mirror of
https://gitee.com/milvus-io/milvus.git
synced 2024-12-01 19:39:21 +08:00
init restful api
This commit is contained in:
parent
a3050c645d
commit
9354c0384d
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
.idea/
|
10
README.md
10
README.md
@ -0,0 +1,10 @@
|
||||
# Vecwise Engine
|
||||
|
||||
### Geting started
|
||||
|
||||
- Install Miniconda first
|
||||
- `conda create --name vec_engine python=3.6`
|
||||
- `conda activate vec_engine`
|
||||
- `conda install faiss-gpu cuda90 -c pytorch # For CUDA9.0`
|
||||
- `conda install flask`
|
||||
- `pip install flask-restful`
|
0
engine/__init__.py
Normal file
0
engine/__init__.py
Normal file
68
engine/app.py
Normal file
68
engine/app.py
Normal file
@ -0,0 +1,68 @@
|
||||
from flask import Flask
|
||||
from flask_restful import Resource, Api
|
||||
|
||||
app = Flask(__name__)
|
||||
api = Api(app)
|
||||
|
||||
|
||||
from flask_restful import reqparse
|
||||
class Vector(Resource):
|
||||
def __init__(self):
|
||||
self.__parser = reqparse.RequestParser()
|
||||
self.__parser.add_argument('groupid', type=str)
|
||||
self.__parser.add_argument('vec', type=str)
|
||||
|
||||
def post(self):
|
||||
# args = self.__parser.parse_args()
|
||||
# vec = args['vec']
|
||||
# groupid = args['groupid']
|
||||
return "vector post"
|
||||
|
||||
|
||||
class VectorSearch(Resource):
|
||||
def __init__(self):
|
||||
self.__parser = reqparse.RequestParser()
|
||||
self.__parser.add_argument('groupid', type=str)
|
||||
|
||||
def post(self):
|
||||
return "vectorSearch post"
|
||||
|
||||
|
||||
class Index(Resource):
|
||||
def __init__(self):
|
||||
self.__parser = reqparse.RequestParser()
|
||||
self.__parser.add_argument('groupid', type=str)
|
||||
|
||||
def post(self):
|
||||
return "index post"
|
||||
|
||||
|
||||
class Group(Resource):
|
||||
def __init__(self):
|
||||
self.__parser = reqparse.RequestParser()
|
||||
self.__parser.add_argument('groupid', type=str)
|
||||
|
||||
def post(self, groupid):
|
||||
return "group post"
|
||||
|
||||
def get(self, groupid):
|
||||
return "group get"
|
||||
|
||||
def delete(self, groupid):
|
||||
return "group delete"
|
||||
|
||||
|
||||
class GroupList(Resource):
|
||||
def get(self):
|
||||
return "grouplist get"
|
||||
|
||||
|
||||
api.add_resource(Vector, '/vector')
|
||||
api.add_resource(Group, '/vector/group/<groupid>')
|
||||
api.add_resource(GroupList, '/vector/group')
|
||||
api.add_resource(Index, '/vector/index')
|
||||
api.add_resource(VectorSearch, '/vector/search')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(debug=True)
|
0
tests/__init__.py
Normal file
0
tests/__init__.py
Normal file
52
tests/basic_test.py
Normal file
52
tests/basic_test.py
Normal file
@ -0,0 +1,52 @@
|
||||
import numpy as np
|
||||
|
||||
d = 64 # dimension
|
||||
nb = 100000 # database size
|
||||
nq = 10000 # nb of queries
|
||||
np.random.seed(1234) # make reproducible
|
||||
xb = np.random.random((nb, d)).astype('float32')
|
||||
xb[:, 0] += np.arange(nb) / 1000.
|
||||
xq = np.random.random((nq, d)).astype('float32')
|
||||
xq[:, 0] += np.arange(nq) / 1000.
|
||||
|
||||
import faiss # make faiss available
|
||||
|
||||
res = faiss.StandardGpuResources() # use a single GPU
|
||||
|
||||
## Using a flat index
|
||||
|
||||
index_flat = faiss.IndexFlatL2(d) # build a flat (CPU) index
|
||||
|
||||
# make it a flat GPU index
|
||||
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index_flat)
|
||||
|
||||
gpu_index_flat.add(xb) # add vectors to the index
|
||||
print(gpu_index_flat.ntotal)
|
||||
|
||||
k = 4 # we want to see 4 nearest neighbors
|
||||
D, I = gpu_index_flat.search(xq, k) # actual search
|
||||
print(I[:5]) # neighbors of the 5 first queries
|
||||
print(I[-5:]) # neighbors of the 5 last queries
|
||||
|
||||
|
||||
## Using an IVF index
|
||||
|
||||
nlist = 100
|
||||
quantizer = faiss.IndexFlatL2(d) # the other index
|
||||
index_ivf = faiss.IndexIVFFlat(quantizer, d, nlist, faiss.METRIC_L2)
|
||||
# here we specify METRIC_L2, by default it performs inner-product search
|
||||
|
||||
# make it an IVF GPU index
|
||||
gpu_index_ivf = faiss.index_cpu_to_gpu(res, 0, index_ivf)
|
||||
|
||||
assert not gpu_index_ivf.is_trained
|
||||
gpu_index_ivf.train(xb) # add vectors to the index
|
||||
assert gpu_index_ivf.is_trained
|
||||
|
||||
gpu_index_ivf.add(xb) # add vectors to the index
|
||||
print(gpu_index_ivf.ntotal)
|
||||
|
||||
k = 4 # we want to see 4 nearest neighbors
|
||||
D, I = gpu_index_ivf.search(xq, k) # actual search
|
||||
print(I[:5]) # neighbors of the 5 first queries
|
||||
print(I[-5:])
|
Loading…
Reference in New Issue
Block a user