milvus/internal/core/unittest/test_indexing.cpp

330 lines
10 KiB
C++
Raw Normal View History

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <gtest/gtest.h>
#include <iostream>
#include <random>
#include <string>
#include <vector>
#include "faiss/utils/distances.h"
#include "query/SearchBruteForce.h"
#include "segcore/Reduce.h"
#include "test_utils/DataGen.h"
#include "test_utils/Timer.h"
using namespace milvus;
using namespace milvus::segcore;
namespace {
template <int DIM>
auto
generate_data(int N) {
std::vector<float> raw_data;
std::vector<uint64_t> timestamps;
std::vector<int64_t> uids;
std::default_random_engine er(42);
std::uniform_real_distribution<> distribution(0.0, 1.0);
std::default_random_engine ei(42);
for (int i = 0; i < N; ++i) {
uids.push_back(10 * N + i);
timestamps.push_back(0);
// append vec
std::vector<float> vec(DIM);
for (auto& x : vec) {
x = distribution(er);
}
raw_data.insert(raw_data.end(), std::begin(vec), std::end(vec));
}
return std::make_tuple(raw_data, timestamps, uids);
}
} // namespace
TEST(Indexing, SmartBruteForce) {
// how to ?
// I'd know
constexpr int N = 100000;
constexpr int DIM = 16;
constexpr int TOPK = 10;
auto bitmap = std::make_shared<faiss::ConcurrentBitset>(N);
// exclude the first
for (int i = 0; i < N / 2; ++i) {
bitmap->set(i);
}
auto [raw_data, timestamps, uids] = generate_data<DIM>(N);
auto total_count = DIM * TOPK;
auto raw = (const float*)raw_data.data();
AssertInfo(raw, "wtf");
constexpr int64_t queries = 3;
auto heap = faiss::float_maxheap_array_t{};
auto query_data = raw;
std::vector<int64_t> final_uids(total_count, -1);
std::vector<float> final_dis(total_count, std::numeric_limits<float>::max());
for (int beg = 0; beg < N; beg += TestChunkSize) {
std::vector<int64_t> buf_uids(total_count, -1);
std::vector<float> buf_dis(total_count, std::numeric_limits<float>::max());
faiss::float_maxheap_array_t buf = {queries, TOPK, buf_uids.data(), buf_dis.data()};
auto end = beg + TestChunkSize;
if (end > N) {
end = N;
}
auto nsize = end - beg;
auto src_data = raw + beg * DIM;
faiss::knn_L2sqr(query_data, src_data, DIM, queries, nsize, &buf, nullptr);
for (auto& x : buf_uids) {
x = uids[x + beg];
}
merge_into(queries, TOPK, final_dis.data(), final_uids.data(), buf_dis.data(), buf_uids.data());
}
for (int qn = 0; qn < queries; ++qn) {
for (int kn = 0; kn < TOPK; ++kn) {
auto index = qn * TOPK + kn;
std::cout << final_uids[index] << "->" << final_dis[index] << std::endl;
}
std::cout << std::endl;
}
}
TEST(Indexing, Naive) {
constexpr int N = 10000;
constexpr int DIM = 16;
constexpr int TOPK = 10;
auto [raw_data, timestamps, uids] = generate_data<DIM>(N);
auto index = knowhere::VecIndexFactory::GetInstance().CreateVecIndex(knowhere::IndexEnum::INDEX_FAISS_IVFPQ,
knowhere::IndexMode::MODE_CPU);
auto conf = milvus::knowhere::Config{
{knowhere::meta::DIM, DIM},
{knowhere::meta::TOPK, TOPK},
{knowhere::IndexParams::nlist, 100},
{knowhere::IndexParams::nprobe, 4},
{knowhere::IndexParams::m, 4},
{knowhere::IndexParams::nbits, 8},
{knowhere::Metric::TYPE, milvus::knowhere::Metric::L2},
{knowhere::meta::DEVICEID, 0},
};
// auto ds = knowhere::GenDataset(N, DIM, raw_data.data());
// auto ds2 = knowhere::GenDatasetWithIds(N / 2, DIM, raw_data.data() +
// sizeof(float[DIM]) * N / 2, uids.data() + N / 2);
// NOTE: you must train first and then add
// index->Train(ds, conf);
// index->Train(ds2, conf);
// index->AddWithoutIds(ds, conf);
// index->Add(ds2, conf);
std::vector<knowhere::DatasetPtr> datasets;
std::vector<std::vector<float>> ftrashs;
auto raw = raw_data.data();
for (int beg = 0; beg < N; beg += TestChunkSize) {
auto end = beg + TestChunkSize;
if (end > N) {
end = N;
}
std::vector<float> ft(raw + DIM * beg, raw + DIM * end);
auto ds = knowhere::GenDataset(end - beg, DIM, ft.data());
datasets.push_back(ds);
ftrashs.push_back(std::move(ft));
// // NOTE: you must train first and then add
// index->Train(ds, conf);
// index->Add(ds, conf);
}
for (auto& ds : datasets) {
index->Train(ds, conf);
}
for (auto& ds : datasets) {
index->AddWithoutIds(ds, conf);
}
auto bitmap = std::make_shared<faiss::ConcurrentBitset>(N);
// exclude the first
for (int i = 0; i < N / 2; ++i) {
bitmap->set(i);
}
// index->SetBlacklist(bitmap);
auto query_ds = knowhere::GenDataset(1, DIM, raw_data.data());
auto final = index->Query(query_ds, conf, bitmap);
auto ids = final->Get<idx_t*>(knowhere::meta::IDS);
auto distances = final->Get<float*>(knowhere::meta::DISTANCE);
for (int i = 0; i < TOPK; ++i) {
if (ids[i] < N / 2) {
std::cout << "WRONG: ";
}
std::cout << ids[i] << "->" << distances[i] << std::endl;
}
}
TEST(Indexing, IVFFlatNM) {
constexpr auto DIM = 16;
constexpr auto K = 10;
auto N = 1024 * 1024;
auto num_query = 100;
Timer timer;
auto [raw_data, timestamps, uids] = generate_data<DIM>(N);
std::cout << "generate data: " << timer.get_step_seconds() << " seconds" << std::endl;
auto indexing = std::make_shared<knowhere::IVF>();
auto conf = knowhere::Config{{knowhere::meta::DIM, DIM},
{knowhere::meta::TOPK, K},
{knowhere::IndexParams::nlist, 100},
{knowhere::IndexParams::nprobe, 4},
{knowhere::Metric::TYPE, milvus::knowhere::Metric::L2},
{knowhere::meta::DEVICEID, 0}};
auto database = knowhere::GenDataset(N, DIM, raw_data.data());
std::cout << "init ivf " << timer.get_step_seconds() << " seconds" << std::endl;
indexing->Train(database, conf);
std::cout << "train ivf " << timer.get_step_seconds() << " seconds" << std::endl;
indexing->AddWithoutIds(database, conf);
std::cout << "insert ivf " << timer.get_step_seconds() << " seconds" << std::endl;
EXPECT_EQ(indexing->Count(), N);
EXPECT_EQ(indexing->Dim(), DIM);
auto dataset = knowhere::GenDataset(num_query, DIM, raw_data.data() + DIM * 4200);
auto result = indexing->Query(dataset, conf, nullptr);
std::cout << "query ivf " << timer.get_step_seconds() << " seconds" << std::endl;
auto ids = result->Get<int64_t*>(milvus::knowhere::meta::IDS);
auto dis = result->Get<float*>(milvus::knowhere::meta::DISTANCE);
for (int i = 0; i < std::min(num_query * K, 100); ++i) {
std::cout << ids[i] << "->" << dis[i] << std::endl;
}
}
TEST(Indexing, BinaryBruteForce) {
int64_t N = 100000;
int64_t num_queries = 10;
int64_t topk = 5;
int64_t round_decimal = 3;
int64_t dim = 8192;
auto result_count = topk * num_queries;
auto schema = std::make_shared<Schema>();
schema->AddDebugField("vecbin", DataType::VECTOR_BINARY, dim, MetricType::METRIC_Jaccard);
schema->AddDebugField("age", DataType::INT64);
auto dataset = DataGen(schema, N, 10);
auto bin_vec = dataset.get_col<uint8_t>(0);
auto query_data = 1024 * dim / 8 + bin_vec.data();
query::dataset::SearchDataset search_dataset{
faiss::MetricType::METRIC_Jaccard, //
num_queries, //
topk, //
round_decimal,
dim, //
query_data //
};
auto sub_result = query::BinarySearchBruteForce(search_dataset, bin_vec.data(), N, nullptr);
SearchResult sr;
sr.num_queries_ = num_queries;
sr.topk_ = topk;
sr.internal_seg_offsets_ = std::move(sub_result.mutable_labels());
sr.result_distances_ = std::move(sub_result.mutable_values());
auto json = SearchResultToJson(sr);
std::cout << json.dump(2);
auto ref = json::parse(R"(
[
[
[
"1024->0.000000",
"48942->0.642000",
"18494->0.644000",
"68225->0.644000",
"93557->0.644000"
],
[
"1025->0.000000",
"73557->0.641000",
"53086->0.643000",
"9737->0.643000",
"62855->0.644000"
],
[
"1026->0.000000",
"62904->0.644000",
"46758->0.644000",
"57969->0.645000",
"98113->0.646000"
],
[
"1027->0.000000",
"92446->0.638000",
"96034->0.640000",
"92129->0.644000",
"45887->0.644000"
],
[
"1028->0.000000",
"22992->0.643000",
"73903->0.644000",
"19969->0.645000",
"65178->0.645000"
],
[
"1029->0.000000",
"19776->0.641000",
"15166->0.642000",
"85470->0.642000",
"16730->0.643000"
],
[
"1030->0.000000",
"55939->0.640000",
"84253->0.643000",
"31958->0.644000",
"11667->0.646000"
],
[
"1031->0.000000",
"89536->0.637000",
"61622->0.638000",
"9275->0.639000",
"91403->0.640000"
],
[
"1032->0.000000",
"69504->0.642000",
"23414->0.644000",
"48770->0.645000",
"23231->0.645000"
],
[
"1033->0.000000",
"33540->0.636000",
"25310->0.640000",
"18576->0.640000",
"73729->0.642000"
]
]
]
)");
auto json_str = json.dump(2);
auto ref_str = ref.dump(2);
ASSERT_EQ(json_str, ref_str);
}