This article introduces the execution path of `Drop Collection`. At the end of this article, you should know which components are involved in `Drop Collection`.
2. Once the `DropCollection` request is received, the `Proxy` would wrap this request into `DropCollectionTask`, and push this task into `DdTaskQueue` queue. After that, `Proxy` would call `WaitToFinish` method to wait until the task is finished.
-`PreExecute`, do some static checking at this phase, such as check if `Collection Name` is legal etc.
-`Execute`, at this phase, `Proxy` would send `DropCollection` request to `RootCoord` via `Grpc`, and wait the response, the `proto` is defined as below:
4.`RootCoord` would wrap the `DropCollection` request into `DropCollectionReqTask`, and then call function `executeTask`. `executeTask` would return until the `context` is done or `DropCollectionReqTask.Execute` is returned.
5. Firstly, `RootCoord` would delete `Collection`'s meta from `metaTable`, including `schema`,`partition`, `segment`,`index`. All of these delete operations are committed in one transaction.
7.`RootCoord` would alloc a timestamp from `TSO` before deleting `Collection`'s meta from `metaTable`. This timestamp is considered as the point when the collection was deleted.
8.`RootCoord` would send a message of `DropCollectionRequest` into `MsgStream`. Thus other components, who have subscribed to the `MsgStream`, would be notified. The `Proto` of `DropCollectionRequest` is defined as below:
10. Then `RootCoord` would start a `ReleaseCollection` request to `QueryCoord` via `Grpc` , notify `QueryCoord` to release all resources that related to this `Collection`. This `Grpc` request is done in another `goroutine`, so it would not block the main thread. The `proto` is defined as follows:
11. At last, `RootCoord` would send `InvalidateCollectionMetaCache` request to each `Proxy`, notify `Proxy` to remove `Collection`'s meta. The `proto` is defined as follows:
13.`QueryCoord` would wrap `ReleaseCollection` into `ReleaseCollectionTask`, and push the task into `TaskScheduler`
14. There is a background service in `QueryCoord`. This service would get the `ReleaseCollectionTask` from `TaskScheduler`, and execute it in three phases:
- send a `ReleaseDQLMessageStream` request to `RootCoord` via `Grpc`, `RootCoord` would redirect the `ReleaseDQLMessageStream` request to each `Proxy`, and notify the `Proxy` that stop processing any message of this `Collection` anymore. The `proto` is defined as follows:
```proto
message ReleaseDQLMessageStreamRequest {
common.MsgBase base = 1;
int64 dbID = 2;
int64 collectionID = 3;
}
```
- send a `ReleaseCollection` request to each `QueryNode` via `Grpc`, and notify the `QueryNode` to release all the resources related to this `Collection`, including `Index`, `Segment`, `FlowGraph`, etc. `QueryNode` would no longer read any message from this `Collection`'s `MsgStream` anymore
16. At `Step 8`, `RootCoord` has sent a message of `DropCollectionRequest` into `MsgStream`. `DataNode` would subscribe this `MsgStream`, so that it would be notified to release related resources. The execution flow is shown in the following figure.
17. In `DataNode`, each `MsgStream` will have a `FlowGraph`, which processes all messages. When the `DataNode` receives the message of `DropCollectionRequest`, `DataNode` would notify `BackGroundGC`, which is a background service on `DataNode`, to release resources.
1. Currently, the `DataCoord` doesn't have response to the `DropCollection`. So the `Collection`'s `segment meta` still exists in the `DataCoord`'s `metaTable`, and the `Binlog` files belonging to this `Collection` still exist in the persistent storage.
2. Currently, the `IndexCoord` doesn't have response to the `DropCollection`. So the `Collection`'s `index file` still exists in the persistent storage.