init restful api

This commit is contained in:
xj.lin 2019-03-19 20:04:15 +08:00
parent a3050c645d
commit 9354c0384d
6 changed files with 131 additions and 0 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
.idea/

View File

@ -0,0 +1,10 @@
# Vecwise Engine
### Geting started
- Install Miniconda first
- `conda create --name vec_engine python=3.6`
- `conda activate vec_engine`
- `conda install faiss-gpu cuda90 -c pytorch # For CUDA9.0`
- `conda install flask`
- `pip install flask-restful`

0
engine/__init__.py Normal file
View File

68
engine/app.py Normal file
View File

@ -0,0 +1,68 @@
from flask import Flask
from flask_restful import Resource, Api
app = Flask(__name__)
api = Api(app)
from flask_restful import reqparse
class Vector(Resource):
def __init__(self):
self.__parser = reqparse.RequestParser()
self.__parser.add_argument('groupid', type=str)
self.__parser.add_argument('vec', type=str)
def post(self):
# args = self.__parser.parse_args()
# vec = args['vec']
# groupid = args['groupid']
return "vector post"
class VectorSearch(Resource):
def __init__(self):
self.__parser = reqparse.RequestParser()
self.__parser.add_argument('groupid', type=str)
def post(self):
return "vectorSearch post"
class Index(Resource):
def __init__(self):
self.__parser = reqparse.RequestParser()
self.__parser.add_argument('groupid', type=str)
def post(self):
return "index post"
class Group(Resource):
def __init__(self):
self.__parser = reqparse.RequestParser()
self.__parser.add_argument('groupid', type=str)
def post(self, groupid):
return "group post"
def get(self, groupid):
return "group get"
def delete(self, groupid):
return "group delete"
class GroupList(Resource):
def get(self):
return "grouplist get"
api.add_resource(Vector, '/vector')
api.add_resource(Group, '/vector/group/<groupid>')
api.add_resource(GroupList, '/vector/group')
api.add_resource(Index, '/vector/index')
api.add_resource(VectorSearch, '/vector/search')
if __name__ == '__main__':
app.run(debug=True)

0
tests/__init__.py Normal file
View File

52
tests/basic_test.py Normal file
View File

@ -0,0 +1,52 @@
import numpy as np
d = 64 # dimension
nb = 100000 # database size
nq = 10000 # nb of queries
np.random.seed(1234) # make reproducible
xb = np.random.random((nb, d)).astype('float32')
xb[:, 0] += np.arange(nb) / 1000.
xq = np.random.random((nq, d)).astype('float32')
xq[:, 0] += np.arange(nq) / 1000.
import faiss # make faiss available
res = faiss.StandardGpuResources() # use a single GPU
## Using a flat index
index_flat = faiss.IndexFlatL2(d) # build a flat (CPU) index
# make it a flat GPU index
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index_flat)
gpu_index_flat.add(xb) # add vectors to the index
print(gpu_index_flat.ntotal)
k = 4 # we want to see 4 nearest neighbors
D, I = gpu_index_flat.search(xq, k) # actual search
print(I[:5]) # neighbors of the 5 first queries
print(I[-5:]) # neighbors of the 5 last queries
## Using an IVF index
nlist = 100
quantizer = faiss.IndexFlatL2(d) # the other index
index_ivf = faiss.IndexIVFFlat(quantizer, d, nlist, faiss.METRIC_L2)
# here we specify METRIC_L2, by default it performs inner-product search
# make it an IVF GPU index
gpu_index_ivf = faiss.index_cpu_to_gpu(res, 0, index_ivf)
assert not gpu_index_ivf.is_trained
gpu_index_ivf.train(xb) # add vectors to the index
assert gpu_index_ivf.is_trained
gpu_index_ivf.add(xb) # add vectors to the index
print(gpu_index_ivf.ntotal)
k = 4 # we want to see 4 nearest neighbors
D, I = gpu_index_ivf.search(xq, k) # actual search
print(I[:5]) # neighbors of the 5 first queries
print(I[-5:])