res.primary_keys)
|
|
|
|
for _id in enumerate(insert_ids):
|
|
|
|
filter_ids.extend(_id)
|
|
|
|
|
|
|
|
#3. search with expression
|
|
|
|
collection_w.load()
|
|
|
|
expression = "int64_1 <= int64_2"
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
res = collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
expression, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})[0]
|
|
|
|
if _async:
|
|
|
|
res.done()
|
|
|
|
res = res.result()
|
|
|
|
filter_ids_set = set(filter_ids)
|
|
|
|
for hits in res:
|
|
|
|
ids = hits.ids
|
|
|
|
assert set(ids).issubset(filter_ids_set)
|
|
|
|
|
2022-05-10 14:35:52 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_with_output_fields_empty(self, nb, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with output fields
|
|
|
|
method: search with empty output_field
|
|
|
|
expected: search success
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, nb,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:4]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_with_output_fields_empty: Searching collection %s" % collection_w.name)
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
res = collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
output_fields=[],
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})[0]
|
|
|
|
if _async:
|
|
|
|
res.done()
|
|
|
|
res = res.result()
|
|
|
|
assert len(res[0][0].entity._row_data) == 0
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_with_output_field(self, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with output fields
|
|
|
|
method: search with one output_field
|
|
|
|
expected: search success
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True,
|
|
|
|
auto_id=auto_id)[0:4]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_with_output_field: Searching collection %s" % collection_w.name)
|
|
|
|
|
|
|
|
res = collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
output_fields=[default_int64_field_name],
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})[0]
|
|
|
|
if _async:
|
|
|
|
res.done()
|
|
|
|
res = res.result()
|
|
|
|
assert len(res[0][0].entity._row_data) != 0
|
|
|
|
assert default_int64_field_name in res[0][0].entity._row_data
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_with_output_fields(self, nb, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with output fields
|
|
|
|
method: search with multiple output_field
|
|
|
|
expected: search success
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, nb,
|
|
|
|
is_all_data_type=True,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:4]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_with_output_fields: Searching collection %s" % collection_w.name)
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
res = collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
output_fields=[default_int64_field_name,
|
|
|
|
default_float_field_name],
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})[0]
|
|
|
|
if _async:
|
|
|
|
res.done()
|
|
|
|
res = res.result()
|
|
|
|
assert len(res[0][0].entity._row_data) != 0
|
|
|
|
assert (default_int64_field_name and default_float_field_name) in res[0][0].entity._row_data
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("output_fields", [["*"], ["*", default_float_field_name]])
|
|
|
|
def test_search_with_output_field_wildcard(self, output_fields, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with output fields using wildcard
|
|
|
|
method: search with one output_field (wildcard)
|
|
|
|
expected: search success
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True,
|
|
|
|
auto_id=auto_id)[0:4]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_with_output_field_wildcard: Searching collection %s" % collection_w.name)
|
|
|
|
|
|
|
|
res = collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
output_fields=output_fields,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})[0]
|
|
|
|
if _async:
|
|
|
|
res.done()
|
|
|
|
res = res.result()
|
|
|
|
assert len(res[0][0].entity._row_data) != 0
|
|
|
|
assert (default_int64_field_name and default_float_field_name) in res[0][0].entity._row_data
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_multi_collections(self, nb, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search multi collections of L2
|
|
|
|
method: add vectors into 10 collections, and search
|
|
|
|
expected: search status ok, the length of result
|
|
|
|
"""
|
|
|
|
self._connect()
|
|
|
|
collection_num = 10
|
|
|
|
for i in range(collection_num):
|
|
|
|
# 1. initialize with data
|
|
|
|
log.info("test_search_multi_collections: search round %d" % (i + 1))
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, nb,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:4]
|
|
|
|
# 2. search
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
log.info("test_search_multi_collections: searching %s entities (nq = %s) from collection %s" %
|
|
|
|
(default_limit, nq, collection_w.name))
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_concurrent_multi_threads(self, nb, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test concurrent search with multi-processes
|
|
|
|
method: search with 10 processes, each process uses dependent connection
|
|
|
|
expected: status ok and the returned vectors should be query_records
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
threads_num = 10
|
|
|
|
threads = []
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True, nb,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:5]
|
|
|
|
|
|
|
|
def search(collection_w):
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
travel_timestamp=time_stamp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
# 2. search with multi-processes
|
|
|
|
log.info("test_search_concurrent_multi_threads: searching with %s processes" % threads_num)
|
|
|
|
for i in range(threads_num):
|
|
|
|
t = threading.Thread(target=search, args=(collection_w,))
|
|
|
|
threads.append(t)
|
|
|
|
t.start()
|
|
|
|
time.sleep(0.2)
|
|
|
|
for t in threads:
|
|
|
|
t.join()
|
|
|
|
|
|
|
|
@pytest.mark.skip(reason="Not running for now")
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_insert_in_parallel(self):
|
|
|
|
"""
|
|
|
|
target: test search and insert in parallel
|
|
|
|
method: One process do search while other process do insert
|
|
|
|
expected: No exception
|
|
|
|
"""
|
|
|
|
c_name = cf.gen_unique_str(prefix)
|
|
|
|
collection_w = self.init_collection_wrap(name=c_name)
|
|
|
|
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
|
|
|
|
collection_w.create_index(ct.default_float_vec_field_name, default_index)
|
|
|
|
collection_w.load()
|
|
|
|
|
|
|
|
def do_insert():
|
|
|
|
df = cf.gen_default_dataframe_data(10000)
|
|
|
|
for i in range(11):
|
|
|
|
collection_w.insert(df)
|
|
|
|
log.info(f'Collection num entities is : {collection_w.num_entities}')
|
|
|
|
|
|
|
|
def do_search():
|
|
|
|
while True:
|
|
|
|
results, _ = collection_w.search(cf.gen_vectors(nq, ct.default_dim), default_search_field,
|
|
|
|
default_search_params, default_limit, default_search_exp, timeout=30)
|
|
|
|
ids = []
|
|
|
|
for res in results:
|
|
|
|
ids.extend(res.ids)
|
|
|
|
expr = f'{ct.default_int64_field_name} in {ids}'
|
|
|
|
collection_w.query(expr, output_fields=[ct.default_int64_field_name, ct.default_float_field_name],
|
|
|
|
timeout=30)
|
|
|
|
|
|
|
|
p_insert = multiprocessing.Process(target=do_insert, args=())
|
|
|
|
p_search = multiprocessing.Process(target=do_search, args=(), daemon=True)
|
|
|
|
|
|
|
|
p_insert.start()
|
|
|
|
p_search.start()
|
|
|
|
|
|
|
|
p_insert.join()
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
@pytest.mark.parametrize("round_decimal", [0, 1, 2, 3, 4, 5, 6])
|
|
|
|
def test_search_round_decimal(self, round_decimal):
|
|
|
|
"""
|
|
|
|
target: test search with valid round decimal
|
|
|
|
method: search with valid round decimal
|
|
|
|
expected: search successfully
|
|
|
|
"""
|
|
|
|
import math
|
|
|
|
tmp_nb = 500
|
|
|
|
tmp_nq = 1
|
|
|
|
tmp_limit = 5
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w = self.init_collection_general(prefix, True, nb=tmp_nb)[0]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_round_decimal: Searching collection %s" % collection_w.name)
|
|
|
|
res, _ = collection_w.search(vectors[:tmp_nq], default_search_field,
|
|
|
|
default_search_params, tmp_limit)
|
|
|
|
|
|
|
|
res_round, _ = collection_w.search(vectors[:tmp_nq], default_search_field,
|
|
|
|
default_search_params, tmp_limit, round_decimal=round_decimal)
|
|
|
|
|
|
|
|
abs_tol = pow(10, 1 - round_decimal)
|
|
|
|
# log.debug(f'abs_tol: {abs_tol}')
|
|
|
|
for i in range(tmp_limit):
|
|
|
|
dis_expect = round(res[0][i].distance, round_decimal)
|
|
|
|
dis_actual = res_round[0][i].distance
|
|
|
|
# log.debug(f'actual: {dis_actual}, expect: {dis_expect}')
|
|
|
|
# abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)
|
|
|
|
assert math.isclose(dis_actual, dis_expect, rel_tol=0, abs_tol=abs_tol)
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_with_expression_large(self, dim):
|
|
|
|
"""
|
|
|
|
target: test search with large expression
|
|
|
|
method: test search with large expression
|
|
|
|
expected: searched successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
nb = 10000
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True,
|
|
|
|
nb, dim=dim,
|
|
|
|
is_index=True)[0:4]
|
|
|
|
|
|
|
|
|
|
|
|
# 2. create index
|
|
|
|
index_param = {"index_type": "IVF_FLAT", "metric_type": "L2", "params": {"nlist": 100}}
|
|
|
|
collection_w.create_index("float_vector", index_param)
|
|
|
|
collection_w.load()
|
|
|
|
|
|
|
|
# 3. search with expression
|
|
|
|
expression = f"0 < {default_int64_field_name} < 5001"
|
|
|
|
log.info("test_search_with_expression: searching with expression: %s" % expression)
|
|
|
|
|
|
|
|
nums = 5000
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nums)]
|
|
|
|
search_res, _ = collection_w.search(vectors, default_search_field,
|
|
|
|
default_search_params, default_limit, expression,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={
|
|
|
|
"nq": nums,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_with_expression_large_two(self, dim):
|
|
|
|
"""
|
|
|
|
target: test search with large expression
|
|
|
|
method: test one of the collection ids to another collection search for it, with the large expression
|
|
|
|
expected: searched successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
nb = 10000
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True,
|
|
|
|
nb, dim=dim,
|
|
|
|
is_index=True)[0:4]
|
|
|
|
|
|
|
|
|
|
|
|
# 2. create index
|
|
|
|
index_param = {"index_type": "IVF_FLAT", "metric_type": "L2", "params": {"nlist": 100}}
|
|
|
|
collection_w.create_index("float_vector", index_param)
|
|
|
|
collection_w.load()
|
|
|
|
|
|
|
|
|
|
|
|
nums = 5000
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nums)]
|
|
|
|
vectors_id = [random.randint(0,nums)for _ in range(nums)]
|
|
|
|
expression = f"{default_int64_field_name} in {vectors_id}"
|
|
|
|
search_res, _ = collection_w.search(vectors, default_search_field,
|
|
|
|
default_search_params, default_limit, expression,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={
|
|
|
|
"nq": nums,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_with_consistency_bounded(self, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with different consistency level
|
|
|
|
method: 1. create a collection
|
|
|
|
2. insert data
|
|
|
|
3. search with consistency_level is "bounded"
|
|
|
|
expected: searched successfully
|
|
|
|
"""
|
|
|
|
limit = 1000
|
|
|
|
nb_old = 500
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, nb_old,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:4]
|
|
|
|
# 2. search for original data after load
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": nb_old,
|
|
|
|
"_async": _async,
|
|
|
|
})
|
|
|
|
|
|
|
|
kwargs = {}
|
|
|
|
consistency_level = kwargs.get("consistency_level", CONSISTENCY_BOUNDED)
|
|
|
|
kwargs.update({"consistency_level": consistency_level})
|
|
|
|
|
|
|
|
nb_new = 400
|
|
|
|
_, _, _, insert_ids_new, _= cf.insert_data(collection_w, nb_new,
|
|
|
|
auto_id=auto_id, dim=dim,
|
|
|
|
insert_offset=nb_old)
|
|
|
|
insert_ids.extend(insert_ids_new)
|
|
|
|
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_with_consistency_strong(self, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with different consistency level
|
|
|
|
method: 1. create a collection
|
|
|
|
2. insert data
|
|
|
|
3. search with consistency_level is "Strong"
|
|
|
|
expected: searched successfully
|
|
|
|
"""
|
|
|
|
limit = 1000
|
|
|
|
nb_old = 500
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, nb_old,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:4]
|
|
|
|
# 2. search for original data after load
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": nb_old,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
nb_new = 400
|
|
|
|
_, _, _, insert_ids_new, _ = cf.insert_data(collection_w, nb_new,
|
|
|
|
auto_id=auto_id, dim=dim,
|
|
|
|
insert_offset=nb_old)
|
|
|
|
insert_ids.extend(insert_ids_new)
|
|
|
|
kwargs = {}
|
|
|
|
consistency_level = kwargs.get("consistency_level", CONSISTENCY_STRONG)
|
|
|
|
kwargs.update({"consistency_level": consistency_level})
|
|
|
|
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
**kwargs,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": nb_old + nb_new,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_with_consistency_eventually(self, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with different consistency level
|
|
|
|
method: 1. create a collection
|
|
|
|
2. insert data
|
|
|
|
3. search with consistency_level is "eventually"
|
|
|
|
expected: searched successfully
|
|
|
|
"""
|
|
|
|
limit = 1000
|
|
|
|
nb_old = 500
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, nb_old,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:4]
|
|
|
|
# 2. search for original data after load
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": nb_old,
|
|
|
|
"_async": _async})
|
|
|
|
nb_new = 400
|
|
|
|
_, _, _, insert_ids_new, _= cf.insert_data(collection_w, nb_new,
|
|
|
|
auto_id=auto_id, dim=dim,
|
|
|
|
insert_offset=nb_old)
|
|
|
|
insert_ids.extend(insert_ids_new)
|
|
|
|
kwargs = {}
|
|
|
|
consistency_level = kwargs.get("consistency_level", CONSISTENCY_EVENTUALLY)
|
|
|
|
kwargs.update({"consistency_level": consistency_level})
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
**kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_with_consistency_session(self, nq, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with different consistency level
|
|
|
|
method: 1. create a collection
|
|
|
|
2. insert data
|
|
|
|
3. search with consistency_level is "session"
|
|
|
|
expected: searched successfully
|
|
|
|
"""
|
|
|
|
limit = 1000
|
|
|
|
nb_old = 500
|
|
|
|
collection_w, _, _, insert_ids = self.init_collection_general(prefix, True, nb_old,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim)[0:4]
|
|
|
|
# 2. search for original data after load
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": nb_old,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
kwargs = {}
|
|
|
|
consistency_level = kwargs.get("consistency_level", CONSISTENCY_SESSION)
|
|
|
|
kwargs.update({"consistency_level": consistency_level})
|
|
|
|
|
|
|
|
nb_new = 400
|
|
|
|
_, _, _, insert_ids_new, _= cf.insert_data(collection_w, nb_new,
|
|
|
|
auto_id=auto_id, dim=dim,
|
|
|
|
insert_offset=nb_old)
|
|
|
|
insert_ids.extend(insert_ids_new)
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
**kwargs,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": nb_old + nb_new,
|
|
|
|
"_async": _async})
|
|
|
|
|
2022-08-29 09:52:59 +08:00
|
|
|
|
2022-05-10 14:35:52 +08:00
|
|
|
class TestSearchBase(TestcaseBase):
|
|
|
|
@pytest.fixture(
|
|
|
|
scope="function",
|
|
|
|
params=[1, 10]
|
|
|
|
)
|
|
|
|
def get_top_k(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(
|
|
|
|
scope="function",
|
|
|
|
params=[1, 10, 1100]
|
|
|
|
)
|
|
|
|
def get_nq(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=[8, 128])
|
|
|
|
def dim(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
|
|
def auto_id(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
|
|
def _async(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_flat_top_k(self, get_nq):
|
|
|
|
"""
|
|
|
|
target: test basic search function, all the search params is correct, change top-k value
|
|
|
|
method: search with the given vectors, check the result
|
|
|
|
expected: the length of the result is top_k
|
|
|
|
"""
|
|
|
|
top_k = 16385 # max top k is 16384
|
|
|
|
nq = get_nq
|
|
|
|
collection_w, data, _, insert_ids = self.init_collection_general(prefix, insert_data=True, nb=nq)[0:4]
|
|
|
|
collection_w.load()
|
|
|
|
if top_k <= max_top_k:
|
|
|
|
res, _ = collection_w.search(vectors[:nq], default_search_field, default_search_params,
|
|
|
|
top_k)
|
|
|
|
assert len(res[0]) <= top_k
|
|
|
|
else:
|
|
|
|
collection_w.search(vectors[:nq], default_search_field, default_search_params,
|
|
|
|
top_k,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "no Available QueryNode result, "
|
|
|
|
"filter reason limit %s is too large," % top_k})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("index, params",
|
2022-09-05 10:41:11 +08:00
|
|
|
zip(ct.all_index_types[:6],
|
|
|
|
ct.default_index_params[:6]))
|
2022-05-10 14:35:52 +08:00
|
|
|
def test_search_index_empty_partition(self, index, params):
|
|
|
|
"""
|
|
|
|
target: test basic search function, all the search params are correct, test all index params, and build
|
|
|
|
method: add vectors into collection, search with the given vectors, check the result
|
|
|
|
expected: the length of the result is top_k, search collection with partition tag return empty
|
|
|
|
"""
|
|
|
|
top_k = ct.default_top_k
|
|
|
|
nq = ct.default_nq
|
|
|
|
dim = ct.default_dim
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True, nq,
|
|
|
|
partition_num=1,
|
|
|
|
dim=dim, is_index=True)[0:5]
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
# 2. create patition
|
|
|
|
partition_name = "search_partition_empty"
|
|
|
|
collection_w.create_partition(partition_name=partition_name, description="search partition empty")
|
|
|
|
par = collection_w.partitions
|
|
|
|
collection_w.load()
|
|
|
|
# 3. create different index
|
|
|
|
if params.get("m"):
|
|
|
|
if (dim % params["m"]) != 0:
|
|
|
|
params["m"] = dim // 4
|
|
|
|
if params.get("PQM"):
|
|
|
|
if (dim % params["PQM"]) != 0:
|
|
|
|
params["PQM"] = dim // 4
|
|
|
|
default_index = {"index_type": index, "params": params, "metric_type": "L2"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
|
|
|
|
# 4. search
|
|
|
|
res, _ = collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, top_k,
|
|
|
|
default_search_exp)
|
|
|
|
|
|
|
|
assert len(res[0]) <= top_k
|
|
|
|
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, top_k,
|
|
|
|
default_search_exp, [partition_name],
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": [],
|
|
|
|
"limit": 0})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("index, params",
|
2022-09-05 10:41:11 +08:00
|
|
|
zip(ct.all_index_types[:6],
|
|
|
|
ct.default_index_params[:6]))
|
2022-05-10 14:35:52 +08:00
|
|
|
def test_search_index_partitions(self, index, params, get_top_k):
|
|
|
|
"""
|
|
|
|
target: test basic search function, all the search params are correct, test all index params, and build
|
|
|
|
method: search collection with the given vectors and tags, check the result
|
|
|
|
expected: the length of the result is top_k
|
|
|
|
"""
|
|
|
|
top_k = get_top_k
|
|
|
|
nq = ct.default_nq
|
|
|
|
dim = ct.default_dim
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True, nq,
|
|
|
|
partition_num=1,
|
|
|
|
dim=dim, is_index=True)[0:5]
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
# 2. create patition
|
|
|
|
partition_name = ct.default_partition_name
|
|
|
|
par = collection_w.partitions
|
|
|
|
collection_w.load()
|
|
|
|
# 3. create different index
|
|
|
|
if params.get("m"):
|
|
|
|
if (dim % params["m"]) != 0:
|
|
|
|
params["m"] = dim // 4
|
|
|
|
if params.get("PQM"):
|
|
|
|
if (dim % params["PQM"]) != 0:
|
|
|
|
params["PQM"] = dim // 4
|
|
|
|
default_index = {"index_type": index, "params": params, "metric_type": "L2"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
res, _ = collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
ct.default_search_params, top_k,
|
|
|
|
default_search_exp, [partition_name])
|
|
|
|
assert len(res[0]) <= top_k
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_ip_flat(self, get_top_k):
|
|
|
|
"""
|
|
|
|
target: test basic search function, all the search params are correct, change top-k value
|
|
|
|
method: search with the given vectors, check the result
|
|
|
|
expected: the length of the result is top_k
|
|
|
|
"""
|
|
|
|
top_k = get_top_k
|
|
|
|
nq = ct.default_nq
|
|
|
|
dim = ct.default_dim
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True, nq,
|
|
|
|
dim=dim, is_index=True)[0:5]
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
# 2. create ip index
|
|
|
|
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "IP"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
res, _ = collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
ct.default_search_params, top_k,
|
|
|
|
default_search_exp)
|
|
|
|
assert len(res[0]) <= top_k
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("index, params",
|
2022-09-05 10:41:11 +08:00
|
|
|
zip(ct.all_index_types[:6],
|
|
|
|
ct.default_index_params[:6]))
|
2022-05-10 14:35:52 +08:00
|
|
|
def test_search_ip_after_index(self, index, params):
|
|
|
|
"""
|
|
|
|
target: test basic search function, all the search params are correct, test all index params, and build
|
|
|
|
method: search with the given vectors, check the result
|
|
|
|
expected: the length of the result is top_k
|
|
|
|
"""
|
|
|
|
top_k = ct.default_top_k
|
|
|
|
nq = ct.default_nq
|
|
|
|
dim = ct.default_dim
|
|
|
|
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True, nq,
|
|
|
|
dim=dim, is_index=True)[0:5]
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
# 2. create ip index
|
|
|
|
default_index = {"index_type": index, "params": params, "metric_type": "IP"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
res, _ = collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
ct.default_search_params, top_k,
|
|
|
|
default_search_exp)
|
|
|
|
assert len(res[0]) <= top_k
|
|
|
|
|
2022-06-16 16:34:11 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
@pytest.mark.parametrize("dim", [2, 8, 128, 768])
|
|
|
|
@pytest.mark.parametrize("nb", [1, 2, 10, 100])
|
|
|
|
def test_search_ip_brute_force(self, nb, dim):
|
|
|
|
"""
|
|
|
|
target: https://github.com/milvus-io/milvus/issues/17378. Ensure the logic of IP distances won't be changed.
|
|
|
|
method: search with the given vectors, check the result
|
|
|
|
expected: The inner product of vector themselves should be positive.
|
|
|
|
"""
|
|
|
|
top_k = 1
|
|
|
|
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, insert_entities, _, insert_ids, _ = self.init_collection_general(prefix, True, nb,
|
|
|
|
is_binary=False,
|
|
|
|
dim=dim)[0:5]
|
|
|
|
insert_vectors = insert_entities[0][default_search_field].tolist()
|
|
|
|
|
|
|
|
# 2. load collection.
|
|
|
|
collection_w.load()
|
|
|
|
|
|
|
|
# 3. search and then check if the distances are expected.
|
|
|
|
res, _ = collection_w.search(insert_vectors[:nb], default_search_field,
|
|
|
|
ct.default_search_ip_params, top_k,
|
|
|
|
default_search_exp)
|
|
|
|
for i, v in enumerate(insert_vectors):
|
|
|
|
assert len(res[i]) == 1
|
|
|
|
ref = ip(v, v)
|
|
|
|
got = res[i][0].distance
|
|
|
|
assert abs(got - ref) <= epsilon
|
|
|
|
|
2022-05-10 14:35:52 +08:00
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("index, params",
|
2022-09-05 10:41:11 +08:00
|
|
|
zip(ct.all_index_types[:6],
|
|
|
|
ct.default_index_params[:6]))
|
2022-05-10 14:35:52 +08:00
|
|
|
def test_search_ip_index_empty_partition(self, index, params):
|
|
|
|
"""
|
|
|
|
target: test basic search function, all the search params are correct, test all index params, and build
|
|
|
|
method: add vectors into collection, search with the given vectors, check the result
|
|
|
|
expected: the length of the result is top_k, search collection with partition tag return empty
|
|
|
|
"""
|
|
|
|
top_k = ct.default_top_k
|
|
|
|
nq = ct.default_nq
|
|
|
|
dim = ct.default_dim
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True, nq,
|
|
|
|
partition_num=1,
|
|
|
|
dim=dim, is_index=True)[0:5]
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
# 2. create patition
|
|
|
|
partition_name = "search_partition_empty"
|
|
|
|
collection_w.create_partition(partition_name=partition_name, description="search partition empty")
|
|
|
|
par = collection_w.partitions
|
|
|
|
collection_w.load()
|
|
|
|
# 3. create different index
|
|
|
|
default_index = {"index_type": index, "params": params, "metric_type": "IP"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
|
|
|
|
# 4. search
|
|
|
|
res, _ = collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, top_k,
|
|
|
|
default_search_exp)
|
|
|
|
|
|
|
|
assert len(res[0]) <= top_k
|
|
|
|
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, top_k,
|
|
|
|
default_search_exp, [partition_name],
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": [],
|
|
|
|
"limit": 0})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("index, params",
|
2022-09-05 10:41:11 +08:00
|
|
|
zip(ct.all_index_types[:6],
|
|
|
|
ct.default_index_params[:6]))
|
2022-05-10 14:35:52 +08:00
|
|
|
def test_search_ip_index_partitions(self, index, params):
|
|
|
|
"""
|
|
|
|
target: test basic search function, all the search params are correct, test all index params, and build
|
|
|
|
method: search collection with the given vectors and tags, check the result
|
|
|
|
expected: the length of the result is top_k
|
|
|
|
"""
|
|
|
|
top_k = ct.default_top_k
|
|
|
|
nq = ct.default_nq
|
|
|
|
dim = ct.default_dim
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True, nq,
|
|
|
|
partition_num=1,
|
|
|
|
dim=dim, is_index=True)[0:5]
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(nq)]
|
|
|
|
# 2. create patition
|
|
|
|
par_name = collection_w.partitions[0].name
|
|
|
|
collection_w.load()
|
|
|
|
# 3. create different index
|
|
|
|
default_index = {"index_type": index, "params": params, "metric_type": "IP"}
|
|
|
|
collection_w.create_index("float_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
|
|
|
|
# 4. search
|
|
|
|
res, _ = collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, top_k,
|
|
|
|
default_search_exp, [par_name])
|
|
|
|
|
|
|
|
assert len(res[0]) <= top_k
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_without_connect(self):
|
|
|
|
"""
|
|
|
|
target: test search vectors without connection
|
|
|
|
method: use disconnected instance, call search method and check if search successfully
|
|
|
|
expected: raise exception
|
|
|
|
"""
|
|
|
|
self._connect()
|
|
|
|
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True,
|
|
|
|
ct.default_nq, is_index=True)[0:5]
|
|
|
|
vectors = [[random.random() for _ in range(ct.default_dim)] for _ in range(nq)]
|
|
|
|
|
|
|
|
collection_w.load()
|
|
|
|
self.connection_wrap.remove_connection(ct.default_alias)
|
|
|
|
res_list, _ = self.connection_wrap.list_connections()
|
|
|
|
assert ct.default_alias not in res_list
|
|
|
|
|
|
|
|
res, _ = collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
ct.default_search_params, ct.default_top_k,
|
|
|
|
default_search_exp,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 0,
|
|
|
|
"err_msg": "'should create connect first.'"})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
# @pytest.mark.timeout(300)
|
|
|
|
def test_search_concurrent_multithreads_single_connection(self, _async):
|
|
|
|
"""
|
|
|
|
target: test concurrent search with multi processes
|
|
|
|
method: search with 10 processes, each process uses dependent connection
|
|
|
|
expected: status ok and the returned vectors should be query_records
|
|
|
|
"""
|
|
|
|
threads_num = 10
|
|
|
|
threads = []
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = self.init_collection_general(prefix, True, ct.default_nb)[0:5]
|
|
|
|
|
|
|
|
def search(collection_w):
|
|
|
|
vectors = [[random.random() for _ in range(ct.default_dim)] for _ in range(nq)]
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_exp, _async=_async,
|
|
|
|
travel_timestamp=time_stamp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
# 2. search with multi-processes
|
|
|
|
log.info("test_search_concurrent_multi_threads: searching with %s processes" % threads_num)
|
|
|
|
for i in range(threads_num):
|
|
|
|
t = threading.Thread(target=search, args=(collection_w,))
|
|
|
|
threads.append(t)
|
|
|
|
t.start()
|
|
|
|
time.sleep(0.2)
|
|
|
|
for t in threads:
|
|
|
|
t.join()
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_multi_collections(self):
|
|
|
|
"""
|
|
|
|
target: test search multi collections of L2
|
|
|
|
method: add vectors into 10 collections, and search
|
|
|
|
expected: search status ok, the length of result
|
|
|
|
"""
|
|
|
|
num = 10
|
|
|
|
top_k = 10
|
|
|
|
nq = 20
|
|
|
|
|
|
|
|
for i in range(num):
|
|
|
|
collection = gen_unique_str(uid + str(i))
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = \
|
|
|
|
self.init_collection_general(collection, True, ct.default_nb)[0:5]
|
|
|
|
assert len(insert_ids) == default_nb
|
|
|
|
vectors = [[random.random() for _ in range(ct.default_dim)] for _ in range(nq)]
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, top_k,
|
|
|
|
default_search_exp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": top_k})
|
|
|
|
|
|
|
|
|
|
|
|
class TestSearchDSL(TestcaseBase):
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
|
|
def test_query_vector_only(self):
|
|
|
|
"""
|
|
|
|
target: test search normal scenario
|
|
|
|
method: search vector only
|
|
|
|
expected: search status ok, the length of result
|
|
|
|
"""
|
|
|
|
collection_w, _, _, insert_ids, time_stamp = \
|
|
|
|
self.init_collection_general(prefix, True, ct.default_nb)[0:5]
|
|
|
|
vectors = [[random.random() for _ in range(ct.default_dim)] for _ in range(nq)]
|
|
|
|
collection_w.search(vectors[:nq], default_search_field,
|
|
|
|
default_search_params, ct.default_top_k,
|
|
|
|
default_search_exp,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": ct.default_top_k})
|
|
|
|
|
|
|
|
|
|
|
|
class TestsearchString(TestcaseBase):
|
|
|
|
"""
|
|
|
|
******************************************************************
|
|
|
|
The following cases are used to test search about string
|
|
|
|
******************************************************************
|
|
|
|
"""
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function",
|
|
|
|
params=[default_nb, default_nb_medium])
|
|
|
|
def nb(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=[2, 500])
|
|
|
|
def nq(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=[8, 128])
|
|
|
|
def dim(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
|
|
def auto_id(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
|
|
def _async(self, request):
|
|
|
|
yield request.param
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_string_field_not_primary(self, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with string expr and string field is not primary
|
|
|
|
method: create collection and insert data
|
|
|
|
create index and collection load
|
|
|
|
collection search uses string expr in string field, string field is not primary
|
|
|
|
expected: Search successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = \
|
|
|
|
self.init_collection_general(prefix, True, auto_id=auto_id, dim=default_dim)[0:4]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_string_field_not_primary: searching collection %s" % collection_w.name)
|
|
|
|
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
|
|
|
|
output_fields = [default_string_field_name, default_float_field_name]
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_string_exp,
|
|
|
|
output_fields=output_fields,
|
|
|
|
_async=_async,
|
|
|
|
travel_timestamp=0,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_string_field_is_primary_true(self, dim, _async):
|
|
|
|
"""
|
|
|
|
target: test search with string expr and string field is primary
|
|
|
|
method: create collection and insert data
|
|
|
|
create index and collection load
|
|
|
|
collection search uses string expr in string field ,string field is primary
|
|
|
|
expected: Search successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = \
|
|
|
|
self.init_collection_general(prefix, True, dim=dim, primary_field=ct.default_string_field_name)[0:4]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_string_field_is_primary_true: searching collection %s" % collection_w.name)
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
output_fields = [default_string_field_name, default_float_field_name]
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_string_exp,
|
|
|
|
output_fields=output_fields,
|
|
|
|
_async=_async,
|
|
|
|
travel_timestamp=0,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_string_mix_expr(self, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with mix string and int expr
|
|
|
|
method: create collection and insert data
|
|
|
|
create index and collection load
|
|
|
|
collection search uses mix expr
|
|
|
|
expected: Search successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = \
|
|
|
|
self.init_collection_general(prefix, True, auto_id=auto_id, dim=dim)[0:4]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_string_mix_expr: searching collection %s" % collection_w.name)
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
output_fields = [default_string_field_name, default_float_field_name]
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_search_mix_exp,
|
|
|
|
output_fields=output_fields,
|
|
|
|
_async=_async,
|
|
|
|
travel_timestamp=0,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_string_with_invalid_expr(self, auto_id):
|
|
|
|
"""
|
|
|
|
target: test search data
|
|
|
|
method: create collection and insert data
|
|
|
|
create index and collection load
|
|
|
|
collection search uses invalid string expr
|
|
|
|
expected: Raise exception
|
|
|
|
"""
|
|
|
|
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = \
|
|
|
|
self.init_collection_general(prefix, True, auto_id=auto_id, dim=default_dim)[0:4]
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_string_with_invalid_expr: searching collection %s" % collection_w.name)
|
|
|
|
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
default_invaild_string_exp,
|
|
|
|
check_task=CheckTasks.err_res,
|
|
|
|
check_items={"err_code": 1,
|
|
|
|
"err_msg": "failed to create query plan: type mismatch"}
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
@pytest.mark.parametrize("expression", cf.gen_normal_string_expressions(ct.default_string_field_name))
|
|
|
|
def test_search_with_different_string_expr(self, dim, expression, _async):
|
|
|
|
"""
|
|
|
|
target: test search with different string expressions
|
|
|
|
method: test search with different string expressions
|
|
|
|
expected: searched successfully with correct limit(topK)
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
nb = 1000
|
|
|
|
collection_w, _vectors, _, insert_ids = self.init_collection_general(prefix, True,
|
|
|
|
nb, dim=dim,
|
|
|
|
is_index=True)[0:4]
|
|
|
|
|
|
|
|
# filter result with expression in collection
|
|
|
|
_vectors = _vectors[0]
|
|
|
|
filter_ids = []
|
|
|
|
expression = expression.replace("&&", "and").replace("||", "or")
|
|
|
|
for i, _id in enumerate(insert_ids):
|
|
|
|
int64 = _vectors.int64[i]
|
|
|
|
varchar = _vectors.varchar[i]
|
|
|
|
if not expression or eval(expression):
|
|
|
|
filter_ids.append(_id)
|
|
|
|
|
|
|
|
# 2. create index
|
|
|
|
index_param = {"index_type": "IVF_FLAT", "metric_type": "L2", "params": {"nlist": 100}}
|
|
|
|
collection_w.create_index("float_vector", index_param)
|
|
|
|
collection_w.load()
|
|
|
|
|
|
|
|
# 3. search with expression
|
|
|
|
log.info("test_search_with_expression: searching with expression: %s" % expression)
|
|
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(default_nq)]
|
|
|
|
search_res, _ = collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, nb, expression,
|
|
|
|
_async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": min(nb, len(filter_ids)),
|
|
|
|
"_async": _async})
|
|
|
|
if _async:
|
|
|
|
search_res.done()
|
|
|
|
search_res = search_res.result()
|
|
|
|
|
|
|
|
filter_ids_set = set(filter_ids)
|
|
|
|
for hits in search_res:
|
|
|
|
ids = hits.ids
|
|
|
|
assert set(ids).issubset(filter_ids_set)
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_string_field_is_primary_binary(self, dim, _async):
|
|
|
|
"""
|
|
|
|
target: test search with string expr and string field is primary
|
|
|
|
method: create collection and insert data
|
|
|
|
create index and collection load
|
|
|
|
collection search uses string expr in string field ,string field is primary
|
|
|
|
expected: Search successfully
|
|
|
|
"""
|
|
|
|
|
|
|
|
# 1. initialize with binary data
|
|
|
|
collection_w, _, binary_raw_vector, insert_ids = self.init_collection_general(prefix, True, 2,
|
|
|
|
is_binary=True,
|
|
|
|
dim=dim,
|
|
|
|
is_index=True,
|
|
|
|
primary_field=ct.default_string_field_name)[0:4]
|
|
|
|
# 2. create index
|
|
|
|
default_index = {"index_type": "BIN_IVF_FLAT", "params": {"nlist": 128}, "metric_type": "JACCARD"}
|
|
|
|
collection_w.create_index("binary_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
# 3. search with exception
|
|
|
|
binary_vectors = cf.gen_binary_vectors(3000, dim)[1]
|
|
|
|
search_params = {"metric_type": "JACCARD", "params": {"nprobe": 10}}
|
|
|
|
output_fields = [default_string_field_name]
|
|
|
|
collection_w.search(binary_vectors[:default_nq], "binary_vector", search_params,
|
|
|
|
default_limit, default_search_string_exp, output_fields=output_fields,
|
|
|
|
_async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": 2,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_string_field_binary(self, auto_id, dim, _async):
|
|
|
|
"""
|
|
|
|
target: test search with string expr and string field is not primary
|
|
|
|
method: create an binary collection and insert data
|
|
|
|
create index and collection load
|
|
|
|
collection search uses string expr in string field, string field is not primary
|
|
|
|
expected: Search successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize with binary data
|
|
|
|
|
|
|
|
collection_w, _, binary_raw_vector, insert_ids = self.init_collection_general(prefix, True, 2,
|
|
|
|
is_binary=True,
|
|
|
|
auto_id=auto_id,
|
|
|
|
dim=dim,
|
|
|
|
is_index=True)[0:4]
|
|
|
|
# 2. create index
|
|
|
|
default_index = {"index_type": "BIN_IVF_FLAT", "params": {"nlist": 128}, "metric_type": "JACCARD"}
|
|
|
|
collection_w.create_index("binary_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
# 2. search with exception
|
|
|
|
binary_vectors = cf.gen_binary_vectors(3000, dim)[1]
|
|
|
|
search_params = {"metric_type": "JACCARD", "params": {"nprobe": 10}}
|
|
|
|
collection_w.search(binary_vectors[:default_nq], "binary_vector", search_params,
|
|
|
|
default_limit, default_search_string_exp,
|
|
|
|
_async=_async,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": 2,
|
|
|
|
"_async": _async})
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_mix_expr_with_binary(self, dim, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with mix string and int expr
|
|
|
|
method: create an binary collection and insert data
|
|
|
|
create index and collection load
|
|
|
|
collection search uses mix expr
|
|
|
|
expected: Search successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = \
|
|
|
|
self.init_collection_general(prefix, True, auto_id=auto_id, dim=dim, is_binary=True, is_index=True)[0:4]
|
|
|
|
# 2. create index
|
|
|
|
default_index = {"index_type": "BIN_IVF_FLAT", "params": {"nlist": 128}, "metric_type": "JACCARD"}
|
|
|
|
collection_w.create_index("binary_vector", default_index)
|
|
|
|
collection_w.load()
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_mix_expr_with_binary: searching collection %s" % collection_w.name)
|
|
|
|
binary_vectors = cf.gen_binary_vectors(3000, dim)[1]
|
|
|
|
search_params = {"metric_type": "JACCARD", "params": {"nprobe": 10}}
|
|
|
|
output_fields = [default_string_field_name, default_float_field_name]
|
|
|
|
collection_w.search(binary_vectors[:default_nq], "binary_vector",
|
|
|
|
search_params, default_limit,
|
|
|
|
default_search_mix_exp,
|
|
|
|
output_fields=output_fields,
|
|
|
|
_async=_async,
|
|
|
|
travel_timestamp=0,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async})
|
2022-05-18 17:54:01 +08:00
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
|
|
def test_search_string_field_not_primary_perfix(self, auto_id, _async):
|
|
|
|
"""
|
|
|
|
target: test search with string expr and string field is not primary
|
|
|
|
method: create collection and insert data
|
|
|
|
create index and collection load
|
|
|
|
collection search uses string expr in string field, string field is not primary
|
|
|
|
expected: Search successfully
|
|
|
|
"""
|
|
|
|
# 1. initialize with data
|
|
|
|
collection_w, _, _, insert_ids = \
|
|
|
|
self.init_collection_general(prefix, True, auto_id=auto_id, dim=default_dim)[0:4]
|
|
|
|
index_param = {"index_type": "IVF_FLAT", "metric_type": "L2", "params": {"nlist": 100}}
|
|
|
|
collection_w.create_index("float_vector", index_param, index_name="a")
|
|
|
|
index_param_two ={}
|
|
|
|
collection_w.create_index("varchar", index_param_two, index_name="b")
|
|
|
|
collection_w.load()
|
|
|
|
# 2. search
|
|
|
|
log.info("test_search_string_field_not_primary: searching collection %s" % collection_w.name)
|
|
|
|
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
|
|
|
|
output_fields = [default_float_field_name, default_string_field_name]
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
perfix_expr,
|
|
|
|
output_fields=output_fields,
|
|
|
|
_async=_async,
|
|
|
|
travel_timestamp=0,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": 1,
|
|
|
|
"_async": _async}
|
2022-06-01 18:54:03 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
|
|
def test_search_all_index_with_compare_expr(self, _async):
|
|
|
|
"""
|
|
|
|
target: test delete after creating index
|
|
|
|
method: 1.create collection , insert data, primary_field is string field
|
|
|
|
2.create string and float index ,delete entities, query
|
|
|
|
3.search
|
|
|
|
expected: assert index and deleted id not in search result
|
|
|
|
"""
|
|
|
|
# create collection, insert tmp_nb, flush and load
|
|
|
|
collection_w, vectors, _, insert_ids = self.init_collection_general(prefix, insert_data=True, primary_field=ct.default_string_field_name)[0:4]
|
|
|
|
|
|
|
|
# create index
|
|
|
|
index_params_one = {"index_type": "IVF_SQ8", "metric_type": "L2", "params": {"nlist": 64}}
|
|
|
|
collection_w.create_index(ct.default_float_vec_field_name, index_params_one, index_name=index_name1)
|
|
|
|
index_params_two ={}
|
|
|
|
collection_w.create_index(ct.default_string_field_name, index_params=index_params_two, index_name=index_name2)
|
|
|
|
assert collection_w.has_index(index_name=index_name2)
|
|
|
|
|
|
|
|
collection_w.release()
|
|
|
|
collection_w.load()
|
|
|
|
# delete entity
|
|
|
|
expr = 'float >= int64'
|
|
|
|
# search with id 0 vectors
|
|
|
|
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
|
|
|
|
output_fields = [default_int64_field_name, default_float_field_name, default_string_field_name]
|
|
|
|
collection_w.search(vectors[:default_nq], default_search_field,
|
|
|
|
default_search_params, default_limit,
|
|
|
|
expr,
|
|
|
|
output_fields=output_fields,
|
|
|
|
_async=_async,
|
|
|
|
travel_timestamp=0,
|
|
|
|
check_task=CheckTasks.check_search_results,
|
|
|
|
check_items={"nq": default_nq,
|
|
|
|
"ids": insert_ids,
|
|
|
|
"limit": default_limit,
|
|
|
|
"_async": _async}
|
2022-08-25 15:48:54 +08:00
|
|
|
)
|