add sparse float vector support to different milvus components,
including proxy, data node to receive and write sparse float vectors to
binlog, query node to handle search requests, index node to build index
for sparse float column, etc.
https://github.com/milvus-io/milvus/issues/29419
---------
Signed-off-by: Buqian Zheng <zhengbuqian@gmail.com>
issue: #30102#30225
we should read MetricType from SearchResult,
because query node never
1. read metricType from LoadMeta
2. store to collection
3. set SearchRequest.MetricType
Signed-off-by: PowderLi <min.li@zilliz.com>
See also #29113
The collection schema is crucial when performing search/query but some
of the information is calculated for every request.
This PR change schema field of cached collection info into a utility
`schemaInfo` type to store some stable result, say pk field,
partitionKeyEnabled, etc. And provided field name to id map for
search/query services.
---------
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
issue: https://github.com/milvus-io/milvus/issues/27704
Add inverted index for some data types in Milvus. This index type can
save a lot of memory compared to loading all data into RAM and speed up
the term query and range query.
Supported: `INT8`, `INT16`, `INT32`, `INT64`, `FLOAT`, `DOUBLE`, `BOOL`
and `VARCHAR`.
Not supported: `ARRAY` and `JSON`.
Note:
- The inverted index for `VARCHAR` is not designed to serve full-text
search now. We will treat every row as a whole keyword instead of
tokenizing it into multiple terms.
- The inverted index don't support retrieval well, so if you create
inverted index for field, those operations which depend on the raw data
will fallback to use chunk storage, which will bring some performance
loss. For example, comparisons between two columns and retrieval of
output fields.
The inverted index is very easy to be used.
Taking below collection as an example:
```python
fields = [
FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, auto_id=False, max_length=100),
FieldSchema(name="int8", dtype=DataType.INT8),
FieldSchema(name="int16", dtype=DataType.INT16),
FieldSchema(name="int32", dtype=DataType.INT32),
FieldSchema(name="int64", dtype=DataType.INT64),
FieldSchema(name="float", dtype=DataType.FLOAT),
FieldSchema(name="double", dtype=DataType.DOUBLE),
FieldSchema(name="bool", dtype=DataType.BOOL),
FieldSchema(name="varchar", dtype=DataType.VARCHAR, max_length=1000),
FieldSchema(name="random", dtype=DataType.DOUBLE),
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim),
]
schema = CollectionSchema(fields)
collection = Collection("demo", schema)
```
Then we can simply create inverted index for field via:
```python
index_type = "INVERTED"
collection.create_index("int8", {"index_type": index_type})
collection.create_index("int16", {"index_type": index_type})
collection.create_index("int32", {"index_type": index_type})
collection.create_index("int64", {"index_type": index_type})
collection.create_index("float", {"index_type": index_type})
collection.create_index("double", {"index_type": index_type})
collection.create_index("bool", {"index_type": index_type})
collection.create_index("varchar", {"index_type": index_type})
```
Then, term query and range query on the field can be speed up
automatically by the inverted index:
```python
result = collection.query(expr='int64 in [1, 2, 3]', output_fields=["pk"])
result = collection.query(expr='int64 < 5', output_fields=["pk"])
result = collection.query(expr='int64 > 2997', output_fields=["pk"])
result = collection.query(expr='1 < int64 < 5', output_fields=["pk"])
```
---------
Signed-off-by: longjiquan <jiquan.long@zilliz.com>
support enable/disable mmap for index, the user could alter the index's
mode by `AlterIndex` method
related: https://github.com/milvus-io/milvus/issues/21866
---------
Signed-off-by: yah01 <yah2er0ne@outlook.com>
Signed-off-by: yah01 <yang.cen@zilliz.com>
See also #29113
- Unify partition info refresh logic
- Prevent parse partition names for each partition key search request
---------
Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
issue: #28781#28329
1. There is no need to call `DescribeCollection`, if the collection's
schema is found in the globalMetaCache
2. did `GetProperties` to check the access to Azure Blob Service while
construct the ChunkManager
Signed-off-by: PowderLi <min.li@zilliz.com>
Support Database(#23742)
Fix db nonexists error for FlushAll (#24222)
Fix check collection limits fails (#24235)
backward compatibility with empty DB name (#24317)
Fix GetFlushAllState with DB (#24347)
Remove db from global meta cache after drop database (#24474)
Fix db name is empty for describe collection response (#24603)
Add RBAC for Database API (#24653)
Fix miss load the same name collection during recover stage (#24941)
RBAC supports Database validation (#23609)
Fix to list grant with db return empty (#23922)
Optimize PrivilegeAll permission check (#23972)
Add the default db value for the rbac request (#24307)
Signed-off-by: jaime <yun.zhang@zilliz.com>
Co-authored-by: SimFG <bang.fu@zilliz.com>
Co-authored-by: longjiquan <jiquan.long@zilliz.com>