milvus/internal/tso/tso.go

225 lines
7.2 KiB
Go
Raw Normal View History

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Copyright 2016 TiKV Project Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package tso
import (
"sync/atomic"
"time"
"unsafe"
"go.uber.org/zap"
"github.com/milvus-io/milvus/internal/kv"
"github.com/milvus-io/milvus/internal/log"
"github.com/milvus-io/milvus/internal/util/tsoutil"
"github.com/milvus-io/milvus/internal/util/typeutil"
"github.com/pkg/errors"
)
const (
// UpdateTimestampStep is used to update timestamp.
UpdateTimestampStep = 50 * time.Millisecond
// updateTimestampGuard is the min timestamp interval.
updateTimestampGuard = time.Millisecond
// maxLogical is the max upper limit for logical time.
// When a TSO's logical time reaches this limit,
// the physical time will be forced to increase.
maxLogical = int64(1 << 18)
)
// atomicObject is used to store the current TSO in memory.
type atomicObject struct {
physical time.Time
logical int64
}
// timestampOracle is used to maintain the logic of tso.
type timestampOracle struct {
key string
txnKV kv.TxnKV
// TODO: remove saveInterval
saveInterval time.Duration
maxResetTSGap func() time.Duration
// For tso, set after the PD becomes a leader.
TSO unsafe.Pointer
lastSavedTime atomic.Value
}
func (t *timestampOracle) loadTimestamp() (time.Time, error) {
strData, err := t.txnKV.Load(t.key)
if err != nil {
// intend to return nil
return typeutil.ZeroTime, nil
}
var binData = []byte(strData)
if len(binData) == 0 {
return typeutil.ZeroTime, nil
}
return typeutil.ParseTimestamp(binData)
}
// save timestamp, if lastTs is 0, we think the timestamp doesn't exist, so create it,
// otherwise, update it.
func (t *timestampOracle) saveTimestamp(ts time.Time) error {
//we use big endian here for compatibility issues
data := typeutil.Uint64ToBytesBigEndian(uint64(ts.UnixNano()))
err := t.txnKV.Save(t.key, string(data))
if err != nil {
return errors.WithStack(err)
}
t.lastSavedTime.Store(ts)
return nil
}
func (t *timestampOracle) InitTimestamp() error {
last, err := t.loadTimestamp()
if err != nil {
return err
}
next := time.Now()
// If the current system time minus the saved etcd timestamp is less than `updateTimestampGuard`,
// the timestamp allocation will start from the saved etcd timestamp temporarily.
if typeutil.SubTimeByWallClock(next, last) < updateTimestampGuard {
next = last.Add(updateTimestampGuard)
}
save := next.Add(t.saveInterval)
if err := t.saveTimestamp(save); err != nil {
return err
}
log.Info("sync and save timestamp", zap.Time("last", last), zap.Time("save", save), zap.Time("next", next))
current := &atomicObject{
physical: next,
}
// atomic unsafe pointer
/* #nosec G103 */
atomic.StorePointer(&t.TSO, unsafe.Pointer(current))
return nil
}
// ResetUserTimestamp update the physical part with specified tso.
func (t *timestampOracle) ResetUserTimestamp(tso uint64) error {
physical, _ := tsoutil.ParseTS(tso)
next := physical.Add(time.Millisecond)
prev := (*atomicObject)(atomic.LoadPointer(&t.TSO))
// do not update
if typeutil.SubTimeByWallClock(next, prev.physical) <= 3*updateTimestampGuard {
return errors.New("the specified ts too small than now")
}
if typeutil.SubTimeByWallClock(next, prev.physical) >= t.maxResetTSGap() {
return errors.New("the specified ts too large than now")
}
save := next.Add(t.saveInterval)
if err := t.saveTimestamp(save); err != nil {
return err
}
update := &atomicObject{
physical: next,
}
// atomic unsafe pointer
/* #nosec G103 */
atomic.CompareAndSwapPointer(&t.TSO, unsafe.Pointer(prev), unsafe.Pointer(update))
return nil
}
// UpdateTimestamp is used to update the timestamp.
// This function will do two things:
// 1. When the logical time is going to be used up, increase the current physical time.
// 2. When the time window is not big enough, which means the saved etcd time minus the next physical time
// will be less than or equal to `updateTimestampGuard`, then the time window needs to be updated and
// we also need to save the next physical time plus `TsoSaveInterval` into etcd.
//
// Here is some constraints that this function must satisfy:
// 1. The saved time is monotonically increasing.
// 2. The physical time is monotonically increasing.
// 3. The physical time is always less than the saved timestamp.
func (t *timestampOracle) UpdateTimestamp() error {
prev := (*atomicObject)(atomic.LoadPointer(&t.TSO))
now := time.Now()
jetLag := typeutil.SubTimeByWallClock(now, prev.physical)
if jetLag > 3*UpdateTimestampStep {
log.RatedWarn(60.0, "clock offset is huge, check network latency and clock skew", zap.Duration("jet-lag", jetLag),
zap.Time("prev-physical", prev.physical), zap.Time("now", now))
}
var next time.Time
prevLogical := atomic.LoadInt64(&prev.logical)
// If the system time is greater, it will be synchronized with the system time.
if jetLag > updateTimestampGuard {
next = now
} else if prevLogical > maxLogical/2 {
// The reason choosing maxLogical/2 here is that it's big enough for common cases.
// Because there is enough timestamp can be allocated before next update.
log.Warn("the logical time may be not enough", zap.Int64("prev-logical", prevLogical))
next = prev.physical.Add(time.Millisecond)
} else {
// It will still use the previous physical time to alloc the timestamp.
return nil
}
// It is not safe to increase the physical time to `next`.
// The time window needs to be updated and saved to etcd.
if typeutil.SubTimeByWallClock(t.lastSavedTime.Load().(time.Time), next) <= updateTimestampGuard {
save := next.Add(t.saveInterval)
if err := t.saveTimestamp(save); err != nil {
return err
}
}
current := &atomicObject{
physical: next,
logical: 0,
}
// atomic unsafe pointer
/* #nosec G103 */
atomic.StorePointer(&t.TSO, unsafe.Pointer(current))
return nil
}
// ResetTimestamp is used to reset the timestamp.
func (t *timestampOracle) ResetTimestamp() {
zero := &atomicObject{
physical: time.Now(),
}
// atomic unsafe pointer
/* #nosec G103 */
atomic.StorePointer(&t.TSO, unsafe.Pointer(zero))
}