mirror of
https://gitee.com/milvus-io/milvus.git
synced 2024-11-30 02:48:45 +08:00
[skip ci]Format markdown for milvus_create_index_en.md (#10409)
Signed-off-by: ruiyi.jiang <ruiyi.jiang@zilliz.com>
This commit is contained in:
parent
a219026142
commit
d9cd783650
@ -1,4 +1,5 @@
|
||||
# Create Index
|
||||
|
||||
`Index system` is the core part of `Milvus`, which is used to speed up the searches, this document indroduces which components are involved in `Create Index`,and what these components do.
|
||||
|
||||
The execution flow of `Create Index` is shown in the following figure:
|
||||
@ -6,6 +7,7 @@ The execution flow of `Create Index` is shown in the following figure:
|
||||
![create_index](./graphs/milvus_create_index.png)
|
||||
|
||||
1. Firstly, `SDK` starts a `CreateIndex` request to `Proxy` via `Grpc`, the `proto` is defined as follows:
|
||||
|
||||
```proto
|
||||
service MilvusService {
|
||||
...
|
||||
@ -25,7 +27,7 @@ message CreateIndexRequest {
|
||||
```
|
||||
|
||||
2. When received the `CreateIndex` request, the `Proxy` would wrap this request into `CreateIndexTask`, and pushs this task into `DdTaskQueue` queue. After that, `Proxy` would call method of `WatiToFinish` to wait until the task finished.
|
||||
|
||||
|
||||
```go
|
||||
type task interface {
|
||||
TraceCtx() context.Context
|
||||
@ -54,20 +56,24 @@ type createIndexTask struct {
|
||||
```
|
||||
|
||||
3. There is a background service in `Proxy`, this service would get the `CreateIndexTask` from `DdTaskQueue`, and executes it in three phases.
|
||||
- `PreExecute`, do some static checking at this phase, such as check if the index param is legal, etc.
|
||||
- `Execute`, at this phase, `Proxy` would send `CreateIndex` request to `RootCoord` via `Grpc`,and wait the reponse, the `proto` is defined as follow:
|
||||
```proto
|
||||
service RootCoord {
|
||||
...
|
||||
|
||||
rpc CreateIndex(milvus.CreateIndexRequest) returns (common.Status) {}
|
||||
- `PreExecute`, do some static checking at this phase, such as check if the index param is legal, etc.
|
||||
- `Execute`, at this phase, `Proxy` would send `CreateIndex` request to `RootCoord` via `Grpc`,and wait the reponse, the `proto` is defined as follow:
|
||||
|
||||
...
|
||||
}
|
||||
```
|
||||
- `PostExecute`, `CreateIndexTask` does nothing at this phase, and return directly.
|
||||
```proto
|
||||
service RootCoord {
|
||||
...
|
||||
|
||||
rpc CreateIndex(milvus.CreateIndexRequest) returns (common.Status) {}
|
||||
|
||||
...
|
||||
}
|
||||
```
|
||||
|
||||
- `PostExecute`, `CreateIndexTask` does nothing at this phase, and return directly.
|
||||
|
||||
4. `RootCoord` would wraps the `CreateIndex` request into `CreateIndexReqTask`, and then call function `executeTask`. `executeTask` would return until the `context` is done or `CreateIndexReqTask.Execute` returned.
|
||||
|
||||
```go
|
||||
type reqTask interface {
|
||||
Ctx() context.Context
|
||||
@ -82,15 +88,16 @@ type CreateIndexReqTask struct {
|
||||
}
|
||||
```
|
||||
|
||||
5. According to the index type and index parameters, `RootCoord` lists all the `Segments` that need to be indexed on this `Collection`. `RootCoord` would only check those `Segments` which have been flushed at this stage. We will describe how to deal with those newly add segments and growing segments later.
|
||||
5. According to the index type and index parameters, `RootCoord` lists all the `Segments` that need to be indexed on this `Collection`. `RootCoord` would only check those `Segments` which have been flushed at this stage. We will describe how to deal with those newly add segments and growing segments later.
|
||||
|
||||
6. For each `Segment`, `RootCoord` would start a `Grpc` request to `DataCoord` to get `Binlog` paths of that `Segment`, the `proto` is defined as following
|
||||
|
||||
```proto
|
||||
service DataCoord {
|
||||
...
|
||||
|
||||
|
||||
rpc GetInsertBinlogPaths(GetInsertBinlogPathsRequest) returns (GetInsertBinlogPathsResponse) {}
|
||||
|
||||
|
||||
...
|
||||
|
||||
}
|
||||
@ -107,7 +114,9 @@ message GetInsertBinlogPathsResponse {
|
||||
}
|
||||
|
||||
```
|
||||
7. After getting the `Segment`'s `Binlog` paths, `RootCoord` would send a `Grpc` request to `IndexCoord`, ask `IndexCoord` to build index on this `Segment`, the `proto` is defined as follow:
|
||||
|
||||
7. After getting the `Segment`'s `Binlog` paths, `RootCoord` would send a `Grpc` request to `IndexCoord`, ask `IndexCoord` to build index on this `Segment`, the `proto` is defined as follow:
|
||||
|
||||
```proto
|
||||
service IndexCoord {
|
||||
...
|
||||
@ -137,13 +146,14 @@ message BuildIndexResponse {
|
||||
|
||||
![index_coord](./graphs/milvus_create_index_index_coord.png)
|
||||
|
||||
9. `IndexCoord` would wrap the `BuildIndex` request into `IndexAddTask`, then alloc a global unique ID as `IndexBuildID`, and write this `Segment`'s `index mate` into `IndexCoord`'s `metaTable`. When finish these operation, `IndexCoord` would send response to `RootCoord`, the response includes the `IndexBuildID`.
|
||||
9. `IndexCoord` would wrap the `BuildIndex` request into `IndexAddTask`, then alloc a global unique ID as `IndexBuildID`, and write this `Segment`'s `index mate` into `IndexCoord`'s `metaTable`. When finish these operation, `IndexCoord` would send response to `RootCoord`, the response includes the `IndexBuildID`.
|
||||
|
||||
10. When `RootCoood` receives the `BuildIndexResponse`, it would extract the `IndexBuildID` from the response, update `RootCoord`'s `metaTable`, then send responses to `Proxy`.
|
||||
10. When `RootCoood` receives the `BuildIndexResponse`, it would extract the `IndexBuildID` from the response, update `RootCoord`'s `metaTable`, then send responses to `Proxy`.
|
||||
|
||||
11. There is a backgroud service, `assignTaskLoop`, in `IndexCoord`. `assignTaskLoop` would call `GetUnassignedTask` periodically, the default interval is 3s. `GetUnassignedTask` would list these segments whos `index meta` has been updated, but index has not been created yet.
|
||||
11. There is a backgroud service, `assignTaskLoop`, in `IndexCoord`. `assignTaskLoop` would call `GetUnassignedTask` periodically, the default interval is 3s. `GetUnassignedTask` would list these segments whos `index meta` has been updated, but index has not been created yet.
|
||||
|
||||
12. The previous step has listed the segments whose index has not been created, for each those segments, `IndexCoord` would call `PeekClient` to get an available `IndexNode`, and send `CreateIndex` request to this `IndexNode`. The `proto` is defined as follow.
|
||||
|
||||
12. The previous step has listed the segments whose index has not been created, for each those segments, `IndexCoord` would call `PeekClient` to get an available `IndexNode`, and send `CreateIndex` request to this `IndexNode`. The `proto` is defined as follow.
|
||||
```proto
|
||||
service IndexNode {
|
||||
...
|
||||
@ -165,17 +175,18 @@ message CreateIndexRequest {
|
||||
}
|
||||
```
|
||||
|
||||
13. When receive `CreateIndex` request, `IndexNode` would wrap this request into `IndexBuildTask`, and push this task into `IndexBuildQueue`, then send response to `IndexCoord`
|
||||
13. When receive `CreateIndex` request, `IndexNode` would wrap this request into `IndexBuildTask`, and push this task into `IndexBuildQueue`, then send response to `IndexCoord`
|
||||
|
||||
14. There is a background service, `indexBuildLoop`, in the `IndexNode`. `indexBuildLoop` would call `scheduleIndexBuildTask` to get a `IndexBuildTask` from `IndexBuildQueue`, and then start another `goroutine` to build index and update meta.
|
||||
|
||||
*Node*: `InexNode` will not notify the `QueryCoord` to load the index file, if an user wants to speed up seach by these index files, he should call `ReleaseCollection` firstly, then call `LoadCollection` to load these index files.
|
||||
_Node_: `InexNode` will not notify the `QueryCoord` to load the index file, if an user wants to speed up seach by these index files, he should call `ReleaseCollection` firstly, then call `LoadCollection` to load these index files.
|
||||
|
||||
15. As mentioned earlier, `RootCoord` would only search on these flushed segments on `CreateIndex` request, the following figure show how to deal with the newly add segments.
|
||||
15. As mentioned earlier, `RootCoord` would only search on these flushed segments on `CreateIndex` request, the following figure show how to deal with the newly add segments.
|
||||
|
||||
![data_coord_flushed](./graphs/milvus_create_index_data_coord_flushed.png)
|
||||
|
||||
16. When a segment has been flushed, `DataCoord` would notify `RootCoord` via `SegmentFlushCompleted`, the `proto` is defined as follow:
|
||||
16. When a segment has been flushed, `DataCoord` would notify `RootCoord` via `SegmentFlushCompleted`, the `proto` is defined as follow:
|
||||
|
||||
```proto
|
||||
service RootCoord {
|
||||
...
|
||||
@ -205,7 +216,8 @@ message SegmentInfo {
|
||||
}
|
||||
|
||||
```
|
||||
17. If an user has called `CreateIndex` on this `Collection`, then when `RootCoord` receives `SegmentFlushCompleted` request, it would extract the `SegmentID` from the request, and send a `GetInsertBinlogPaths` request to `DataCoord` to get the `Binlog` paths, finally `RootCoord` would send a `BuildIndex` request to `IndexCoord` to notify `IndexCoord` to build index on this segment.
|
||||
|
||||
17. If an user has called `CreateIndex` on this `Collection`, then when `RootCoord` receives `SegmentFlushCompleted` request, it would extract the `SegmentID` from the request, and send a `GetInsertBinlogPaths` request to `DataCoord` to get the `Binlog` paths, finally `RootCoord` would send a `BuildIndex` request to `IndexCoord` to notify `IndexCoord` to build index on this segment.
|
||||
|
||||
18. The `Grpc` call of `SegmentFlushCompleted` might failed due to network problem or some others, so how to create index if the `Grpc` failed ? The follwing figure show the solution.
|
||||
|
||||
@ -214,6 +226,7 @@ message SegmentInfo {
|
||||
19. There is a backgroud service, `checkFlushedSegmentLoop`, in `RootCoord`. `checkFlushedSegmentLoop` would periodically check whether there is a segment that needs to be created index but has not been created, the default interval is `10 minutes`, and call `DataCoord` and `IndexCoord`'s service to create index on these segments.
|
||||
|
||||
20. In `Milvus 2.0`, `Create Index` is an asynchronous operation, so the `SDK` needs to send `GetIndexStates` request to `IndexCoord` periodically to check if the index has been created, the `proto` is defined as follow.
|
||||
|
||||
```proto
|
||||
service IndexCoord {
|
||||
...
|
||||
|
Loading…
Reference in New Issue
Block a user