mirror of
https://gitee.com/milvus-io/milvus.git
synced 2024-11-30 10:59:32 +08:00
[test]Refine recall test (#21789)
Signed-off-by: zhuwenxing <wenxing.zhu@zilliz.com>
This commit is contained in:
parent
c82b5d15b6
commit
81f2840682
@ -2,11 +2,12 @@ import h5py
|
||||
import numpy as np
|
||||
import time
|
||||
from pathlib import Path
|
||||
from loguru import logger
|
||||
import pymilvus
|
||||
from pymilvus import (
|
||||
connections,
|
||||
FieldSchema, CollectionSchema, DataType,
|
||||
Collection
|
||||
Collection, utility
|
||||
)
|
||||
|
||||
pymilvus_version = pymilvus.__version__
|
||||
@ -37,13 +38,16 @@ def milvus_recall_test(host='127.0.0.1'):
|
||||
]
|
||||
default_schema = CollectionSchema(
|
||||
fields=default_fields, description="test collection")
|
||||
collection = Collection(name="sift_128_euclidean", schema=default_schema)
|
||||
|
||||
name = f"sift_128_euclidean"
|
||||
logger.info(f"Create collection {name}")
|
||||
collection = Collection(name=name, schema=default_schema)
|
||||
nb = len(train)
|
||||
batch_size = 50000
|
||||
epoch = int(nb / batch_size)
|
||||
t0 = time.time()
|
||||
for i in range(epoch):
|
||||
print("epoch:", i)
|
||||
logger.info(f"epoch: {i}")
|
||||
start = i * batch_size
|
||||
end = (i + 1) * batch_size
|
||||
if end > nb:
|
||||
@ -56,74 +60,86 @@ def milvus_recall_test(host='127.0.0.1'):
|
||||
]
|
||||
collection.insert(data)
|
||||
t1 = time.time()
|
||||
print(f"\nInsert {nb} vectors cost {t1 - t0:.4f} seconds")
|
||||
logger.info(f"Insert {nb} vectors cost {t1 - t0:.4f} seconds")
|
||||
|
||||
t0 = time.time()
|
||||
print(f"\nGet collection entities...")
|
||||
logger.info(f"Get collection entities...")
|
||||
if pymilvus_version >= "2.2.0":
|
||||
collection.flush()
|
||||
else:
|
||||
collection.num_entities
|
||||
print(collection.num_entities)
|
||||
logger.info(collection.num_entities)
|
||||
t1 = time.time()
|
||||
print(f"\nGet collection entities cost {t1 - t0:.4f} seconds")
|
||||
logger.info(f"Get collection entities cost {t1 - t0:.4f} seconds")
|
||||
|
||||
# create index
|
||||
default_index = {"index_type": "IVF_SQ8",
|
||||
"metric_type": "L2", "params": {"nlist": 64}}
|
||||
print(f"\nCreate index...")
|
||||
logger.info(f"Create index...")
|
||||
t0 = time.time()
|
||||
collection.create_index(field_name="float_vector",
|
||||
index_params=default_index)
|
||||
t1 = time.time()
|
||||
print(f"\nCreate index cost {t1 - t0:.4f} seconds")
|
||||
logger.info(f"Create index cost {t1 - t0:.4f} seconds")
|
||||
|
||||
# load collection
|
||||
replica_number = 1
|
||||
print(f"\nload collection...")
|
||||
logger.info(f"load collection...")
|
||||
t0 = time.time()
|
||||
collection.load(replica_number=replica_number)
|
||||
t1 = time.time()
|
||||
print(f"\nload collection cost {t1 - t0:.4f} seconds")
|
||||
logger.info(f"load collection cost {t1 - t0:.4f} seconds")
|
||||
res = utility.get_query_segment_info(name)
|
||||
cnt = 0
|
||||
logger.info(f"segments info: {res}")
|
||||
for segment in res:
|
||||
cnt += segment.num_rows
|
||||
assert cnt == collection.num_entities
|
||||
logger.info(f"wait for loading complete...")
|
||||
time.sleep(30)
|
||||
res = utility.get_query_segment_info(name)
|
||||
logger.info(f"segments info: {res}")
|
||||
|
||||
# search
|
||||
topK = 100
|
||||
nq = 10000
|
||||
search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
|
||||
t0 = time.time()
|
||||
print(f"\nSearch...")
|
||||
|
||||
# define output_fields of search result
|
||||
res = collection.search(
|
||||
test[:nq], "float_vector", search_params, topK, output_fields=["int64"], timeout=TIMEOUT
|
||||
)
|
||||
t1 = time.time()
|
||||
print(f"search cost {t1 - t0:.4f} seconds")
|
||||
result_ids = []
|
||||
for hits in res:
|
||||
result_id = []
|
||||
for hit in hits:
|
||||
result_id.append(hit.entity.get("int64"))
|
||||
result_ids.append(result_id)
|
||||
|
||||
# calculate recall
|
||||
true_ids = neighbors[:nq, :topK]
|
||||
sum_radio = 0.0
|
||||
for index, item in enumerate(result_ids):
|
||||
# tmp = set(item).intersection(set(flat_id_list[index]))
|
||||
assert len(item) == len(true_ids[index])
|
||||
tmp = set(true_ids[index]).intersection(set(item))
|
||||
sum_radio = sum_radio + len(tmp) / len(item)
|
||||
recall = round(sum_radio / len(result_ids), 3)
|
||||
assert recall >= 0.95
|
||||
print(f"recall={recall}")
|
||||
for i in range(3):
|
||||
t0 = time.time()
|
||||
logger.info(f"Search...")
|
||||
res = collection.search(
|
||||
test[:nq], "float_vector", search_params, topK, output_fields=["int64"], timeout=TIMEOUT
|
||||
)
|
||||
t1 = time.time()
|
||||
logger.info(f"search cost {t1 - t0:.4f} seconds")
|
||||
result_ids = []
|
||||
for hits in res:
|
||||
result_id = []
|
||||
for hit in hits:
|
||||
result_id.append(hit.entity.get("int64"))
|
||||
result_ids.append(result_id)
|
||||
|
||||
# calculate recall
|
||||
true_ids = neighbors[:nq, :topK]
|
||||
sum_radio = 0.0
|
||||
logger.info(f"Calculate recall...")
|
||||
for index, item in enumerate(result_ids):
|
||||
# tmp = set(item).intersection(set(flat_id_list[index]))
|
||||
assert len(item) == len(true_ids[index])
|
||||
tmp = set(true_ids[index]).intersection(set(item))
|
||||
sum_radio = sum_radio + len(tmp) / len(item)
|
||||
recall = round(sum_radio / len(result_ids), 3)
|
||||
logger.info(f"recall={recall}")
|
||||
assert 0.95 <= recall < 1.0, f"recall is {recall}, less than 0.95"
|
||||
# query
|
||||
expr = "int64 in [2,4,6,8]"
|
||||
output_fields = ["int64", "float"]
|
||||
res = collection.query(expr, output_fields, timeout=TIMEOUT)
|
||||
sorted_res = sorted(res, key=lambda k: k['int64'])
|
||||
for r in sorted_res:
|
||||
print(r)
|
||||
logger.info(r)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -2,6 +2,7 @@ import h5py
|
||||
import numpy as np
|
||||
import time
|
||||
from pathlib import Path
|
||||
from loguru import logger
|
||||
from pymilvus import connections, Collection
|
||||
|
||||
|
||||
@ -27,32 +28,34 @@ def search_test(host="127.0.0.1"):
|
||||
nq = 10000
|
||||
topK = 100
|
||||
search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
|
||||
t0 = time.time()
|
||||
print(f"\nSearch...")
|
||||
# define output_fields of search result
|
||||
res = collection.search(
|
||||
test[:nq], "float_vector", search_params, topK, output_fields=["int64"], timeout=TIMEOUT
|
||||
)
|
||||
t1 = time.time()
|
||||
print(f"search cost {t1 - t0:.4f} seconds")
|
||||
result_ids = []
|
||||
for hits in res:
|
||||
result_id = []
|
||||
for hit in hits:
|
||||
result_id.append(hit.entity.get("int64"))
|
||||
result_ids.append(result_id)
|
||||
for i in range(3):
|
||||
t0 = time.time()
|
||||
logger.info(f"\nSearch...")
|
||||
# define output_fields of search result
|
||||
res = collection.search(
|
||||
test[:nq], "float_vector", search_params, topK, output_fields=["int64"], timeout=TIMEOUT
|
||||
)
|
||||
t1 = time.time()
|
||||
logger.info(f"search cost {t1 - t0:.4f} seconds")
|
||||
result_ids = []
|
||||
for hits in res:
|
||||
result_id = []
|
||||
for hit in hits:
|
||||
result_id.append(hit.entity.get("int64"))
|
||||
result_ids.append(result_id)
|
||||
|
||||
# calculate recall
|
||||
true_ids = neighbors[:nq, :topK]
|
||||
sum_radio = 0.0
|
||||
for index, item in enumerate(result_ids):
|
||||
# tmp = set(item).intersection(set(flat_id_list[index]))
|
||||
assert len(item) == len(true_ids[index]), f"get {len(item)} but expect {len(true_ids[index])}"
|
||||
tmp = set(true_ids[index]).intersection(set(item))
|
||||
sum_radio = sum_radio + len(tmp) / len(item)
|
||||
recall = round(sum_radio / len(result_ids), 3)
|
||||
logger.info(f"recall={recall}")
|
||||
assert 0.95 <= recall < 1.0, f"recall is {recall}, less than 0.95"
|
||||
|
||||
# calculate recall
|
||||
true_ids = neighbors[:nq,:topK]
|
||||
sum_radio = 0.0
|
||||
for index, item in enumerate(result_ids):
|
||||
# tmp = set(item).intersection(set(flat_id_list[index]))
|
||||
assert len(item) == len(true_ids[index]), f"get {len(item)} but expect {len(true_ids[index])}"
|
||||
tmp = set(true_ids[index]).intersection(set(item))
|
||||
sum_radio = sum_radio + len(tmp) / len(item)
|
||||
recall = round(sum_radio / len(result_ids), 3)
|
||||
assert recall >= 0.95, f"recall is {recall}, less than 0.95"
|
||||
print(f"recall={recall}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -38,4 +38,4 @@ minio==7.1.5
|
||||
h5py==3.1.0
|
||||
|
||||
# for log
|
||||
loguru==0.5.3
|
||||
loguru==0.6.0
|
Loading…
Reference in New Issue
Block a user