milvus/internal/datacoord/compaction_trigger.go

861 lines
29 KiB
Go
Raw Normal View History

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package datacoord
import (
"context"
"fmt"
"sort"
"sync"
"time"
"github.com/milvus-io/milvus/pkg/util/tsoutil"
"github.com/samber/lo"
"go.uber.org/zap"
"github.com/milvus-io/milvus-proto/go-api/commonpb"
"github.com/milvus-io/milvus/internal/proto/datapb"
"github.com/milvus-io/milvus/pkg/log"
"github.com/milvus-io/milvus/pkg/util/indexparamcheck"
"github.com/milvus-io/milvus/pkg/util/logutil"
)
type compactTime struct {
travelTime Timestamp
expireTime Timestamp
collectionTTL time.Duration
}
type trigger interface {
start()
stop()
// triggerCompaction triggers a compaction if any compaction condition satisfy.
triggerCompaction() error
// triggerSingleCompaction triggers a compaction bundled with collection-partition-channel-segment
triggerSingleCompaction(collectionID, partitionID, segmentID int64, channel string) error
// forceTriggerCompaction force to start a compaction
forceTriggerCompaction(collectionID int64) (UniqueID, error)
}
type compactionSignal struct {
id UniqueID
isForce bool
isGlobal bool
collectionID UniqueID
partitionID UniqueID
segmentID UniqueID
channel string
}
var _ trigger = (*compactionTrigger)(nil)
type compactionTrigger struct {
handler Handler
meta *meta
allocator allocator
signals chan *compactionSignal
compactionHandler compactionPlanContext
globalTrigger *time.Ticker
forceMu sync.Mutex
quit chan struct{}
wg sync.WaitGroup
//segRefer *SegmentReferenceManager
//indexCoord types.IndexCoord
estimateNonDiskSegmentPolicy calUpperLimitPolicy
estimateDiskSegmentPolicy calUpperLimitPolicy
// A sloopy hack, so we can test with different segment row count without worrying that
// they are re-calculated in every compaction.
testingOnly bool
}
func newCompactionTrigger(
meta *meta,
compactionHandler compactionPlanContext,
allocator allocator,
//segRefer *SegmentReferenceManager,
//indexCoord types.IndexCoord,
handler Handler,
) *compactionTrigger {
return &compactionTrigger{
meta: meta,
allocator: allocator,
signals: make(chan *compactionSignal, 100),
compactionHandler: compactionHandler,
//segRefer: segRefer,
//indexCoord: indexCoord,
estimateDiskSegmentPolicy: calBySchemaPolicyWithDiskIndex,
estimateNonDiskSegmentPolicy: calBySchemaPolicy,
handler: handler,
}
}
func (t *compactionTrigger) start() {
t.quit = make(chan struct{})
t.globalTrigger = time.NewTicker(Params.DataCoordCfg.GlobalCompactionInterval.GetAsDuration(time.Second))
t.wg.Add(2)
go func() {
defer logutil.LogPanic()
defer t.wg.Done()
for {
select {
case <-t.quit:
log.Info("compaction trigger quit")
return
case signal := <-t.signals:
switch {
case signal.isGlobal:
t.handleGlobalSignal(signal)
default:
t.handleSignal(signal)
// shouldn't reset, otherwise a frequent flushed collection will affect other collections
// t.globalTrigger.Reset(Params.DataCoordCfg.GlobalCompactionInterval)
}
}
}
}()
go t.startGlobalCompactionLoop()
}
func (t *compactionTrigger) startGlobalCompactionLoop() {
defer logutil.LogPanic()
defer t.wg.Done()
// If AutoCompaction disabled, global loop will not start
if !Params.DataCoordCfg.EnableAutoCompaction.GetAsBool() {
return
}
for {
select {
case <-t.quit:
t.globalTrigger.Stop()
log.Info("global compaction loop exit")
return
case <-t.globalTrigger.C:
err := t.triggerCompaction()
if err != nil {
log.Warn("unable to triggerCompaction", zap.Error(err))
}
}
}
}
func (t *compactionTrigger) stop() {
close(t.quit)
t.wg.Wait()
}
func (t *compactionTrigger) allocTs() (Timestamp, error) {
cctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
ts, err := t.allocator.allocTimestamp(cctx)
if err != nil {
return 0, err
}
return ts, nil
}
func (t *compactionTrigger) getCompactTime(ts Timestamp, collectionID UniqueID) (*compactTime, error) {
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
defer cancel()
coll, err := t.handler.GetCollection(ctx, collectionID)
if err != nil {
return nil, fmt.Errorf("collection ID %d not found, err: %w", collectionID, err)
}
collectionTTL, err := getCollectionTTL(coll.Properties)
if err != nil {
return nil, err
}
pts, _ := tsoutil.ParseTS(ts)
ttRetention := pts.Add(Params.CommonCfg.RetentionDuration.GetAsDuration(time.Second) * -1)
ttRetentionLogic := tsoutil.ComposeTS(ttRetention.UnixNano()/int64(time.Millisecond), 0)
if collectionTTL > 0 {
ttexpired := pts.Add(-collectionTTL)
ttexpiredLogic := tsoutil.ComposeTS(ttexpired.UnixNano()/int64(time.Millisecond), 0)
return &compactTime{ttRetentionLogic, ttexpiredLogic, collectionTTL}, nil
}
// no expiration time
return &compactTime{ttRetentionLogic, 0, 0}, nil
}
// triggerCompaction trigger a compaction if any compaction condition satisfy.
func (t *compactionTrigger) triggerCompaction() error {
id, err := t.allocSignalID()
if err != nil {
return err
}
signal := &compactionSignal{
id: id,
isForce: false,
isGlobal: true,
}
t.signals <- signal
return nil
}
// triggerSingleCompaction triger a compaction bundled with collection-partition-channel-segment
func (t *compactionTrigger) triggerSingleCompaction(collectionID, partitionID, segmentID int64, channel string) error {
// If AutoCompaction disabled, flush request will not trigger compaction
if !Params.DataCoordCfg.EnableAutoCompaction.GetAsBool() {
return nil
}
id, err := t.allocSignalID()
if err != nil {
return err
}
signal := &compactionSignal{
id: id,
isForce: false,
isGlobal: false,
collectionID: collectionID,
partitionID: partitionID,
segmentID: segmentID,
channel: channel,
}
t.signals <- signal
return nil
}
// forceTriggerCompaction force to start a compaction
// invoked by user `ManualCompaction` operation
func (t *compactionTrigger) forceTriggerCompaction(collectionID int64) (UniqueID, error) {
id, err := t.allocSignalID()
if err != nil {
return -1, err
}
signal := &compactionSignal{
id: id,
isForce: true,
isGlobal: true,
collectionID: collectionID,
}
t.handleGlobalSignal(signal)
return id, nil
}
func (t *compactionTrigger) allocSignalID() (UniqueID, error) {
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
return t.allocator.allocID(ctx)
}
func (t *compactionTrigger) reCalcSegmentMaxNumOfRows(collectionID UniqueID, isDisk bool) (int, error) {
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
defer cancel()
collMeta, err := t.handler.GetCollection(ctx, collectionID)
if err != nil {
return -1, fmt.Errorf("failed to get collection %d", collectionID)
}
if isDisk {
return t.estimateDiskSegmentPolicy(collMeta.Schema)
}
return t.estimateNonDiskSegmentPolicy(collMeta.Schema)
}
// TODO: Update segment info should be written back to Etcd.
func (t *compactionTrigger) updateSegmentMaxSize(segments []*SegmentInfo) (bool, error) {
if len(segments) == 0 {
return false, nil
}
collectionID := segments[0].GetCollectionID()
indexInfos := t.meta.GetIndexesForCollection(segments[0].GetCollectionID(), "")
isDiskANN := false
for _, indexInfo := range indexInfos {
indexType := getIndexType(indexInfo.IndexParams)
if indexType == indexparamcheck.IndexDISKANN {
// If index type is DiskANN, recalc segment max size here.
isDiskANN = true
newMaxRows, err := t.reCalcSegmentMaxNumOfRows(collectionID, true)
if err != nil {
return false, err
}
if len(segments) > 0 && int64(newMaxRows) != segments[0].GetMaxRowNum() {
log.Info("segment max rows recalculated for DiskANN collection",
zap.Int64("old max rows", segments[0].GetMaxRowNum()),
zap.Int64("new max rows", int64(newMaxRows)))
for _, segment := range segments {
segment.MaxRowNum = int64(newMaxRows)
}
}
}
}
// If index type is not DiskANN, recalc segment max size using default policy.
if !isDiskANN && !t.testingOnly {
newMaxRows, err := t.reCalcSegmentMaxNumOfRows(collectionID, false)
if err != nil {
return isDiskANN, err
}
if len(segments) > 0 && int64(newMaxRows) != segments[0].GetMaxRowNum() {
log.Info("segment max rows recalculated for non-DiskANN collection",
zap.Int64("old max rows", segments[0].GetMaxRowNum()),
zap.Int64("new max rows", int64(newMaxRows)))
for _, segment := range segments {
segment.MaxRowNum = int64(newMaxRows)
}
}
}
return isDiskANN, nil
}
func (t *compactionTrigger) handleGlobalSignal(signal *compactionSignal) {
t.forceMu.Lock()
defer t.forceMu.Unlock()
m := t.meta.GetSegmentsChanPart(func(segment *SegmentInfo) bool {
return (signal.collectionID == 0 || segment.CollectionID == signal.collectionID) &&
isSegmentHealthy(segment) &&
isFlush(segment) &&
!segment.isCompacting && // not compacting now
!segment.GetIsImporting() // not importing now
}) // m is list of chanPartSegments, which is channel-partition organized segments
if len(m) == 0 {
return
}
ts, err := t.allocTs()
if err != nil {
log.Warn("allocate ts failed, skip to handle compaction",
zap.Int64("collectionID", signal.collectionID),
zap.Int64("partitionID", signal.partitionID),
zap.Int64("segmentID", signal.segmentID))
return
}
for _, group := range m {
if !signal.isForce && t.compactionHandler.isFull() {
break
}
isDiskIndex, err := t.updateSegmentMaxSize(group.segments)
if err != nil {
log.Warn("failed to update segment max size", zap.Error(err))
continue
}
ct, err := t.getCompactTime(ts, group.collectionID)
if err != nil {
log.Warn("get compact time failed, skip to handle compaction",
zap.Int64("collectionID", group.collectionID),
zap.Int64("partitionID", group.partitionID),
zap.String("channel", group.channelName))
return
}
plans := t.generatePlans(group.segments, signal.isForce, isDiskIndex, ct)
for _, plan := range plans {
segIDs := fetchSegIDs(plan.GetSegmentBinlogs())
if !signal.isForce && t.compactionHandler.isFull() {
log.Warn("compaction plan skipped due to handler full",
zap.Int64("collection", signal.collectionID),
zap.Int64s("segment IDs", segIDs))
break
}
start := time.Now()
if err := t.fillOriginPlan(plan); err != nil {
log.Warn("failed to fill plan",
zap.Int64s("segment IDs", segIDs),
zap.Error(err))
continue
}
err := t.compactionHandler.execCompactionPlan(signal, plan)
if err != nil {
log.Warn("failed to execute compaction plan",
zap.Int64("collection", signal.collectionID),
zap.Int64("planID", plan.PlanID),
zap.Int64s("segment IDs", segIDs),
zap.Error(err))
continue
}
segIDMap := make(map[int64][]*datapb.FieldBinlog, len(plan.SegmentBinlogs))
for _, seg := range plan.SegmentBinlogs {
segIDMap[seg.SegmentID] = seg.Deltalogs
}
log.Info("time cost of generating global compaction",
zap.Any("segID2DeltaLogs", segIDMap),
zap.Int64("planID", plan.PlanID),
zap.Any("time cost", time.Since(start).Milliseconds()),
zap.Int64("collectionID", signal.collectionID),
zap.String("channel", group.channelName),
zap.Int64("partitionID", group.partitionID),
zap.Int64s("segment IDs", segIDs))
}
}
}
// handleSignal processes segment flush caused partition-chan level compaction signal
func (t *compactionTrigger) handleSignal(signal *compactionSignal) {
t.forceMu.Lock()
defer t.forceMu.Unlock()
// 1. check whether segment's binlogs should be compacted or not
if t.compactionHandler.isFull() {
return
}
segment := t.meta.GetHealthySegment(signal.segmentID)
if segment == nil {
log.Warn("segment in compaction signal not found in meta", zap.Int64("segmentID", signal.segmentID))
return
}
channel := segment.GetInsertChannel()
partitionID := segment.GetPartitionID()
segments := t.getCandidateSegments(channel, partitionID)
if len(segments) == 0 {
return
}
isDiskIndex, err := t.updateSegmentMaxSize(segments)
if err != nil {
log.Warn("failed to update segment max size", zap.Error(err))
return
}
ts, err := t.allocTs()
if err != nil {
log.Warn("allocate ts failed, skip to handle compaction", zap.Int64("collectionID", signal.collectionID),
zap.Int64("partitionID", signal.partitionID), zap.Int64("segmentID", signal.segmentID))
return
}
ct, err := t.getCompactTime(ts, segment.GetCollectionID())
if err != nil {
log.Warn("get compact time failed, skip to handle compaction", zap.Int64("collectionID", segment.GetCollectionID()),
zap.Int64("partitionID", partitionID), zap.String("channel", channel))
return
}
plans := t.generatePlans(segments, signal.isForce, isDiskIndex, ct)
for _, plan := range plans {
if t.compactionHandler.isFull() {
log.Warn("compaction plan skipped due to handler full", zap.Int64("collection", signal.collectionID), zap.Int64("planID", plan.PlanID))
break
}
start := time.Now()
if err := t.fillOriginPlan(plan); err != nil {
log.Warn("failed to fill plan", zap.Error(err))
continue
}
if err := t.compactionHandler.execCompactionPlan(signal, plan); err != nil {
log.Warn("failed to execute compaction plan",
zap.Int64("collection", signal.collectionID),
zap.Int64("planID", plan.PlanID),
zap.Int64s("segment IDs", fetchSegIDs(plan.GetSegmentBinlogs())),
zap.Error(err))
continue
}
log.Info("time cost of generating compaction",
zap.Int64("plan ID", plan.PlanID),
zap.Any("time cost", time.Since(start).Milliseconds()),
zap.Int64("collection ID", signal.collectionID),
zap.String("channel", channel),
zap.Int64("partition ID", partitionID),
zap.Int64s("segment IDs", fetchSegIDs(plan.GetSegmentBinlogs())))
}
}
func (t *compactionTrigger) generatePlans(segments []*SegmentInfo, force bool, isDiskIndex bool, compactTime *compactTime) []*datapb.CompactionPlan {
// find segments need internal compaction
// TODO add low priority candidates, for example if the segment is smaller than full 0.9 * max segment size but larger than small segment boundary, we only execute compaction when there are no compaction running actively
var prioritizedCandidates []*SegmentInfo
var smallCandidates []*SegmentInfo
var nonPlannedSegments []*SegmentInfo
// TODO, currently we lack of the measurement of data distribution, there should be another compaction help on redistributing segment based on scalar/vector field distribution
for _, segment := range segments {
segment := segment.ShadowClone()
// TODO should we trigger compaction periodically even if the segment has no obvious reason to be compacted?
if force || t.ShouldDoSingleCompaction(segment, isDiskIndex, compactTime) {
prioritizedCandidates = append(prioritizedCandidates, segment)
} else if t.isSmallSegment(segment) {
smallCandidates = append(smallCandidates, segment)
} else {
nonPlannedSegments = append(nonPlannedSegments, segment)
}
}
var plans []*datapb.CompactionPlan
// sort segment from large to small
sort.Slice(prioritizedCandidates, func(i, j int) bool {
if prioritizedCandidates[i].GetNumOfRows() != prioritizedCandidates[j].GetNumOfRows() {
return prioritizedCandidates[i].GetNumOfRows() > prioritizedCandidates[j].GetNumOfRows()
}
return prioritizedCandidates[i].GetID() < prioritizedCandidates[j].GetID()
})
sort.Slice(smallCandidates, func(i, j int) bool {
if smallCandidates[i].GetNumOfRows() != smallCandidates[j].GetNumOfRows() {
return smallCandidates[i].GetNumOfRows() > smallCandidates[j].GetNumOfRows()
}
return smallCandidates[i].GetID() < smallCandidates[j].GetID()
})
// Sort non-planned from small to large.
sort.Slice(nonPlannedSegments, func(i, j int) bool {
if nonPlannedSegments[i].GetNumOfRows() != nonPlannedSegments[j].GetNumOfRows() {
return nonPlannedSegments[i].GetNumOfRows() < nonPlannedSegments[j].GetNumOfRows()
}
return nonPlannedSegments[i].GetID() > nonPlannedSegments[j].GetID()
})
getSegmentIDs := func(segment *SegmentInfo, _ int) int64 {
return segment.GetID()
}
// greedy pick from large segment to small, the goal is to fill each segment to reach 512M
// we must ensure all prioritized candidates is in a plan
//TODO the compaction policy should consider segment with similar timestamp together so timetravel and data expiration could work better.
//TODO the compaction selection policy should consider if compaction workload is high
for len(prioritizedCandidates) > 0 {
var bucket []*SegmentInfo
// pop out the first element
segment := prioritizedCandidates[0]
bucket = append(bucket, segment)
prioritizedCandidates = prioritizedCandidates[1:]
// only do single file compaction if segment is already large enough
if segment.GetNumOfRows() < segment.GetMaxRowNum() {
var result []*SegmentInfo
free := segment.GetMaxRowNum() - segment.GetNumOfRows()
maxNum := Params.DataCoordCfg.MaxSegmentToMerge.GetAsInt() - 1
prioritizedCandidates, result, free = greedySelect(prioritizedCandidates, free, maxNum)
bucket = append(bucket, result...)
maxNum -= len(result)
if maxNum > 0 {
smallCandidates, result, _ = greedySelect(smallCandidates, free, maxNum)
bucket = append(bucket, result...)
}
}
// since this is priority compaction, we will execute even if there is only segment
plan := segmentsToPlan(bucket, compactTime)
var size int64
var row int64
for _, s := range bucket {
size += s.getSegmentSize()
row += s.GetNumOfRows()
}
log.Info("generate a plan for priority candidates", zap.Any("plan", plan),
zap.Int64("target segment row", row), zap.Int64("target segment size", size))
plans = append(plans, plan)
}
getSegIDsFromPlan := func(plan *datapb.CompactionPlan) []int64 {
var segmentIDs []int64
for _, binLog := range plan.GetSegmentBinlogs() {
segmentIDs = append(segmentIDs, binLog.GetSegmentID())
}
return segmentIDs
}
var remainingSmallSegs []*SegmentInfo
// check if there are small candidates left can be merged into large segments
for len(smallCandidates) > 0 {
var bucket []*SegmentInfo
// pop out the first element
segment := smallCandidates[0]
bucket = append(bucket, segment)
smallCandidates = smallCandidates[1:]
var result []*SegmentInfo
free := segment.GetMaxRowNum() - segment.GetNumOfRows()
// for small segment merge, we pick one largest segment and merge as much as small segment together with it
// Why reverse? try to merge as many segments as expected.
// for instance, if a 255M and 255M is the largest small candidates, they will never be merged because of the MinSegmentToMerge limit.
smallCandidates, result, _ = reverseGreedySelect(smallCandidates, free, Params.DataCoordCfg.MaxSegmentToMerge.GetAsInt()-1)
bucket = append(bucket, result...)
var size int64
var targetRow int64
for _, s := range bucket {
size += s.getSegmentSize()
targetRow += s.GetNumOfRows()
}
// only merge if candidate number is large than MinSegmentToMerge or if target row is large enough
if len(bucket) >= Params.DataCoordCfg.MinSegmentToMerge.GetAsInt() ||
len(bucket) > 1 &&
targetRow > int64(float64(segment.GetMaxRowNum())*Params.DataCoordCfg.SegmentCompactableProportion.GetAsFloat()) {
plan := segmentsToPlan(bucket, compactTime)
log.Info("generate a plan for small candidates",
zap.Int64s("plan segment IDs", lo.Map(bucket, getSegmentIDs)),
zap.Int64("target segment row", targetRow),
zap.Int64("target segment size", size))
plans = append(plans, plan)
} else {
remainingSmallSegs = append(remainingSmallSegs, bucket...)
}
}
// Try adding remaining segments to existing plans.
for i := len(remainingSmallSegs) - 1; i >= 0; i-- {
s := remainingSmallSegs[i]
if !isExpandableSmallSegment(s) {
continue
}
// Try squeeze this segment into existing plans. This could cause segment size to exceed maxSize.
for _, plan := range plans {
if plan.TotalRows+s.GetNumOfRows() <= int64(Params.DataCoordCfg.SegmentExpansionRate.GetAsFloat()*float64(s.GetMaxRowNum())) {
segmentBinLogs := &datapb.CompactionSegmentBinlogs{
SegmentID: s.GetID(),
FieldBinlogs: s.GetBinlogs(),
Field2StatslogPaths: s.GetStatslogs(),
Deltalogs: s.GetDeltalogs(),
}
plan.TotalRows += s.GetNumOfRows()
plan.SegmentBinlogs = append(plan.SegmentBinlogs, segmentBinLogs)
log.Info("small segment appended on existing plan",
zap.Int64("segment ID", s.GetID()),
zap.Int64("target rows", plan.GetTotalRows()),
zap.Int64s("plan segment ID", getSegIDsFromPlan(plan)),
)
remainingSmallSegs = append(remainingSmallSegs[:i], remainingSmallSegs[i+1:]...)
break
}
}
}
// If there are still remaining small segments, try adding them to non-planned segments.
for _, npSeg := range nonPlannedSegments {
bucket := []*SegmentInfo{npSeg}
targetRow := npSeg.GetNumOfRows()
for i := len(remainingSmallSegs) - 1; i >= 0; i-- {
// Note: could also simply use MaxRowNum as limit.
if targetRow+remainingSmallSegs[i].GetNumOfRows() <=
int64(Params.DataCoordCfg.SegmentExpansionRate.GetAsFloat()*float64(npSeg.GetMaxRowNum())) {
bucket = append(bucket, remainingSmallSegs[i])
targetRow += remainingSmallSegs[i].GetNumOfRows()
remainingSmallSegs = append(remainingSmallSegs[:i], remainingSmallSegs[i+1:]...)
}
}
if len(bucket) > 1 {
plan := segmentsToPlan(bucket, compactTime)
plans = append(plans, plan)
log.Info("generate a plan for to squeeze small candidates into non-planned segment",
zap.Int64s("plan segment IDs", lo.Map(bucket, getSegmentIDs)),
zap.Int64("target segment row", targetRow),
)
}
}
return plans
}
func segmentsToPlan(segments []*SegmentInfo, compactTime *compactTime) *datapb.CompactionPlan {
plan := &datapb.CompactionPlan{
Timetravel: compactTime.travelTime,
Type: datapb.CompactionType_MixCompaction,
Channel: segments[0].GetInsertChannel(),
CollectionTtl: compactTime.collectionTTL.Nanoseconds(),
}
for _, s := range segments {
segmentBinlogs := &datapb.CompactionSegmentBinlogs{
SegmentID: s.GetID(),
FieldBinlogs: s.GetBinlogs(),
Field2StatslogPaths: s.GetStatslogs(),
Deltalogs: s.GetDeltalogs(),
}
plan.TotalRows += s.GetNumOfRows()
plan.SegmentBinlogs = append(plan.SegmentBinlogs, segmentBinlogs)
}
return plan
}
func greedySelect(candidates []*SegmentInfo, free int64, maxSegment int) ([]*SegmentInfo, []*SegmentInfo, int64) {
var result []*SegmentInfo
for i := 0; i < len(candidates); {
candidate := candidates[i]
if len(result) < maxSegment && candidate.GetNumOfRows() < free {
result = append(result, candidate)
free -= candidate.GetNumOfRows()
candidates = append(candidates[:i], candidates[i+1:]...)
} else {
i++
}
}
return candidates, result, free
}
func reverseGreedySelect(candidates []*SegmentInfo, free int64, maxSegment int) ([]*SegmentInfo, []*SegmentInfo, int64) {
var result []*SegmentInfo
for i := len(candidates) - 1; i >= 0; i-- {
candidate := candidates[i]
if (len(result) < maxSegment) && (candidate.GetNumOfRows() < free) {
result = append(result, candidate)
free -= candidate.GetNumOfRows()
candidates = append(candidates[:i], candidates[i+1:]...)
}
}
return candidates, result, free
}
func (t *compactionTrigger) getCandidateSegments(channel string, partitionID UniqueID) []*SegmentInfo {
segments := t.meta.GetSegmentsByChannel(channel)
var res []*SegmentInfo
for _, s := range segments {
if !isSegmentHealthy(s) ||
!isFlush(s) ||
s.GetInsertChannel() != channel ||
s.GetPartitionID() != partitionID ||
s.isCompacting ||
s.GetIsImporting() {
continue
}
res = append(res, s)
}
return res
}
func (t *compactionTrigger) isSmallSegment(segment *SegmentInfo) bool {
return segment.GetNumOfRows() < int64(float64(segment.GetMaxRowNum())*Params.DataCoordCfg.SegmentSmallProportion.GetAsFloat())
}
func isExpandableSmallSegment(segment *SegmentInfo) bool {
return segment.GetNumOfRows() < int64(float64(segment.GetMaxRowNum())*(Params.DataCoordCfg.SegmentExpansionRate.GetAsFloat()-1))
}
func (t *compactionTrigger) fillOriginPlan(plan *datapb.CompactionPlan) error {
// TODO context
id, err := t.allocator.allocID(context.TODO())
if err != nil {
return err
}
plan.PlanID = id
plan.TimeoutInSeconds = int32(Params.DataCoordCfg.CompactionTimeoutInSeconds.GetAsInt())
return nil
}
func (t *compactionTrigger) isStaleSegment(segment *SegmentInfo) bool {
return time.Since(segment.lastFlushTime).Minutes() >= segmentTimedFlushDuration
}
func (t *compactionTrigger) ShouldDoSingleCompaction(segment *SegmentInfo, isDiskIndex bool, compactTime *compactTime) bool {
// no longer restricted binlog numbers because this is now related to field numbers
var binLog int
for _, binlogs := range segment.GetBinlogs() {
binLog += len(binlogs.GetBinlogs())
}
// count all the statlog file count, only for flush generated segments
if len(segment.CompactionFrom) == 0 {
var statsLog int
for _, statsLogs := range segment.GetStatslogs() {
statsLog += len(statsLogs.GetBinlogs())
}
var maxSize int
if isDiskIndex {
maxSize = int(Params.DataCoordCfg.DiskSegmentMaxSize.GetAsInt64() * 1024 * 1024 / Params.DataNodeCfg.BinLogMaxSize.GetAsInt64())
} else {
maxSize = int(Params.DataCoordCfg.SegmentMaxSize.GetAsInt64() * 1024 * 1024 / Params.DataNodeCfg.BinLogMaxSize.GetAsInt64())
}
// if stats log is more than expected, trigger compaction to reduce stats log size.
// TODO maybe we want to compact to single statslog to reduce watch dml channel cost
// TODO avoid rebuild index twice.
if statsLog > maxSize*2.0 {
log.Info("stats number is too much, trigger compaction", zap.Int64("segment", segment.ID), zap.Int("Bin logs", binLog), zap.Int("Stat logs", statsLog))
return true
}
}
var deltaLog int
for _, deltaLogs := range segment.GetDeltalogs() {
deltaLog += len(deltaLogs.GetBinlogs())
}
if deltaLog > Params.DataCoordCfg.SingleCompactionDeltalogMaxNum.GetAsInt() {
log.Info("total delta number is too much, trigger compaction", zap.Int64("segment", segment.ID), zap.Int("Bin logs", binLog), zap.Int("Delta logs", deltaLog))
return true
}
// if expire time is enabled, put segment into compaction candidate
totalExpiredSize := int64(0)
totalExpiredRows := 0
for _, binlogs := range segment.GetBinlogs() {
for _, l := range binlogs.GetBinlogs() {
// TODO, we should probably estimate expired log entries by total rows in binlog and the ralationship of timeTo, timeFrom and expire time
if l.TimestampTo < compactTime.expireTime {
totalExpiredRows += int(l.GetEntriesNum())
totalExpiredSize += l.GetLogSize()
}
}
}
if float64(totalExpiredRows)/float64(segment.GetNumOfRows()) >= Params.DataCoordCfg.SingleCompactionRatioThreshold.GetAsFloat() || totalExpiredSize > Params.DataCoordCfg.SingleCompactionExpiredLogMaxSize.GetAsInt64() {
log.Info("total expired entities is too much, trigger compaction", zap.Int64("segment", segment.ID),
zap.Int("expired rows", totalExpiredRows), zap.Int64("expired log size", totalExpiredSize))
return true
}
// single compaction only merge insert and delta log beyond the timetravel
// segment's insert binlogs dont have time range info, so we wait until the segment's last expire time is less than timetravel
// to ensure that all insert logs is beyond the timetravel.
// TODO: add meta in insert binlog
if segment.LastExpireTime >= compactTime.travelTime {
return false
}
totalDeletedRows := 0
totalDeleteLogSize := int64(0)
for _, deltaLogs := range segment.GetDeltalogs() {
for _, l := range deltaLogs.GetBinlogs() {
if l.TimestampTo < compactTime.travelTime {
totalDeletedRows += int(l.GetEntriesNum())
totalDeleteLogSize += l.GetLogSize()
}
}
}
// currently delta log size and delete ratio policy is applied
if float64(totalDeletedRows)/float64(segment.GetNumOfRows()) >= Params.DataCoordCfg.SingleCompactionRatioThreshold.GetAsFloat() || totalDeleteLogSize > Params.DataCoordCfg.SingleCompactionDeltaLogMaxSize.GetAsInt64() {
log.Info("total delete entities is too much, trigger compaction", zap.Int64("segment", segment.ID),
zap.Int("deleted rows", totalDeletedRows), zap.Int64("delete log size", totalDeleteLogSize))
return true
}
return false
}
func isFlush(segment *SegmentInfo) bool {
return segment.GetState() == commonpb.SegmentState_Flushed || segment.GetState() == commonpb.SegmentState_Flushing
}
func fetchSegIDs(segBinLogs []*datapb.CompactionSegmentBinlogs) []int64 {
var segIDs []int64
for _, segBinLog := range segBinLogs {
segIDs = append(segIDs, segBinLog.GetSegmentID())
}
return segIDs
}