// Copyright (C) 2019-2020 Zilliz. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software distributed under the License // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express // or implied. See the License for the specific language governing permissions and limitations under the License #include #include #include #include #include #include #include "pb/service_msg.pb.h" #include "segcore/reduce_c.h" #include #include #include #include #include #include #include #include "test_utils/DataGen.h" namespace chrono = std::chrono; using namespace milvus; using namespace milvus::segcore; using namespace milvus::proto; using namespace milvus::knowhere; TEST(CApiTest, CollectionTest) { auto schema_tmp_conf = ""; auto collection = NewCollection(schema_tmp_conf); DeleteCollection(collection); } TEST(CApiTest, GetCollectionNameTest) { auto schema_tmp_conf = ""; auto collection = NewCollection(schema_tmp_conf); auto name = GetCollectionName(collection); assert(strcmp(name, "default-collection") == 0); DeleteCollection(collection); } TEST(CApiTest, SegmentTest) { auto schema_tmp_conf = ""; auto collection = NewCollection(schema_tmp_conf); auto segment = NewSegment(collection, 0); DeleteCollection(collection); DeleteSegment(segment); } TEST(CApiTest, InsertTest) { auto schema_tmp_conf = ""; auto collection = NewCollection(schema_tmp_conf); auto segment = NewSegment(collection, 0); std::vector raw_data; std::vector timestamps; std::vector uids; int N = 10000; std::default_random_engine e(67); for (int i = 0; i < N; ++i) { uids.push_back(100000 + i); timestamps.push_back(0); // append vec float vec[16]; for (auto& x : vec) { x = e() % 2000 * 0.001 - 1.0; } raw_data.insert(raw_data.end(), (const char*)std::begin(vec), (const char*)std::end(vec)); int age = e() % 100; raw_data.insert(raw_data.end(), (const char*)&age, ((const char*)&age) + sizeof(age)); } auto line_sizeof = (sizeof(int) + sizeof(float) * 16); auto offset = PreInsert(segment, N); auto res = Insert(segment, offset, N, uids.data(), timestamps.data(), raw_data.data(), (int)line_sizeof, N); assert(res.error_code == Success); DeleteCollection(collection); DeleteSegment(segment); } TEST(CApiTest, DeleteTest) { auto schema_tmp_conf = ""; auto collection = NewCollection(schema_tmp_conf); auto segment = NewSegment(collection, 0); long delete_row_ids[] = {100000, 100001, 100002}; unsigned long delete_timestamps[] = {0, 0, 0}; auto offset = PreDelete(segment, 3); auto del_res = Delete(segment, offset, 3, delete_row_ids, delete_timestamps); assert(del_res.error_code == Success); DeleteCollection(collection); DeleteSegment(segment); } TEST(CApiTest, SearchTest) { auto schema_tmp_conf = ""; auto collection = NewCollection(schema_tmp_conf); auto segment = NewSegment(collection, 0); std::vector raw_data; std::vector timestamps; std::vector uids; int N = 10000; std::default_random_engine e(67); for (int i = 0; i < N; ++i) { uids.push_back(100000 + i); timestamps.push_back(0); // append vec float vec[16]; for (auto& x : vec) { x = e() % 2000 * 0.001 - 1.0; } raw_data.insert(raw_data.end(), (const char*)std::begin(vec), (const char*)std::end(vec)); int age = e() % 100; raw_data.insert(raw_data.end(), (const char*)&age, ((const char*)&age) + sizeof(age)); } auto line_sizeof = (sizeof(int) + sizeof(float) * 16); auto offset = PreInsert(segment, N); auto ins_res = Insert(segment, offset, N, uids.data(), timestamps.data(), raw_data.data(), (int)line_sizeof, N); ASSERT_EQ(ins_res.error_code, Success); const char* dsl_string = R"( { "bool": { "vector": { "fakevec": { "metric_type": "L2", "params": { "nprobe": 10 }, "query": "$0", "topk": 10 } } } })"; namespace ser = milvus::proto::service; int num_queries = 10; int dim = 16; std::normal_distribution dis(0, 1); ser::PlaceholderGroup raw_group; auto value = raw_group.add_placeholders(); value->set_tag("$0"); value->set_type(ser::PlaceholderType::VECTOR_FLOAT); for (int i = 0; i < num_queries; ++i) { std::vector vec; for (int d = 0; d < dim; ++d) { vec.push_back(dis(e)); } // std::string line((char*)vec.data(), (char*)vec.data() + vec.size() * sizeof(float)); value->add_values(vec.data(), vec.size() * sizeof(float)); } auto blob = raw_group.SerializeAsString(); void* plan = nullptr; auto status = CreatePlan(collection, dsl_string, &plan); ASSERT_EQ(status.error_code, Success); void* placeholderGroup = nullptr; status = ParsePlaceholderGroup(plan, blob.data(), blob.length(), &placeholderGroup); ASSERT_EQ(status.error_code, Success); std::vector placeholderGroups; placeholderGroups.push_back(placeholderGroup); timestamps.clear(); timestamps.push_back(1); CQueryResult search_result; auto res = Search(segment, plan, placeholderGroups.data(), timestamps.data(), 1, &search_result); ASSERT_EQ(res.error_code, Success); DeletePlan(plan); DeletePlaceholderGroup(placeholderGroup); DeleteQueryResult(search_result); DeleteCollection(collection); DeleteSegment(segment); } // TEST(CApiTest, BuildIndexTest) { // auto schema_tmp_conf = ""; // auto collection = NewCollection(schema_tmp_conf); // auto segment = NewSegment(collection, 0); // // std::vector raw_data; // std::vector timestamps; // std::vector uids; // int N = 10000; // std::default_random_engine e(67); // for (int i = 0; i < N; ++i) { // uids.push_back(100000 + i); // timestamps.push_back(0); // // append vec // float vec[16]; // for (auto& x : vec) { // x = e() % 2000 * 0.001 - 1.0; // } // raw_data.insert(raw_data.end(), (const char*)std::begin(vec), (const char*)std::end(vec)); // int age = e() % 100; // raw_data.insert(raw_data.end(), (const char*)&age, ((const char*)&age) + sizeof(age)); // } // // auto line_sizeof = (sizeof(int) + sizeof(float) * 16); // // auto offset = PreInsert(segment, N); // // auto ins_res = Insert(segment, offset, N, uids.data(), timestamps.data(), raw_data.data(), (int)line_sizeof, N); // assert(ins_res == 0); // // // TODO: add index ptr // Close(segment); // BuildIndex(collection, segment); // // const char* dsl_string = R"( // { // "bool": { // "vector": { // "fakevec": { // "metric_type": "L2", // "params": { // "nprobe": 10 // }, // "query": "$0", // "topk": 10 // } // } // } // })"; // // namespace ser = milvus::proto::service; // int num_queries = 10; // int dim = 16; // std::normal_distribution dis(0, 1); // ser::PlaceholderGroup raw_group; // auto value = raw_group.add_placeholders(); // value->set_tag("$0"); // value->set_type(ser::PlaceholderType::VECTOR_FLOAT); // for (int i = 0; i < num_queries; ++i) { // std::vector vec; // for (int d = 0; d < dim; ++d) { // vec.push_back(dis(e)); // } // // std::string line((char*)vec.data(), (char*)vec.data() + vec.size() * sizeof(float)); // value->add_values(vec.data(), vec.size() * sizeof(float)); // } // auto blob = raw_group.SerializeAsString(); // // auto plan = CreatePlan(collection, dsl_string); // auto placeholderGroup = ParsePlaceholderGroup(plan, blob.data(), blob.length()); // std::vector placeholderGroups; // placeholderGroups.push_back(placeholderGroup); // timestamps.clear(); // timestamps.push_back(1); // // auto search_res = Search(segment, plan, placeholderGroups.data(), timestamps.data(), 1); // // DeletePlan(plan); // DeletePlaceholderGroup(placeholderGroup); // DeleteQueryResult(search_res); // DeleteCollection(collection); // DeleteSegment(segment); //} TEST(CApiTest, IsOpenedTest) { auto schema_tmp_conf = ""; auto collection = NewCollection(schema_tmp_conf); auto segment = NewSegment(collection, 0); auto is_opened = IsOpened(segment); assert(is_opened); DeleteCollection(collection); DeleteSegment(segment); } TEST(CApiTest, CloseTest) { auto schema_tmp_conf = ""; auto collection = NewCollection(schema_tmp_conf); auto segment = NewSegment(collection, 0); auto status = Close(segment); assert(status == 0); DeleteCollection(collection); DeleteSegment(segment); } TEST(CApiTest, GetMemoryUsageInBytesTest) { auto schema_tmp_conf = ""; auto collection = NewCollection(schema_tmp_conf); auto segment = NewSegment(collection, 0); auto old_memory_usage_size = GetMemoryUsageInBytes(segment); std::cout << "old_memory_usage_size = " << old_memory_usage_size << std::endl; std::vector raw_data; std::vector timestamps; std::vector uids; int N = 10000; std::default_random_engine e(67); for (int i = 0; i < N; ++i) { uids.push_back(100000 + i); timestamps.push_back(0); // append vec float vec[16]; for (auto& x : vec) { x = e() % 2000 * 0.001 - 1.0; } raw_data.insert(raw_data.end(), (const char*)std::begin(vec), (const char*)std::end(vec)); int age = e() % 100; raw_data.insert(raw_data.end(), (const char*)&age, ((const char*)&age) + sizeof(age)); } auto line_sizeof = (sizeof(int) + sizeof(float) * 16); auto offset = PreInsert(segment, N); auto res = Insert(segment, offset, N, uids.data(), timestamps.data(), raw_data.data(), (int)line_sizeof, N); assert(res.error_code == Success); auto memory_usage_size = GetMemoryUsageInBytes(segment); std::cout << "new_memory_usage_size = " << memory_usage_size << std::endl; assert(memory_usage_size == 2785280); DeleteCollection(collection); DeleteSegment(segment); } namespace { auto generate_data(int N) { std::vector raw_data; std::vector timestamps; std::vector uids; std::default_random_engine er(42); std::normal_distribution<> distribution(0.0, 1.0); std::default_random_engine ei(42); for (int i = 0; i < N; ++i) { uids.push_back(10 * N + i); timestamps.push_back(0); // append vec float vec[16]; for (auto& x : vec) { x = distribution(er); } raw_data.insert(raw_data.end(), (const char*)std::begin(vec), (const char*)std::end(vec)); int age = ei() % 100; raw_data.insert(raw_data.end(), (const char*)&age, ((const char*)&age) + sizeof(age)); } return std::make_tuple(raw_data, timestamps, uids); } std::string generate_collection_shema(std::string metric_type, std::string dim, bool is_binary) { schema::CollectionSchema collection_schema; collection_schema.set_name("collection_test"); collection_schema.set_autoid(true); auto vec_field_schema = collection_schema.add_fields(); vec_field_schema->set_name("fakevec"); vec_field_schema->set_fieldid(100); if (is_binary) { vec_field_schema->set_data_type(schema::DataType::VECTOR_BINARY); } else { vec_field_schema->set_data_type(schema::DataType::VECTOR_FLOAT); } auto metric_type_param = vec_field_schema->add_index_params(); metric_type_param->set_key("metric_type"); metric_type_param->set_value(metric_type); auto dim_param = vec_field_schema->add_type_params(); dim_param->set_key("dim"); dim_param->set_value(dim); auto other_field_schema = collection_schema.add_fields(); ; other_field_schema->set_name("counter"); other_field_schema->set_fieldid(101); other_field_schema->set_data_type(schema::DataType::INT64); std::string schema_string; auto marshal = google::protobuf::TextFormat::PrintToString(collection_schema, &schema_string); assert(marshal == true); return schema_string; } VecIndexPtr generate_index( void* raw_data, milvus::knowhere::Config conf, int64_t dim, int64_t topK, int64_t N, std::string index_type) { auto indexing = knowhere::VecIndexFactory::GetInstance().CreateVecIndex(index_type, knowhere::IndexMode::MODE_CPU); auto database = milvus::knowhere::GenDataset(N, dim, raw_data); indexing->Train(database, conf); indexing->AddWithoutIds(database, conf); EXPECT_EQ(indexing->Count(), N); EXPECT_EQ(indexing->Dim(), dim); EXPECT_EQ(indexing->Count(), N); EXPECT_EQ(indexing->Dim(), dim); return indexing; } } // namespace // TEST(CApiTest, TestSearchPreference) { // auto schema_tmp_conf = ""; // auto collection = NewCollection(schema_tmp_conf); // auto segment = NewSegment(collection, 0); // // auto beg = chrono::high_resolution_clock::now(); // auto next = beg; // int N = 1000 * 1000 * 10; // auto [raw_data, timestamps, uids] = generate_data(N); // auto line_sizeof = (sizeof(int) + sizeof(float) * 16); // // next = chrono::high_resolution_clock::now(); // std::cout << "generate_data: " << chrono::duration_cast(next - beg).count() << "ms" // << std::endl; // beg = next; // // auto offset = PreInsert(segment, N); // auto res = Insert(segment, offset, N, uids.data(), timestamps.data(), raw_data.data(), (int)line_sizeof, N); // assert(res == 0); // next = chrono::high_resolution_clock::now(); // std::cout << "insert: " << chrono::duration_cast(next - beg).count() << "ms" << std::endl; // beg = next; // // auto N_del = N / 100; // std::vector del_ts(N_del, 100); // auto pre_off = PreDelete(segment, N_del); // Delete(segment, pre_off, N_del, uids.data(), del_ts.data()); // // next = chrono::high_resolution_clock::now(); // std::cout << "delete1: " << chrono::duration_cast(next - beg).count() << "ms" << std::endl; // beg = next; // // auto row_count = GetRowCount(segment); // assert(row_count == N); // // std::vector result_ids(10 * 16); // std::vector result_distances(10 * 16); // // CQueryInfo queryInfo{1, 10, "fakevec"}; // auto sea_res = // Search(segment, queryInfo, 104, (float*)raw_data.data(), 16, result_ids.data(), result_distances.data()); // // // ASSERT_EQ(sea_res, 0); // // ASSERT_EQ(result_ids[0], 10 * N); // // ASSERT_EQ(result_distances[0], 0); // // next = chrono::high_resolution_clock::now(); // std::cout << "query1: " << chrono::duration_cast(next - beg).count() << "ms" << std::endl; // beg = next; // sea_res = Search(segment, queryInfo, 104, (float*)raw_data.data(), 16, result_ids.data(), // result_distances.data()); // // // ASSERT_EQ(sea_res, 0); // // ASSERT_EQ(result_ids[0], 10 * N); // // ASSERT_EQ(result_distances[0], 0); // // next = chrono::high_resolution_clock::now(); // std::cout << "query2: " << chrono::duration_cast(next - beg).count() << "ms" << std::endl; // beg = next; // // // Close(segment); // // BuildIndex(segment); // // next = chrono::high_resolution_clock::now(); // std::cout << "build index: " << chrono::duration_cast(next - beg).count() << "ms" // << std::endl; // beg = next; // // std::vector result_ids2(10); // std::vector result_distances2(10); // // sea_res = // Search(segment, queryInfo, 104, (float*)raw_data.data(), 16, result_ids2.data(), result_distances2.data()); // // // sea_res = Search(segment, nullptr, 104, result_ids2.data(), // // result_distances2.data()); // // next = chrono::high_resolution_clock::now(); // std::cout << "search10: " << chrono::duration_cast(next - beg).count() << "ms" << std::endl; // beg = next; // // sea_res = // Search(segment, queryInfo, 104, (float*)raw_data.data(), 16, result_ids2.data(), result_distances2.data()); // // next = chrono::high_resolution_clock::now(); // std::cout << "search11: " << chrono::duration_cast(next - beg).count() << "ms" << std::endl; // beg = next; // // // std::cout << "case 1" << std::endl; // // for (int i = 0; i < 10; ++i) { // // std::cout << result_ids[i] << "->" << result_distances[i] << std::endl; // // } // // std::cout << "case 2" << std::endl; // // for (int i = 0; i < 10; ++i) { // // std::cout << result_ids2[i] << "->" << result_distances2[i] << std::endl; // // } // // // // for (auto x : result_ids2) { // // ASSERT_GE(x, 10 * N + N_del); // // ASSERT_LT(x, 10 * N + N); // // } // // // auto iter = 0; // // for(int i = 0; i < result_ids.size(); ++i) { // // auto uid = result_ids[i]; // // auto dis = result_distances[i]; // // if(uid >= 10 * N + N_del) { // // auto uid2 = result_ids2[iter]; // // auto dis2 = result_distances2[iter]; // // ASSERT_EQ(uid, uid2); // // ASSERT_EQ(dis, dis2); // // ++iter; // // } // // } // // DeleteCollection(collection); // DeleteSegment(segment); //} TEST(CApiTest, GetDeletedCountTest) { auto schema_tmp_conf = ""; auto collection = NewCollection(schema_tmp_conf); auto segment = NewSegment(collection, 0); long delete_row_ids[] = {100000, 100001, 100002}; unsigned long delete_timestamps[] = {0, 0, 0}; auto offset = PreDelete(segment, 3); auto del_res = Delete(segment, offset, 3, delete_row_ids, delete_timestamps); assert(del_res.error_code == Success); // TODO: assert(deleted_count == len(delete_row_ids)) auto deleted_count = GetDeletedCount(segment); assert(deleted_count == 0); DeleteCollection(collection); DeleteSegment(segment); } TEST(CApiTest, GetRowCountTest) { auto schema_tmp_conf = ""; auto collection = NewCollection(schema_tmp_conf); auto segment = NewSegment(collection, 0); int N = 10000; auto [raw_data, timestamps, uids] = generate_data(N); auto line_sizeof = (sizeof(int) + sizeof(float) * 16); auto offset = PreInsert(segment, N); auto res = Insert(segment, offset, N, uids.data(), timestamps.data(), raw_data.data(), (int)line_sizeof, N); assert(res.error_code == Success); auto row_count = GetRowCount(segment); assert(row_count == N); DeleteCollection(collection); DeleteSegment(segment); } // TEST(CApiTest, SchemaTest) { // std::string schema_string = // "id: 6873737669791618215\nname: \"collection0\"\nschema: \u003c\n " // "field_metas: \u003c\n field_name: \"age\"\n type: INT32\n dim: 1\n \u003e\n " // "field_metas: \u003c\n field_name: \"field_1\"\n type: VECTOR_FLOAT\n dim: 16\n \u003e\n" // "\u003e\ncreate_time: 1600416765\nsegment_ids: 6873737669791618215\npartition_tags: \"default\"\n"; // // auto collection = NewCollection(schema_string.data()); // auto segment = NewSegment(collection, 0); // DeleteCollection(collection); // DeleteSegment(segment); //} TEST(CApiTest, MergeInto) { std::vector uids; std::vector distance; std::vector new_uids; std::vector new_distance; int64_t num_queries = 1; int64_t topk = 2; uids.push_back(1); uids.push_back(2); distance.push_back(5); distance.push_back(1000); new_uids.push_back(3); new_uids.push_back(4); new_distance.push_back(2); new_distance.push_back(6); auto res = MergeInto(num_queries, topk, distance.data(), uids.data(), new_distance.data(), new_uids.data()); ASSERT_EQ(res, 0); ASSERT_EQ(uids[0], 3); ASSERT_EQ(distance[0], 2); ASSERT_EQ(uids[1], 1); ASSERT_EQ(distance[1], 5); } TEST(CApiTest, Reduce) { auto schema_tmp_conf = ""; auto collection = NewCollection(schema_tmp_conf); auto segment = NewSegment(collection, 0); std::vector raw_data; std::vector timestamps; std::vector uids; int N = 10000; std::default_random_engine e(67); for (int i = 0; i < N; ++i) { uids.push_back(100000 + i); timestamps.push_back(0); // append vec float vec[16]; for (auto& x : vec) { x = e() % 2000 * 0.001 - 1.0; } raw_data.insert(raw_data.end(), (const char*)std::begin(vec), (const char*)std::end(vec)); int age = e() % 100; raw_data.insert(raw_data.end(), (const char*)&age, ((const char*)&age) + sizeof(age)); } auto line_sizeof = (sizeof(int) + sizeof(float) * 16); auto offset = PreInsert(segment, N); auto ins_res = Insert(segment, offset, N, uids.data(), timestamps.data(), raw_data.data(), (int)line_sizeof, N); assert(ins_res.error_code == Success); const char* dsl_string = R"( { "bool": { "vector": { "fakevec": { "metric_type": "L2", "params": { "nprobe": 10 }, "query": "$0", "topk": 10 } } } })"; namespace ser = milvus::proto::service; int num_queries = 10; int dim = 16; std::normal_distribution dis(0, 1); ser::PlaceholderGroup raw_group; auto value = raw_group.add_placeholders(); value->set_tag("$0"); value->set_type(ser::PlaceholderType::VECTOR_FLOAT); for (int i = 0; i < num_queries; ++i) { std::vector vec; for (int d = 0; d < dim; ++d) { vec.push_back(dis(e)); } // std::string line((char*)vec.data(), (char*)vec.data() + vec.size() * sizeof(float)); value->add_values(vec.data(), vec.size() * sizeof(float)); } auto blob = raw_group.SerializeAsString(); void* plan = nullptr; auto status = CreatePlan(collection, dsl_string, &plan); assert(status.error_code == Success); void* placeholderGroup = nullptr; status = ParsePlaceholderGroup(plan, blob.data(), blob.length(), &placeholderGroup); assert(status.error_code == Success); std::vector placeholderGroups; placeholderGroups.push_back(placeholderGroup); timestamps.clear(); timestamps.push_back(1); std::vector results; CQueryResult res1; CQueryResult res2; auto res = Search(segment, plan, placeholderGroups.data(), timestamps.data(), 1, &res1); assert(res.error_code == Success); res = Search(segment, plan, placeholderGroups.data(), timestamps.data(), 1, &res2); assert(res.error_code == Success); results.push_back(res1); results.push_back(res2); bool is_selected[1] = {false}; status = ReduceQueryResults(results.data(), 1, is_selected); assert(status.error_code == Success); FillTargetEntry(segment, plan, res1); void* reorganize_search_result = nullptr; status = ReorganizeQueryResults(&reorganize_search_result, placeholderGroups.data(), 1, results.data(), is_selected, 1, plan); assert(status.error_code == Success); auto hits_blob_size = GetHitsBlobSize(reorganize_search_result); assert(hits_blob_size > 0); std::vector hits_blob; hits_blob.resize(hits_blob_size); GetHitsBlob(reorganize_search_result, hits_blob.data()); assert(hits_blob.data() != nullptr); auto num_queries_group = GetNumQueriesPeerGroup(reorganize_search_result, 0); assert(num_queries_group == 10); std::vector hit_size_peer_query; hit_size_peer_query.resize(num_queries_group); GetHitSizePeerQueries(reorganize_search_result, 0, hit_size_peer_query.data()); assert(hit_size_peer_query[0] > 0); DeletePlan(plan); DeletePlaceholderGroup(placeholderGroup); DeleteQueryResult(res1); DeleteQueryResult(res2); DeleteMarshaledHits(reorganize_search_result); DeleteCollection(collection); DeleteSegment(segment); } TEST(CApiTest, LoadIndexInfo) { // generator index constexpr auto DIM = 16; constexpr auto K = 10; auto N = 1024 * 10; auto [raw_data, timestamps, uids] = generate_data(N); auto indexing = std::make_shared(); auto conf = milvus::knowhere::Config{{milvus::knowhere::meta::DIM, DIM}, {milvus::knowhere::meta::TOPK, K}, {milvus::knowhere::IndexParams::nlist, 100}, {milvus::knowhere::IndexParams::nprobe, 4}, {milvus::knowhere::IndexParams::m, 4}, {milvus::knowhere::IndexParams::nbits, 8}, {milvus::knowhere::Metric::TYPE, milvus::knowhere::Metric::L2}, {milvus::knowhere::meta::DEVICEID, 0}}; auto database = milvus::knowhere::GenDataset(N, DIM, raw_data.data()); indexing->Train(database, conf); indexing->AddWithoutIds(database, conf); EXPECT_EQ(indexing->Count(), N); EXPECT_EQ(indexing->Dim(), DIM); auto binary_set = indexing->Serialize(conf); CBinarySet c_binary_set = (CBinarySet)&binary_set; void* c_load_index_info = nullptr; auto status = NewLoadIndexInfo(&c_load_index_info); assert(status.error_code == Success); std::string index_param_key1 = "index_type"; std::string index_param_value1 = "IVF_PQ"; status = AppendIndexParam(c_load_index_info, index_param_key1.data(), index_param_value1.data()); std::string index_param_key2 = "index_mode"; std::string index_param_value2 = "cpu"; status = AppendIndexParam(c_load_index_info, index_param_key2.data(), index_param_value2.data()); assert(status.error_code == Success); std::string field_name = "field0"; status = AppendFieldInfo(c_load_index_info, field_name.data(), 0); assert(status.error_code == Success); status = AppendIndex(c_load_index_info, c_binary_set); assert(status.error_code == Success); DeleteLoadIndexInfo(c_load_index_info); } TEST(CApiTest, LoadIndex_Search) { // generator index constexpr auto DIM = 16; constexpr auto K = 10; auto N = 1024 * 1024 * 10; auto num_query = 100; auto [raw_data, timestamps, uids] = generate_data(N); auto indexing = std::make_shared(); auto conf = milvus::knowhere::Config{{milvus::knowhere::meta::DIM, DIM}, {milvus::knowhere::meta::TOPK, K}, {milvus::knowhere::IndexParams::nlist, 100}, {milvus::knowhere::IndexParams::nprobe, 4}, {milvus::knowhere::IndexParams::m, 4}, {milvus::knowhere::IndexParams::nbits, 8}, {milvus::knowhere::Metric::TYPE, milvus::knowhere::Metric::L2}, {milvus::knowhere::meta::DEVICEID, 0}}; auto database = milvus::knowhere::GenDataset(N, DIM, raw_data.data()); indexing->Train(database, conf); indexing->AddWithoutIds(database, conf); EXPECT_EQ(indexing->Count(), N); EXPECT_EQ(indexing->Dim(), DIM); // serializ index to binarySet auto binary_set = indexing->Serialize(conf); // fill loadIndexInfo LoadIndexInfo load_index_info; auto& index_params = load_index_info.index_params; index_params["index_type"] = "IVF_PQ"; index_params["index_mode"] = "CPU"; auto mode = milvus::knowhere::IndexMode::MODE_CPU; load_index_info.index = milvus::knowhere::VecIndexFactory::GetInstance().CreateVecIndex(index_params["index_type"], mode); load_index_info.index->Load(binary_set); // search auto query_dataset = milvus::knowhere::GenDataset(num_query, DIM, raw_data.data() + DIM * 4200); auto result = indexing->Query(query_dataset, conf, nullptr); auto ids = result->Get(milvus::knowhere::meta::IDS); auto dis = result->Get(milvus::knowhere::meta::DISTANCE); for (int i = 0; i < std::min(num_query * K, 100); ++i) { std::cout << ids[i] << "->" << dis[i] << std::endl; } } TEST(CApiTest, UpdateSegmentIndex_Without_Predicate) { // insert data to segment constexpr auto DIM = 16; constexpr auto K = 5; std::string schema_string = generate_collection_shema("L2", "16", false); auto collection = NewCollection(schema_string.c_str()); auto schema = ((segcore::Collection*)collection)->get_schema(); auto segment = NewSegment(collection, 0); auto N = 1000 * 1000; auto dataset = DataGen(schema, N); auto vec_col = dataset.get_col(0); auto query_ptr = vec_col.data() + 420000 * DIM; PreInsert(segment, N); auto ins_res = Insert(segment, 0, N, dataset.row_ids_.data(), dataset.timestamps_.data(), dataset.raw_.raw_data, dataset.raw_.sizeof_per_row, dataset.raw_.count); assert(ins_res.error_code == Success); const char* dsl_string = R"( { "bool": { "vector": { "fakevec": { "metric_type": "L2", "params": { "nprobe": 10 }, "query": "$0", "topk": 5 } } } })"; // create place_holder_group int num_queries = 5; auto raw_group = CreatePlaceholderGroupFromBlob(num_queries, 16, query_ptr); auto blob = raw_group.SerializeAsString(); // search on segment's small index void* plan = nullptr; auto status = CreatePlan(collection, dsl_string, &plan); assert(status.error_code == Success); void* placeholderGroup = nullptr; status = ParsePlaceholderGroup(plan, blob.data(), blob.length(), &placeholderGroup); assert(status.error_code == Success); std::vector placeholderGroups; placeholderGroups.push_back(placeholderGroup); Timestamp time = 10000000; CQueryResult c_search_result_on_smallIndex; auto res_before_load_index = Search(segment, plan, placeholderGroups.data(), &time, 1, &c_search_result_on_smallIndex); assert(res_before_load_index.error_code == Success); // load index to segment auto conf = milvus::knowhere::Config{{milvus::knowhere::meta::DIM, DIM}, {milvus::knowhere::meta::TOPK, K}, {milvus::knowhere::IndexParams::nlist, 100}, {milvus::knowhere::IndexParams::nprobe, 10}, {milvus::knowhere::IndexParams::m, 4}, {milvus::knowhere::IndexParams::nbits, 8}, {milvus::knowhere::Metric::TYPE, milvus::knowhere::Metric::L2}, {milvus::knowhere::meta::DEVICEID, 0}}; auto indexing = generate_index(vec_col.data(), conf, DIM, K, N, IndexEnum::INDEX_FAISS_IVFPQ); // gen query dataset auto query_dataset = milvus::knowhere::GenDataset(num_queries, DIM, query_ptr); auto result_on_index = indexing->Query(query_dataset, conf, nullptr); auto ids = result_on_index->Get(milvus::knowhere::meta::IDS); auto dis = result_on_index->Get(milvus::knowhere::meta::DISTANCE); std::vector vec_ids(ids, ids + K * num_queries); std::vector vec_dis; for (int j = 0; j < K * num_queries; ++j) { vec_dis.push_back(dis[j] * -1); } auto search_result_on_raw_index = (QueryResult*)c_search_result_on_smallIndex; search_result_on_raw_index->internal_seg_offsets_ = vec_ids; search_result_on_raw_index->result_distances_ = vec_dis; auto binary_set = indexing->Serialize(conf); void* c_load_index_info = nullptr; status = NewLoadIndexInfo(&c_load_index_info); assert(status.error_code == Success); std::string index_type_key = "index_type"; std::string index_type_value = "IVF_PQ"; std::string index_mode_key = "index_mode"; std::string index_mode_value = "cpu"; std::string metric_type_key = "metric_type"; std::string metric_type_value = "L2"; AppendIndexParam(c_load_index_info, index_type_key.c_str(), index_type_value.c_str()); AppendIndexParam(c_load_index_info, index_mode_key.c_str(), index_mode_value.c_str()); AppendIndexParam(c_load_index_info, metric_type_key.c_str(), metric_type_value.c_str()); AppendFieldInfo(c_load_index_info, "fakevec", 0); AppendIndex(c_load_index_info, (CBinarySet)&binary_set); status = UpdateSegmentIndex(segment, c_load_index_info); assert(status.error_code == Success); CQueryResult c_search_result_on_bigIndex; auto res_after_load_index = Search(segment, plan, placeholderGroups.data(), &time, 1, &c_search_result_on_bigIndex); assert(res_after_load_index.error_code == Success); auto search_result_on_raw_index_json = QueryResultToJson(*search_result_on_raw_index); auto search_result_on_bigIndex_json = QueryResultToJson((*(QueryResult*)c_search_result_on_bigIndex)); std::cout << search_result_on_raw_index_json.dump(1) << std::endl; std::cout << search_result_on_bigIndex_json.dump(1) << std::endl; ASSERT_EQ(search_result_on_raw_index_json.dump(1), search_result_on_bigIndex_json.dump(1)); DeleteLoadIndexInfo(c_load_index_info); DeletePlan(plan); DeletePlaceholderGroup(placeholderGroup); DeleteQueryResult(c_search_result_on_smallIndex); DeleteQueryResult(c_search_result_on_bigIndex); DeleteCollection(collection); DeleteSegment(segment); } TEST(CApiTest, UpdateSegmentIndex_With_float_Predicate_Range) { // insert data to segment constexpr auto DIM = 16; constexpr auto K = 5; std::string schema_string = generate_collection_shema("L2", "16", false); auto collection = NewCollection(schema_string.c_str()); auto schema = ((segcore::Collection*)collection)->get_schema(); auto segment = NewSegment(collection, 0); auto N = 1000 * 1000; auto dataset = DataGen(schema, N); auto vec_col = dataset.get_col(0); auto query_ptr = vec_col.data() + 420000 * DIM; PreInsert(segment, N); auto ins_res = Insert(segment, 0, N, dataset.row_ids_.data(), dataset.timestamps_.data(), dataset.raw_.raw_data, dataset.raw_.sizeof_per_row, dataset.raw_.count); assert(ins_res.error_code == Success); const char* dsl_string = R"({ "bool": { "must": [ { "range": { "counter": { "GE": 420000, "LT": 420010 } } }, { "vector": { "fakevec": { "metric_type": "L2", "params": { "nprobe": 10 }, "query": "$0", "topk": 5 } } } ] } })"; // create place_holder_group int num_queries = 10; auto raw_group = CreatePlaceholderGroupFromBlob(num_queries, DIM, query_ptr); auto blob = raw_group.SerializeAsString(); // search on segment's small index void* plan = nullptr; auto status = CreatePlan(collection, dsl_string, &plan); assert(status.error_code == Success); void* placeholderGroup = nullptr; status = ParsePlaceholderGroup(plan, blob.data(), blob.length(), &placeholderGroup); assert(status.error_code == Success); std::vector placeholderGroups; placeholderGroups.push_back(placeholderGroup); Timestamp time = 10000000; CQueryResult c_search_result_on_smallIndex; auto res_before_load_index = Search(segment, plan, placeholderGroups.data(), &time, 1, &c_search_result_on_smallIndex); assert(res_before_load_index.error_code == Success); // load index to segment auto conf = milvus::knowhere::Config{{milvus::knowhere::meta::DIM, DIM}, {milvus::knowhere::meta::TOPK, K}, {milvus::knowhere::IndexParams::nlist, 100}, {milvus::knowhere::IndexParams::nprobe, 10}, {milvus::knowhere::IndexParams::m, 4}, {milvus::knowhere::IndexParams::nbits, 8}, {milvus::knowhere::Metric::TYPE, milvus::knowhere::Metric::L2}, {milvus::knowhere::meta::DEVICEID, 0}}; auto indexing = generate_index(vec_col.data(), conf, DIM, K, N, IndexEnum::INDEX_FAISS_IVFPQ); // gen query dataset auto query_dataset = milvus::knowhere::GenDataset(num_queries, DIM, query_ptr); auto result_on_index = indexing->Query(query_dataset, conf, nullptr); auto ids = result_on_index->Get(milvus::knowhere::meta::IDS); auto dis = result_on_index->Get(milvus::knowhere::meta::DISTANCE); std::vector vec_ids(ids, ids + K * num_queries); std::vector vec_dis; for (int j = 0; j < K * num_queries; ++j) { vec_dis.push_back(dis[j] * -1); } auto search_result_on_raw_index = (QueryResult*)c_search_result_on_smallIndex; search_result_on_raw_index->internal_seg_offsets_ = vec_ids; search_result_on_raw_index->result_distances_ = vec_dis; auto binary_set = indexing->Serialize(conf); void* c_load_index_info = nullptr; status = NewLoadIndexInfo(&c_load_index_info); assert(status.error_code == Success); std::string index_type_key = "index_type"; std::string index_type_value = "IVF_PQ"; std::string index_mode_key = "index_mode"; std::string index_mode_value = "cpu"; std::string metric_type_key = "metric_type"; std::string metric_type_value = "L2"; AppendIndexParam(c_load_index_info, index_type_key.c_str(), index_type_value.c_str()); AppendIndexParam(c_load_index_info, index_mode_key.c_str(), index_mode_value.c_str()); AppendIndexParam(c_load_index_info, metric_type_key.c_str(), metric_type_value.c_str()); AppendFieldInfo(c_load_index_info, "fakevec", 0); AppendIndex(c_load_index_info, (CBinarySet)&binary_set); status = UpdateSegmentIndex(segment, c_load_index_info); assert(status.error_code == Success); CQueryResult c_search_result_on_bigIndex; auto res_after_load_index = Search(segment, plan, placeholderGroups.data(), &time, 1, &c_search_result_on_bigIndex); assert(res_after_load_index.error_code == Success); auto search_result_on_bigIndex = (*(QueryResult*)c_search_result_on_bigIndex); for (int i = 0; i < num_queries; ++i) { auto offset = i * K; ASSERT_EQ(search_result_on_bigIndex.internal_seg_offsets_[offset], 420000 + i); ASSERT_EQ(search_result_on_bigIndex.result_distances_[offset], search_result_on_raw_index->result_distances_[offset]); } DeleteLoadIndexInfo(c_load_index_info); DeletePlan(plan); DeletePlaceholderGroup(placeholderGroup); DeleteQueryResult(c_search_result_on_smallIndex); DeleteQueryResult(c_search_result_on_bigIndex); DeleteCollection(collection); DeleteSegment(segment); } TEST(CApiTest, UpdateSegmentIndex_With_float_Predicate_Term) { // insert data to segment constexpr auto DIM = 16; constexpr auto K = 5; std::string schema_string = generate_collection_shema("L2", "16", false); auto collection = NewCollection(schema_string.c_str()); auto schema = ((segcore::Collection*)collection)->get_schema(); auto segment = NewSegment(collection, 0); auto N = 1000 * 1000; auto dataset = DataGen(schema, N); auto vec_col = dataset.get_col(0); auto query_ptr = vec_col.data() + 420000 * DIM; PreInsert(segment, N); auto ins_res = Insert(segment, 0, N, dataset.row_ids_.data(), dataset.timestamps_.data(), dataset.raw_.raw_data, dataset.raw_.sizeof_per_row, dataset.raw_.count); assert(ins_res.error_code == Success); const char* dsl_string = R"({ "bool": { "must": [ { "term": { "counter": { "values": [420000, 420001, 420002, 420003, 420004] } } }, { "vector": { "fakevec": { "metric_type": "L2", "params": { "nprobe": 10 }, "query": "$0", "topk": 5 } } } ] } })"; // create place_holder_group int num_queries = 5; auto raw_group = CreatePlaceholderGroupFromBlob(num_queries, DIM, query_ptr); auto blob = raw_group.SerializeAsString(); // search on segment's small index void* plan = nullptr; auto status = CreatePlan(collection, dsl_string, &plan); assert(status.error_code == Success); void* placeholderGroup = nullptr; status = ParsePlaceholderGroup(plan, blob.data(), blob.length(), &placeholderGroup); assert(status.error_code == Success); std::vector placeholderGroups; placeholderGroups.push_back(placeholderGroup); Timestamp time = 10000000; CQueryResult c_search_result_on_smallIndex; auto res_before_load_index = Search(segment, plan, placeholderGroups.data(), &time, 1, &c_search_result_on_smallIndex); assert(res_before_load_index.error_code == Success); // load index to segment auto conf = milvus::knowhere::Config{{milvus::knowhere::meta::DIM, DIM}, {milvus::knowhere::meta::TOPK, K}, {milvus::knowhere::IndexParams::nlist, 100}, {milvus::knowhere::IndexParams::nprobe, 10}, {milvus::knowhere::IndexParams::m, 4}, {milvus::knowhere::IndexParams::nbits, 8}, {milvus::knowhere::Metric::TYPE, milvus::knowhere::Metric::L2}, {milvus::knowhere::meta::DEVICEID, 0}}; auto indexing = generate_index(vec_col.data(), conf, DIM, K, N, IndexEnum::INDEX_FAISS_IVFPQ); // gen query dataset auto query_dataset = milvus::knowhere::GenDataset(num_queries, DIM, query_ptr); auto result_on_index = indexing->Query(query_dataset, conf, nullptr); auto ids = result_on_index->Get(milvus::knowhere::meta::IDS); auto dis = result_on_index->Get(milvus::knowhere::meta::DISTANCE); std::vector vec_ids(ids, ids + K * num_queries); std::vector vec_dis; for (int j = 0; j < K * num_queries; ++j) { vec_dis.push_back(dis[j] * -1); } auto search_result_on_raw_index = (QueryResult*)c_search_result_on_smallIndex; search_result_on_raw_index->internal_seg_offsets_ = vec_ids; search_result_on_raw_index->result_distances_ = vec_dis; auto binary_set = indexing->Serialize(conf); void* c_load_index_info = nullptr; status = NewLoadIndexInfo(&c_load_index_info); assert(status.error_code == Success); std::string index_type_key = "index_type"; std::string index_type_value = "IVF_PQ"; std::string index_mode_key = "index_mode"; std::string index_mode_value = "cpu"; std::string metric_type_key = "metric_type"; std::string metric_type_value = "L2"; AppendIndexParam(c_load_index_info, index_type_key.c_str(), index_type_value.c_str()); AppendIndexParam(c_load_index_info, index_mode_key.c_str(), index_mode_value.c_str()); AppendIndexParam(c_load_index_info, metric_type_key.c_str(), metric_type_value.c_str()); AppendFieldInfo(c_load_index_info, "fakevec", 0); AppendIndex(c_load_index_info, (CBinarySet)&binary_set); status = UpdateSegmentIndex(segment, c_load_index_info); assert(status.error_code == Success); CQueryResult c_search_result_on_bigIndex; auto res_after_load_index = Search(segment, plan, placeholderGroups.data(), &time, 1, &c_search_result_on_bigIndex); assert(res_after_load_index.error_code == Success); auto search_result_on_bigIndex = (*(QueryResult*)c_search_result_on_bigIndex); for (int i = 0; i < num_queries; ++i) { auto offset = i * K; ASSERT_EQ(search_result_on_bigIndex.internal_seg_offsets_[offset], 420000 + i); ASSERT_EQ(search_result_on_bigIndex.result_distances_[offset], search_result_on_raw_index->result_distances_[offset]); } DeleteLoadIndexInfo(c_load_index_info); DeletePlan(plan); DeletePlaceholderGroup(placeholderGroup); DeleteQueryResult(c_search_result_on_smallIndex); DeleteQueryResult(c_search_result_on_bigIndex); DeleteCollection(collection); DeleteSegment(segment); } TEST(CApiTest, UpdateSegmentIndex_With_binary_Predicate_Range) { // insert data to segment constexpr auto DIM = 16; constexpr auto K = 5; std::string schema_string = generate_collection_shema("JACCARD", "16", true); auto collection = NewCollection(schema_string.c_str()); auto schema = ((segcore::Collection*)collection)->get_schema(); auto segment = NewSegment(collection, 0); auto N = 1000 * 1000; auto dataset = DataGen(schema, N); auto vec_col = dataset.get_col(0); auto query_ptr = vec_col.data() + 420000 * DIM / 8; PreInsert(segment, N); auto ins_res = Insert(segment, 0, N, dataset.row_ids_.data(), dataset.timestamps_.data(), dataset.raw_.raw_data, dataset.raw_.sizeof_per_row, dataset.raw_.count); assert(ins_res.error_code == Success); const char* dsl_string = R"({ "bool": { "must": [ { "range": { "counter": { "GE": 420000, "LT": 420010 } } }, { "vector": { "fakevec": { "metric_type": "JACCARD", "params": { "nprobe": 10 }, "query": "$0", "topk": 5 } } } ] } })"; // create place_holder_group int num_queries = 5; auto raw_group = CreateBinaryPlaceholderGroupFromBlob(num_queries, DIM, query_ptr); auto blob = raw_group.SerializeAsString(); // search on segment's small index void* plan = nullptr; auto status = CreatePlan(collection, dsl_string, &plan); assert(status.error_code == Success); void* placeholderGroup = nullptr; status = ParsePlaceholderGroup(plan, blob.data(), blob.length(), &placeholderGroup); assert(status.error_code == Success); std::vector placeholderGroups; placeholderGroups.push_back(placeholderGroup); Timestamp time = 10000000; CQueryResult c_search_result_on_smallIndex; auto res_before_load_index = Search(segment, plan, placeholderGroups.data(), &time, 1, &c_search_result_on_smallIndex); assert(res_before_load_index.error_code == Success); // load index to segment auto conf = milvus::knowhere::Config{ {milvus::knowhere::meta::DIM, DIM}, {milvus::knowhere::meta::TOPK, K}, {milvus::knowhere::IndexParams::nprobe, 10}, {milvus::knowhere::IndexParams::nlist, 100}, {milvus::knowhere::IndexParams::m, 4}, {milvus::knowhere::IndexParams::nbits, 8}, {milvus::knowhere::Metric::TYPE, milvus::knowhere::Metric::JACCARD}, }; auto indexing = generate_index(vec_col.data(), conf, DIM, K, N, IndexEnum::INDEX_FAISS_BIN_IVFFLAT); // gen query dataset auto query_dataset = milvus::knowhere::GenDataset(num_queries, DIM, query_ptr); auto result_on_index = indexing->Query(query_dataset, conf, nullptr); auto ids = result_on_index->Get(milvus::knowhere::meta::IDS); auto dis = result_on_index->Get(milvus::knowhere::meta::DISTANCE); std::vector vec_ids(ids, ids + K * num_queries); std::vector vec_dis; for (int j = 0; j < K * num_queries; ++j) { vec_dis.push_back(dis[j] * -1); } auto search_result_on_raw_index = (QueryResult*)c_search_result_on_smallIndex; search_result_on_raw_index->internal_seg_offsets_ = vec_ids; search_result_on_raw_index->result_distances_ = vec_dis; auto binary_set = indexing->Serialize(conf); void* c_load_index_info = nullptr; status = NewLoadIndexInfo(&c_load_index_info); assert(status.error_code == Success); std::string index_type_key = "index_type"; std::string index_type_value = "BIN_IVF_FLAT"; std::string index_mode_key = "index_mode"; std::string index_mode_value = "cpu"; std::string metric_type_key = "metric_type"; std::string metric_type_value = "JACCARD"; AppendIndexParam(c_load_index_info, index_type_key.c_str(), index_type_value.c_str()); AppendIndexParam(c_load_index_info, index_mode_key.c_str(), index_mode_value.c_str()); AppendIndexParam(c_load_index_info, metric_type_key.c_str(), metric_type_value.c_str()); AppendFieldInfo(c_load_index_info, "fakevec", 0); AppendIndex(c_load_index_info, (CBinarySet)&binary_set); status = UpdateSegmentIndex(segment, c_load_index_info); assert(status.error_code == Success); CQueryResult c_search_result_on_bigIndex; auto res_after_load_index = Search(segment, plan, placeholderGroups.data(), &time, 1, &c_search_result_on_bigIndex); assert(res_after_load_index.error_code == Success); auto search_result_on_bigIndex = (*(QueryResult*)c_search_result_on_bigIndex); for (int i = 0; i < num_queries; ++i) { auto offset = i * K; ASSERT_EQ(search_result_on_bigIndex.internal_seg_offsets_[offset], 420000 + i); ASSERT_EQ(search_result_on_bigIndex.result_distances_[offset], search_result_on_raw_index->result_distances_[offset]); } DeleteLoadIndexInfo(c_load_index_info); DeletePlan(plan); DeletePlaceholderGroup(placeholderGroup); DeleteQueryResult(c_search_result_on_smallIndex); DeleteQueryResult(c_search_result_on_bigIndex); DeleteCollection(collection); DeleteSegment(segment); } TEST(CApiTest, UpdateSegmentIndex_With_binary_Predicate_Term) { // insert data to segment constexpr auto DIM = 16; constexpr auto K = 5; std::string schema_string = generate_collection_shema("JACCARD", "16", true); auto collection = NewCollection(schema_string.c_str()); auto schema = ((segcore::Collection*)collection)->get_schema(); auto segment = NewSegment(collection, 0); auto N = 1000 * 1000; auto dataset = DataGen(schema, N); auto vec_col = dataset.get_col(0); auto query_ptr = vec_col.data() + 420000 * DIM / 8; PreInsert(segment, N); auto ins_res = Insert(segment, 0, N, dataset.row_ids_.data(), dataset.timestamps_.data(), dataset.raw_.raw_data, dataset.raw_.sizeof_per_row, dataset.raw_.count); assert(ins_res.error_code == Success); const char* dsl_string = R"({ "bool": { "must": [ { "term": { "counter": { "values": [420000, 420001, 420002, 420003, 420004] } } }, { "vector": { "fakevec": { "metric_type": "JACCARD", "params": { "nprobe": 10 }, "query": "$0", "topk": 5 } } } ] } })"; // create place_holder_group int num_queries = 5; auto raw_group = CreateBinaryPlaceholderGroupFromBlob(num_queries, DIM, query_ptr); auto blob = raw_group.SerializeAsString(); // search on segment's small index void* plan = nullptr; auto status = CreatePlan(collection, dsl_string, &plan); assert(status.error_code == Success); void* placeholderGroup = nullptr; status = ParsePlaceholderGroup(plan, blob.data(), blob.length(), &placeholderGroup); assert(status.error_code == Success); std::vector placeholderGroups; placeholderGroups.push_back(placeholderGroup); Timestamp time = 10000000; CQueryResult c_search_result_on_smallIndex; auto res_before_load_index = Search(segment, plan, placeholderGroups.data(), &time, 1, &c_search_result_on_smallIndex); assert(res_before_load_index.error_code == Success); // load index to segment auto conf = milvus::knowhere::Config{ {milvus::knowhere::meta::DIM, DIM}, {milvus::knowhere::meta::TOPK, K}, {milvus::knowhere::IndexParams::nprobe, 10}, {milvus::knowhere::IndexParams::nlist, 100}, {milvus::knowhere::IndexParams::m, 4}, {milvus::knowhere::IndexParams::nbits, 8}, {milvus::knowhere::Metric::TYPE, milvus::knowhere::Metric::JACCARD}, }; auto indexing = generate_index(vec_col.data(), conf, DIM, K, N, IndexEnum::INDEX_FAISS_BIN_IVFFLAT); // gen query dataset auto query_dataset = milvus::knowhere::GenDataset(num_queries, DIM, query_ptr); auto result_on_index = indexing->Query(query_dataset, conf, nullptr); auto ids = result_on_index->Get(milvus::knowhere::meta::IDS); auto dis = result_on_index->Get(milvus::knowhere::meta::DISTANCE); std::vector vec_ids(ids, ids + K * num_queries); std::vector vec_dis; for (int j = 0; j < K * num_queries; ++j) { vec_dis.push_back(dis[j] * -1); } auto search_result_on_raw_index = (QueryResult*)c_search_result_on_smallIndex; search_result_on_raw_index->internal_seg_offsets_ = vec_ids; search_result_on_raw_index->result_distances_ = vec_dis; auto binary_set = indexing->Serialize(conf); void* c_load_index_info = nullptr; status = NewLoadIndexInfo(&c_load_index_info); assert(status.error_code == Success); std::string index_type_key = "index_type"; std::string index_type_value = "BIN_IVF_FLAT"; std::string index_mode_key = "index_mode"; std::string index_mode_value = "cpu"; std::string metric_type_key = "metric_type"; std::string metric_type_value = "JACCARD"; AppendIndexParam(c_load_index_info, index_type_key.c_str(), index_type_value.c_str()); AppendIndexParam(c_load_index_info, index_mode_key.c_str(), index_mode_value.c_str()); AppendIndexParam(c_load_index_info, metric_type_key.c_str(), metric_type_value.c_str()); AppendFieldInfo(c_load_index_info, "fakevec", 0); AppendIndex(c_load_index_info, (CBinarySet)&binary_set); status = UpdateSegmentIndex(segment, c_load_index_info); assert(status.error_code == Success); CQueryResult c_search_result_on_bigIndex; auto res_after_load_index = Search(segment, plan, placeholderGroups.data(), &time, 1, &c_search_result_on_bigIndex); assert(res_after_load_index.error_code == Success); std::vector results; results.push_back(c_search_result_on_bigIndex); bool is_selected[1] = {false}; status = ReduceQueryResults(results.data(), 1, is_selected); assert(status.error_code == Success); FillTargetEntry(segment, plan, c_search_result_on_bigIndex); auto search_result_on_bigIndex = (*(QueryResult*)c_search_result_on_bigIndex); for (int i = 0; i < num_queries; ++i) { auto offset = i * K; ASSERT_EQ(search_result_on_bigIndex.internal_seg_offsets_[offset], 420000 + i); ASSERT_EQ(search_result_on_bigIndex.result_distances_[offset], search_result_on_raw_index->result_distances_[offset]); } DeleteLoadIndexInfo(c_load_index_info); DeletePlan(plan); DeletePlaceholderGroup(placeholderGroup); DeleteQueryResult(c_search_result_on_smallIndex); DeleteQueryResult(c_search_result_on_bigIndex); DeleteCollection(collection); DeleteSegment(segment); }