Cherry pick from master
pr: #33064#33101#33187#33259#33224#33064 Support readable JSON file import for
Float16/BFloat16/SparseFloat
#33101 Store SparseFloatVector into parquet as JSON string
#33187 Fix SparseFloatVector data parse error for parquet
#33259 Fix SparseFloatVector data parse error for json
#33224 Optimize bulk insert unittest
Signed-off-by: Cai Yudong <yudong.cai@zilliz.com>
issue: #33005
1. add `MemorySize` field for insert binlog.
2. `LogSize` means the file size in the storage object.
3. `MemorySize` means the size of the data in the memory.
---------
Signed-off-by: Cai Zhang <cai.zhang@zilliz.com>
Signed-off-by: cai.zhang <cai.zhang@zilliz.com>
See also #32642
This PR reuses hash locations for bloom filter prediction utilizing
`storage.Location`, like enhancement #32642.
Also adds a utility struct in storage: `LocationCache` to storage
locations for variable K (numbers of hash functions)
---------
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
issue: #32530
when try to match segment bloom filter with pk, we can reuse the hash
locations. This PR maintain the max hash Func, and compute hash location
once for all segment, reuse hash location can speed up bf access
---------
Signed-off-by: Wei Liu <wei.liu@zilliz.com>
issue: #19095,#29655,#31718
- Change `ListWithPrefix` to `WalkWithPrefix` of OOS into a pipeline
mode.
- File garbage collection is performed in other goroutine.
- Segment Index Recycle clean index file too.
---------
Signed-off-by: chyezh <chyezh@outlook.com>
issue: #29419
added helper functions to parse JSON representation of sparse float
vectors, will be used by both the restful server and the import utils.
Signed-off-by: Buqian Zheng <zhengbuqian@gmail.com>
add sparse float vector support to different milvus components,
including proxy, data node to receive and write sparse float vectors to
binlog, query node to handle search requests, index node to build index
for sparse float column, etc.
https://github.com/milvus-io/milvus/issues/29419
---------
Signed-off-by: Buqian Zheng <zhengbuqian@gmail.com>
Define FieldValue, FieldStats, PartitionStats
FieldValue is largely copied from PrimaryKey
FieldStats is largely copied from PrimaryKeyStats
PartitionStats is map[segmentid][]FieldStats
Each partition can have a PartitionStats file
/kind feature
related: #30287
related: #30633
---------
Signed-off-by: wayblink <anyang.wang@zilliz.com>
This PR introduces novel managerial roles for importv2:
1. ImportMeta: To manage all the import tasks;
2. ImportScheduler: To process tasks and modify their states;
3. ImportChecker: To ascertain the completion of all tasks and instigate
relevant operations.
issue: https://github.com/milvus-io/milvus/issues/28521
---------
Signed-off-by: bigsheeper <yihao.dai@zilliz.com>
See also #30404
`PrimaryKey` is used to hold pk values for both int64 & varchar data
type. Since it is an interface it may occupies more memory than pure
slices when holding a group of pks.
This PR add `PrimaryKeys` interface when some other module need to hold
lots of PrimaryKeys.
By using this interface, it could reduce the memory of pk slice to half
when using Int64 Pk data type and reduce interface cost for each row of
varchar as well.
---------
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
This PR introduces novel importv2 roles for datanode:
1. Executor: To execute tasks, a import task will be divided into the
following steps: read data -> hash data -> sync data;
2. Manager: To manage all the tasks;
issue: https://github.com/milvus-io/milvus/issues/28521
---------
Signed-off-by: bigsheeper <yihao.dai@zilliz.com>
fix: #29757
In previous code, `ColumnBasedInsertMsgToInsertData` adds empty field if
the insertMsg parameter does not have the column schema defined. This
may lead to unexpected behavior of caller functions.
This PR:
- Add column missing check
- Add column length check
- Generate BlobInfo for ColumnBasedInsertMsgToInsertData result
---------
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
This PR defines the new import reader interfaces and implement a binlog
reader for import.
issue: https://github.com/milvus-io/milvus/issues/28521
---------
Signed-off-by: bigsheeper <yihao.dai@zilliz.com>
issue: https://github.com/milvus-io/milvus/issues/27704
Add inverted index for some data types in Milvus. This index type can
save a lot of memory compared to loading all data into RAM and speed up
the term query and range query.
Supported: `INT8`, `INT16`, `INT32`, `INT64`, `FLOAT`, `DOUBLE`, `BOOL`
and `VARCHAR`.
Not supported: `ARRAY` and `JSON`.
Note:
- The inverted index for `VARCHAR` is not designed to serve full-text
search now. We will treat every row as a whole keyword instead of
tokenizing it into multiple terms.
- The inverted index don't support retrieval well, so if you create
inverted index for field, those operations which depend on the raw data
will fallback to use chunk storage, which will bring some performance
loss. For example, comparisons between two columns and retrieval of
output fields.
The inverted index is very easy to be used.
Taking below collection as an example:
```python
fields = [
FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, auto_id=False, max_length=100),
FieldSchema(name="int8", dtype=DataType.INT8),
FieldSchema(name="int16", dtype=DataType.INT16),
FieldSchema(name="int32", dtype=DataType.INT32),
FieldSchema(name="int64", dtype=DataType.INT64),
FieldSchema(name="float", dtype=DataType.FLOAT),
FieldSchema(name="double", dtype=DataType.DOUBLE),
FieldSchema(name="bool", dtype=DataType.BOOL),
FieldSchema(name="varchar", dtype=DataType.VARCHAR, max_length=1000),
FieldSchema(name="random", dtype=DataType.DOUBLE),
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim),
]
schema = CollectionSchema(fields)
collection = Collection("demo", schema)
```
Then we can simply create inverted index for field via:
```python
index_type = "INVERTED"
collection.create_index("int8", {"index_type": index_type})
collection.create_index("int16", {"index_type": index_type})
collection.create_index("int32", {"index_type": index_type})
collection.create_index("int64", {"index_type": index_type})
collection.create_index("float", {"index_type": index_type})
collection.create_index("double", {"index_type": index_type})
collection.create_index("bool", {"index_type": index_type})
collection.create_index("varchar", {"index_type": index_type})
```
Then, term query and range query on the field can be speed up
automatically by the inverted index:
```python
result = collection.query(expr='int64 in [1, 2, 3]', output_fields=["pk"])
result = collection.query(expr='int64 < 5', output_fields=["pk"])
result = collection.query(expr='int64 > 2997', output_fields=["pk"])
result = collection.query(expr='1 < int64 < 5', output_fields=["pk"])
```
---------
Signed-off-by: longjiquan <jiquan.long@zilliz.com>