// Licensed to the LF AI & Data foundation under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package column import ( "github.com/samber/lo" "github.com/milvus-io/milvus-proto/go-api/v2/schemapb" "github.com/milvus-io/milvus/client/v2/entity" ) var _ (Column) = (*ColumnSparseFloatVector)(nil) type ColumnSparseFloatVector struct { *vectorBase[entity.SparseEmbedding] } func NewColumnSparseVectors(name string, values []entity.SparseEmbedding) *ColumnSparseFloatVector { return &ColumnSparseFloatVector{ // sparse embedding need not specify dimension vectorBase: newVectorBase(name, 0, values, entity.FieldTypeSparseVector), } } func (c *ColumnSparseFloatVector) FieldData() *schemapb.FieldData { fd := c.vectorBase.FieldData() max := lo.MaxBy(c.values, func(a, b entity.SparseEmbedding) bool { return a.Dim() > b.Dim() }) vectors := fd.GetVectors() vectors.Dim = int64(max.Dim()) return fd }