mirror of
https://gitee.com/milvus-io/milvus.git
synced 2024-11-30 10:59:32 +08:00
[skip e2e] Modify test cases (#18341)
Signed-off-by: Binbin Lv <binbin.lv@zilliz.com>
This commit is contained in:
parent
d90308e9a0
commit
5e84c2adb0
@ -1631,9 +1631,10 @@ class TestCollectionSearch(TestcaseBase):
|
||||
"""
|
||||
target: search binary_collection, and check the result: distance
|
||||
method: compare the return distance value with value computed with SUBSTRUCTURE.
|
||||
(1) The returned limit(topK) are impacted by dimension (dim) of data.
|
||||
(1) The returned limit(topK) are impacted by dimension (dim) of data
|
||||
(2) Searched topK is smaller than set limit when dim is large
|
||||
(3) it does not support "BIN_IVF_FLAT" index
|
||||
(3) It does not support "BIN_IVF_FLAT" index
|
||||
(4) Only two values for distance: 0 and 1, 0 means hits, 1 means not
|
||||
expected: the return distance equals to the computed value
|
||||
"""
|
||||
# 1. initialize with binary data
|
||||
@ -1646,12 +1647,8 @@ class TestCollectionSearch(TestcaseBase):
|
||||
default_index = {"index_type": index, "params": {"nlist": 128}, "metric_type": "SUBSTRUCTURE"}
|
||||
collection_w.create_index("binary_vector", default_index)
|
||||
collection_w.load()
|
||||
# 3. compute the distance
|
||||
query_raw_vector, binary_vectors = cf.gen_binary_vectors(nq, dim)
|
||||
distance_min = 1
|
||||
for binary_raw in binary_raw_vector:
|
||||
distance = cf.substructure(query_raw_vector[0], binary_raw)
|
||||
distance_min = min(distance, distance_min)
|
||||
# 3. generate search vectors
|
||||
_, binary_vectors = cf.gen_binary_vectors(nq, dim)
|
||||
# 4. search and compare the distance
|
||||
search_params = {"metric_type": "SUBSTRUCTURE", "params": {"nprobe": 10}}
|
||||
res = collection_w.search(binary_vectors[:nq], "binary_vector",
|
||||
@ -1666,7 +1663,7 @@ class TestCollectionSearch(TestcaseBase):
|
||||
if _async:
|
||||
res.done()
|
||||
res = res.result()
|
||||
assert abs(res[0].distances[0] - distance_min) <= epsilon
|
||||
assert res[0].distances[0] == 0.0
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
@pytest.mark.parametrize("index", ["BIN_FLAT"])
|
||||
@ -1674,9 +1671,10 @@ class TestCollectionSearch(TestcaseBase):
|
||||
"""
|
||||
target: search binary_collection, and check the result: distance
|
||||
method: compare the return distance value with value computed with SUPERSTRUCTURE
|
||||
(1) The returned limit(topK) are impacted by dimension (dim) of data.
|
||||
(1) The returned limit(topK) are impacted by dimension (dim) of data
|
||||
(2) Searched topK is smaller than set limit when dim is large
|
||||
(3) it does not support "BIN_IVF_FLAT" index
|
||||
(3) It does not support "BIN_IVF_FLAT" index
|
||||
(4) Only two values for distance: 0 and 1, 0 means hits, 1 means not
|
||||
expected: the return distance equals to the computed value
|
||||
"""
|
||||
# 1. initialize with binary data
|
||||
@ -1689,12 +1687,8 @@ class TestCollectionSearch(TestcaseBase):
|
||||
default_index = {"index_type": index, "params": {"nlist": 128}, "metric_type": "SUPERSTRUCTURE"}
|
||||
collection_w.create_index("binary_vector", default_index)
|
||||
collection_w.load()
|
||||
# 3. compute the distance
|
||||
query_raw_vector, binary_vectors = cf.gen_binary_vectors(nq, dim)
|
||||
distance_min = 1
|
||||
for binary_raw in binary_raw_vector:
|
||||
distance = cf.superstructure(query_raw_vector[0], binary_raw)
|
||||
distance_min = min(distance, distance_min)
|
||||
# 3. generate search vectors
|
||||
_, binary_vectors = cf.gen_binary_vectors(nq, dim)
|
||||
# 4. search and compare the distance
|
||||
search_params = {"metric_type": "SUPERSTRUCTURE", "params": {"nprobe": 10}}
|
||||
res = collection_w.search(binary_vectors[:nq], "binary_vector",
|
||||
@ -1709,7 +1703,7 @@ class TestCollectionSearch(TestcaseBase):
|
||||
if _async:
|
||||
res.done()
|
||||
res = res.result()
|
||||
assert abs(res[0].distances[0] - distance_min) <= epsilon
|
||||
assert res[0].distances[0] == 0.0
|
||||
|
||||
@pytest.mark.tags(CaseLabel.L2)
|
||||
def test_search_binary_without_flush(self, metrics, auto_id):
|
||||
|
Loading…
Reference in New Issue
Block a user