// Licensed to the LF AI & Data foundation under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package querycoord import ( "context" "errors" "fmt" "math" "math/rand" "os" "sort" "sync" "sync/atomic" "syscall" "time" v3rpc "go.etcd.io/etcd/api/v3/v3rpc/rpctypes" "github.com/golang/protobuf/proto" "go.etcd.io/etcd/api/v3/mvccpb" clientv3 "go.etcd.io/etcd/client/v3" "go.uber.org/zap" "github.com/milvus-io/milvus/internal/allocator" etcdkv "github.com/milvus-io/milvus/internal/kv/etcd" "github.com/milvus-io/milvus/internal/log" "github.com/milvus-io/milvus/internal/proto/commonpb" "github.com/milvus-io/milvus/internal/proto/internalpb" "github.com/milvus-io/milvus/internal/proto/milvuspb" "github.com/milvus-io/milvus/internal/proto/querypb" "github.com/milvus-io/milvus/internal/storage" "github.com/milvus-io/milvus/internal/types" "github.com/milvus-io/milvus/internal/util" "github.com/milvus-io/milvus/internal/util/dependency" "github.com/milvus-io/milvus/internal/util/metricsinfo" "github.com/milvus-io/milvus/internal/util/paramtable" "github.com/milvus-io/milvus/internal/util/sessionutil" "github.com/milvus-io/milvus/internal/util/tsoutil" "github.com/milvus-io/milvus/internal/util/typeutil" ) // UniqueID is an alias for the Int64 type type UniqueID = typeutil.UniqueID // Timestamp is an alias for the Int64 type type Timestamp = typeutil.Timestamp // Params is param table of query coordinator var Params paramtable.ComponentParam // QueryCoord is the coordinator of queryNodes type QueryCoord struct { loopCtx context.Context loopCancel context.CancelFunc loopWg sync.WaitGroup kvClient *etcdkv.EtcdKV initOnce sync.Once queryCoordID uint64 meta Meta cluster Cluster channelCleaner *ChannelCleaner newNodeFn newQueryNodeFn scheduler *TaskScheduler idAllocator func() (UniqueID, error) handoffHandler *HandoffHandler metricsCacheManager *metricsinfo.MetricsCacheManager etcdCli *clientv3.Client dataCoordClient types.DataCoord rootCoordClient types.RootCoord indexCoordClient types.IndexCoord broker *globalMetaBroker session *sessionutil.Session eventChan <-chan *sessionutil.SessionEvent offlineNodesChan chan UniqueID offlineNodes map[UniqueID]struct{} stateCode atomic.Value factory dependency.Factory chunkManager storage.ChunkManager groupBalancer Balancer } // Register register query service at etcd func (qc *QueryCoord) Register() error { qc.session.Register() go qc.session.LivenessCheck(qc.loopCtx, func() { log.Error("Query Coord disconnected from etcd, process will exit", zap.Int64("Server Id", qc.session.ServerID)) if err := qc.Stop(); err != nil { log.Fatal("failed to stop server", zap.Error(err)) } // manually send signal to starter goroutine if qc.session.TriggerKill { if p, err := os.FindProcess(os.Getpid()); err == nil { p.Signal(syscall.SIGINT) } } }) return nil } func (qc *QueryCoord) initSession() error { qc.session = sessionutil.NewSession(qc.loopCtx, Params.EtcdCfg.MetaRootPath, qc.etcdCli) if qc.session == nil { return fmt.Errorf("session is nil, the etcd client connection may have failed") } qc.session.Init(typeutil.QueryCoordRole, Params.QueryCoordCfg.Address, true, true) Params.QueryCoordCfg.SetNodeID(qc.session.ServerID) Params.SetLogger(qc.session.ServerID) return nil } // Init function initializes the queryCoord's meta, cluster, etcdKV and task scheduler func (qc *QueryCoord) Init() error { log.Info("query coordinator start init, session info", zap.String("metaPath", Params.EtcdCfg.MetaRootPath), zap.String("address", Params.QueryCoordCfg.Address)) var initError error qc.initOnce.Do(func() { err := qc.initSession() if err != nil { log.Error("queryCoord init session failed", zap.Error(err)) initError = err return } etcdKV := etcdkv.NewEtcdKV(qc.etcdCli, Params.EtcdCfg.MetaRootPath) qc.kvClient = etcdKV log.Debug("query coordinator try to connect etcd success") // init id allocator idAllocatorKV := tsoutil.NewTSOKVBase(qc.etcdCli, Params.EtcdCfg.KvRootPath, "queryCoordTaskID") idAllocator := allocator.NewGlobalIDAllocator("idTimestamp", idAllocatorKV) initError = idAllocator.Initialize() if initError != nil { log.Error("query coordinator idAllocator initialize failed", zap.Error(initError)) return } qc.idAllocator = func() (UniqueID, error) { return idAllocator.AllocOne() } qc.factory.Init(&Params) // init meta qc.meta, initError = newMeta(qc.loopCtx, qc.kvClient, qc.factory, qc.idAllocator) if initError != nil { log.Error("query coordinator init meta failed", zap.Error(initError)) return } // init channelUnsubscribeHandler qc.channelCleaner, initError = NewChannelCleaner(qc.loopCtx, qc.kvClient, qc.factory) if initError != nil { log.Error("query coordinator init channelUnsubscribeHandler failed", zap.Error(initError)) return } // init cluster qc.cluster, initError = newQueryNodeCluster(qc.loopCtx, qc.meta, qc.kvClient, qc.newNodeFn, qc.session, qc.channelCleaner) if initError != nil { log.Error("query coordinator init cluster failed", zap.Error(initError)) return } qc.groupBalancer = newReplicaBalancer(qc.meta, qc.cluster) // NOTE: ignore the returned error // we only try best to reload the leader addresses reloadShardLeaderAddress(qc.meta, qc.cluster) qc.chunkManager, initError = qc.factory.NewVectorStorageChunkManager(qc.loopCtx) if initError != nil { log.Error("query coordinator init cluster failed", zap.Error(initError)) return } //init globalMetaBroker qc.broker, initError = newGlobalMetaBroker(qc.loopCtx, qc.rootCoordClient, qc.dataCoordClient, qc.indexCoordClient, qc.chunkManager) if initError != nil { log.Error("query coordinator init globalMetaBroker failed", zap.Error(initError)) return } // init task scheduler qc.scheduler, initError = newTaskScheduler(qc.loopCtx, qc.meta, qc.cluster, qc.kvClient, qc.broker, qc.idAllocator) if initError != nil { log.Error("query coordinator init task scheduler failed", zap.Error(initError)) return } // init index checker qc.handoffHandler, initError = newHandoffHandler(qc.loopCtx, qc.kvClient, qc.meta, qc.cluster, qc.scheduler, qc.broker) if initError != nil { log.Error("query coordinator init index checker failed", zap.Error(initError)) return } qc.metricsCacheManager = metricsinfo.NewMetricsCacheManager() }) log.Info("QueryCoord init success") return initError } // Start function starts the goroutines to watch the meta and node updates func (qc *QueryCoord) Start() error { qc.scheduler.Start() log.Info("start scheduler ...") qc.handoffHandler.Start() log.Info("start index checker ...") qc.channelCleaner.start() log.Info("start channel cleaner loop ...") Params.QueryCoordCfg.CreatedTime = time.Now() Params.QueryCoordCfg.UpdatedTime = time.Now() qc.loopWg.Add(1) go qc.offlineNodeLoop() qc.loopWg.Add(1) go qc.watchNodeLoop() qc.loopWg.Add(1) go qc.handoffNotificationLoop() if Params.QueryCoordCfg.AutoBalance { qc.loopWg.Add(1) go qc.loadBalanceSegmentLoop() } qc.UpdateStateCode(internalpb.StateCode_Healthy) return nil } // Stop function stops watching the meta and node updates func (qc *QueryCoord) Stop() error { qc.UpdateStateCode(internalpb.StateCode_Abnormal) if qc.scheduler != nil { log.Info("close scheduler...") qc.scheduler.Close() } if qc.handoffHandler != nil { log.Info("close index checker...") qc.handoffHandler.Stop() } if qc.channelCleaner != nil { log.Info("close channel cleaner loop...") qc.channelCleaner.close() } if qc.loopCancel != nil { log.Info("cancel the loop of QueryCoord...") qc.loopCancel() } log.Info("Query Coord stopped successfully...") qc.loopWg.Wait() qc.session.Revoke(time.Second) return nil } // UpdateStateCode updates the status of the coord, including healthy, unhealthy func (qc *QueryCoord) UpdateStateCode(code internalpb.StateCode) { qc.stateCode.Store(code) } // NewQueryCoord creates a QueryCoord object. func NewQueryCoord(ctx context.Context, factory dependency.Factory) (*QueryCoord, error) { rand.Seed(time.Now().UnixNano()) ctx1, cancel := context.WithCancel(ctx) service := &QueryCoord{ loopCtx: ctx1, loopCancel: cancel, factory: factory, newNodeFn: newQueryNode, offlineNodesChan: make(chan UniqueID, 256), offlineNodes: make(map[UniqueID]struct{}, 256), } service.UpdateStateCode(internalpb.StateCode_Abnormal) return service, nil } // SetEtcdClient sets etcd's client func (qc *QueryCoord) SetEtcdClient(etcdClient *clientv3.Client) { qc.etcdCli = etcdClient } // SetRootCoord sets root coordinator's client func (qc *QueryCoord) SetRootCoord(rootCoord types.RootCoord) error { if rootCoord == nil { return errors.New("null RootCoord interface") } qc.rootCoordClient = rootCoord return nil } // SetDataCoord sets data coordinator's client func (qc *QueryCoord) SetDataCoord(dataCoord types.DataCoord) error { if dataCoord == nil { return errors.New("null DataCoord interface") } qc.dataCoordClient = dataCoord return nil } // SetIndexCoord sets index coordinator's client func (qc *QueryCoord) SetIndexCoord(indexCoord types.IndexCoord) error { if indexCoord == nil { return errors.New("null IndexCoord interface") } qc.indexCoordClient = indexCoord return nil } func (qc *QueryCoord) watchNodeLoop() { ctx, cancel := context.WithCancel(qc.loopCtx) defer cancel() defer qc.loopWg.Done() log.Info("QueryCoord start watch node loop") // first check all the node has been assigned to replica onlineNodes := qc.cluster.OnlineNodeIDs() for _, node := range onlineNodes { if err := qc.allocateNode(node); err != nil { log.Error("unable to allocate node", zap.Int64("nodeID", node), zap.Error(err)) panic(err) } } // the only judgement of processing a offline node is 1) etcd queryNodeInfoPrefix exist 2) the querynode session not exist offlineNodes := qc.cluster.OfflineNodeIDs() if len(offlineNodes) != 0 { log.Warn("find querynode down while coord not alive", zap.Any("nodeIDs", offlineNodes)) for node := range offlineNodes { qc.offlineNodesChan <- UniqueID(node) } } // TODO silverxia add Rewatch logic qc.eventChan = qc.session.WatchServices(typeutil.QueryNodeRole, qc.cluster.GetSessionVersion()+1, nil) qc.handleNodeEvent(ctx) } func (qc *QueryCoord) allocateNode(nodeID int64) error { plans, err := qc.groupBalancer.AddNode(nodeID) if err != nil { return err } for _, p := range plans { if err := qc.meta.applyReplicaBalancePlan(p); err != nil { return err } } return nil } func (qc *QueryCoord) handleNodeEvent(ctx context.Context) { for { select { case <-ctx.Done(): return case event, ok := <-qc.eventChan: if !ok { // ErrCompacted is handled inside SessionWatcher log.Error("Session Watcher channel closed", zap.Int64("server id", qc.session.ServerID)) go qc.Stop() if qc.session.TriggerKill { if p, err := os.FindProcess(os.Getpid()); err == nil { p.Signal(syscall.SIGINT) } } return } switch event.EventType { case sessionutil.SessionAddEvent: serverID := event.Session.ServerID log.Info("start add a QueryNode to cluster", zap.Any("nodeID", serverID)) err := qc.cluster.RegisterNode(ctx, event.Session, serverID, disConnect) if err != nil { log.Error("QueryCoord failed to register a QueryNode", zap.Int64("nodeID", serverID), zap.String("error info", err.Error())) continue } go func(serverID int64) { for { // retry forever, or crash. // we should apply replica asyncly err := qc.allocateNode(serverID) if err != nil { log.Error("unable to allocate node", zap.Int64("nodeID", serverID), zap.Error(err)) continue } break } }(serverID) qc.metricsCacheManager.InvalidateSystemInfoMetrics() case sessionutil.SessionDelEvent: serverID := event.Session.ServerID log.Info("get a del event after QueryNode down", zap.Int64("nodeID", serverID)) nodeExist := qc.cluster.HasNode(serverID) if !nodeExist { log.Error("QueryNode not exist", zap.Int64("nodeID", serverID)) continue } qc.cluster.StopNode(serverID) qc.offlineNodesChan <- serverID } } } } func (qc *QueryCoord) offlineNodeLoop() { ctx, cancel := context.WithCancel(qc.loopCtx) defer cancel() defer qc.loopWg.Done() ticker := time.NewTicker(time.Millisecond * 100) defer ticker.Stop() for { select { case <-ctx.Done(): log.Info("offline node loop exit") return case node := <-qc.offlineNodesChan: qc.offlineNodes[node] = struct{}{} qc.processOfflineNodes() case <-ticker.C: qc.processOfflineNodes() } } } func (qc *QueryCoord) processOfflineNodes() { for node := range qc.offlineNodes { // check if all channel unsubscribe is handled, if not wait for next cycle if !qc.channelCleaner.isNodeChannelCleanHandled(node) { log.Info("node channel is not cleaned, skip offline processing", zap.Int64("node", node)) continue } loadBalanceSegment := &querypb.LoadBalanceRequest{ Base: &commonpb.MsgBase{ MsgType: commonpb.MsgType_LoadBalanceSegments, SourceID: qc.session.ServerID, }, SourceNodeIDs: []int64{node}, BalanceReason: querypb.TriggerCondition_NodeDown, } baseTask := newBaseTaskWithRetry(qc.loopCtx, querypb.TriggerCondition_NodeDown, 0) loadBalanceTask := &loadBalanceTask{ baseTask: baseTask, LoadBalanceRequest: loadBalanceSegment, broker: qc.broker, cluster: qc.cluster, meta: qc.meta, } qc.metricsCacheManager.InvalidateSystemInfoMetrics() err := qc.scheduler.Enqueue(loadBalanceTask) if err != nil { log.Warn("failed to enqueue LoadBalance task into the scheduler", zap.Int64("nodeID", node), zap.Error(err)) continue } log.Info("start a loadBalance task", zap.Int64("nodeID", node), zap.Int64("taskID", loadBalanceTask.getTaskID())) err = loadBalanceTask.waitToFinish() if err != nil { log.Warn("failed to process LoadBalance task", zap.Int64("nodeID", node), zap.Error(err)) continue } delete(qc.offlineNodes, node) log.Info("LoadBalance task done, offline node is removed", zap.Int64("nodeID", node)) } } func (qc *QueryCoord) handoffNotificationLoop() { ctx, cancel := context.WithCancel(qc.loopCtx) defer cancel() defer qc.loopWg.Done() log.Info("QueryCoord start watch segment loop") watchChan := qc.kvClient.WatchWithRevision(util.HandoffSegmentPrefix, qc.handoffHandler.revision+1) for { select { case <-ctx.Done(): return case resp, ok := <-watchChan: if !ok { log.Warn("QueryCoord watch handoff segment loop failed because watch channel is closed") panic("QueryCoord watch handoff segment loop failed because watch channel is closed") } if err := resp.Err(); err != nil { // https://github.com/etcd-io/etcd/issues/8980 if err == v3rpc.ErrCompacted { qc.handoffHandler, err = newHandoffHandler(qc.loopCtx, qc.kvClient, qc.meta, qc.cluster, qc.scheduler, qc.broker) if err != nil { log.Error("query coordinator re new handoff handler failed", zap.Error(err)) panic("failed to handle etcd request, exit..") } if err2 := qc.handoffHandler.reloadFromKV(); err2 != nil { log.Error("reload index checker meta fails when etcd has a compaction error", zap.String("etcd error", err.Error()), zap.Error(err2)) panic("failed to handle etcd request, exit..") } qc.loopWg.Add(1) go qc.handoffNotificationLoop() return } log.Error("received error event from etcd watcher", zap.String("prefix", util.HandoffSegmentPrefix), zap.Error(err)) panic("failed to handle etcd request, exit..") } for _, event := range resp.Events { segmentInfo := &querypb.SegmentInfo{} err := proto.Unmarshal(event.Kv.Value, segmentInfo) if err != nil { log.Error("watchHandoffSegmentLoop: unmarshal failed", zap.Any("error", err.Error())) continue } switch event.Type { case mvccpb.PUT: qc.handoffHandler.enqueue(segmentInfo) log.Info("watchHandoffSegmentLoop: enqueue a handoff request to index checker", zap.Any("segment info", segmentInfo)) default: // do nothing } } } } } func (qc *QueryCoord) loadBalanceSegmentLoop() { ctx, cancel := context.WithCancel(qc.loopCtx) defer cancel() defer qc.loopWg.Done() log.Info("QueryCoord start load balance segment loop") timer := time.NewTicker(time.Duration(Params.QueryCoordCfg.BalanceIntervalSeconds) * time.Second) for { select { case <-ctx.Done(): return case <-timer.C: startTs := time.Now() // do not trigger load balance if task queue is not empty if !qc.scheduler.taskEmpty() { continue } collectionInfos := qc.meta.showCollections() // shuffle to avoid always balance the same collections rand.Seed(time.Now().UnixNano()) rand.Shuffle(len(collectionInfos), func(i, j int) { collectionInfos[i], collectionInfos[j] = collectionInfos[j], collectionInfos[i] }) // get mem info of online nodes from cluster nodeID2MemUsageRate := make(map[int64]float64) nodeID2MemUsage := make(map[int64]uint64) nodeID2TotalMem := make(map[int64]uint64) loadBalanceTasks := make([]*loadBalanceTask, 0) // balance at most 20 collections in a round for i := 0; i < len(collectionInfos) && i < 20; i++ { info := collectionInfos[i] replicas, err := qc.meta.getReplicasByCollectionID(info.GetCollectionID()) if err != nil { log.Warn("unable to get replicas of collection", zap.Int64("collectionID", info.GetCollectionID())) continue } for _, replica := range replicas { loadBalanceTasks = append(loadBalanceTasks, qc.balanceReplica(ctx, replica, nodeID2MemUsageRate, nodeID2MemUsage, nodeID2TotalMem)...) } } for _, t := range loadBalanceTasks { err := qc.scheduler.Enqueue(t) if err != nil { log.Error("loadBalanceSegmentLoop: balance task enqueue failed", zap.Any("task", t), zap.Error(err)) continue } err = t.waitToFinish() if err != nil { // if failed, wait for next balance loop // it may be that the collection/partition of the balanced segment has been released // it also may be other abnormal errors log.Error("loadBalanceSegmentLoop: balance task execute failed", zap.Any("task", t), zap.Error(err)) } else { log.Info("loadBalanceSegmentLoop: balance task execute success", zap.Any("task", t)) } } log.Info("finish balance loop successfully", zap.Duration("time spent", time.Since(startTs))) } } } // TODO balance replica need to be optimized, we can not get segment info in evert balance round func (qc *QueryCoord) balanceReplica(ctx context.Context, replica *milvuspb.ReplicaInfo, nodeID2MemUsageRate map[int64]float64, nodeID2MemUsage map[int64]uint64, nodeID2TotalMem map[int64]uint64) []*loadBalanceTask { loadBalanceTasks := make([]*loadBalanceTask, 0) // auto balance is executed on replica level onlineNodeIDs := replica.GetNodeIds() if len(onlineNodeIDs) == 0 { log.Error("loadBalanceSegmentLoop: there are no online QueryNode to balance", zap.Int64("collection", replica.CollectionID), zap.Int64("replica", replica.ReplicaID)) return loadBalanceTasks } var availableNodeIDs []int64 nodeID2SegmentInfos := make(map[int64]map[UniqueID]*querypb.SegmentInfo) for _, nodeID := range onlineNodeIDs { if _, ok := nodeID2MemUsage[nodeID]; !ok { nodeInfo, err := qc.cluster.GetNodeInfoByID(nodeID) if err != nil { log.Warn("loadBalanceSegmentLoop: get node info from QueryNode failed", zap.Int64("nodeID", nodeID), zap.Int64("collection", replica.CollectionID), zap.Int64("replica", replica.ReplicaID), zap.Error(err)) continue } nodeID2MemUsageRate[nodeID] = nodeInfo.(*queryNode).memUsageRate nodeID2MemUsage[nodeID] = nodeInfo.(*queryNode).memUsage nodeID2TotalMem[nodeID] = nodeInfo.(*queryNode).totalMem } updateSegmentInfoDone := true leastSegmentInfos := make(map[UniqueID]*querypb.SegmentInfo) segmentInfos := qc.meta.getSegmentInfosByNodeAndCollection(nodeID, replica.GetCollectionID()) for _, segmentInfo := range segmentInfos { leastInfo, err := qc.cluster.GetSegmentInfoByID(ctx, segmentInfo.SegmentID) if err != nil { log.Warn("loadBalanceSegmentLoop: get segment info from QueryNode failed", zap.Int64("nodeID", nodeID), zap.Int64("collection", replica.CollectionID), zap.Int64("replica", replica.ReplicaID), zap.Error(err)) updateSegmentInfoDone = false break } leastSegmentInfos[segmentInfo.SegmentID] = leastInfo } if updateSegmentInfoDone { availableNodeIDs = append(availableNodeIDs, nodeID) nodeID2SegmentInfos[nodeID] = leastSegmentInfos } } log.Info("loadBalanceSegmentLoop: memory usage rate of all online QueryNode", zap.Int64("collection", replica.CollectionID), zap.Int64("replica", replica.ReplicaID), zap.Any("mem rate", nodeID2MemUsageRate)) if len(availableNodeIDs) <= 1 { log.Info("loadBalanceSegmentLoop: there are too few available query nodes to balance", zap.Int64("collection", replica.CollectionID), zap.Int64("replica", replica.ReplicaID), zap.Int64s("onlineNodeIDs", onlineNodeIDs), zap.Int64s("availableNodeIDs", availableNodeIDs)) return loadBalanceTasks } // check which nodes need balance and determine which segments on these nodes need to be migrated to other nodes for { sort.Slice(availableNodeIDs, func(i, j int) bool { return nodeID2MemUsageRate[availableNodeIDs[i]] > nodeID2MemUsageRate[availableNodeIDs[j]] }) // the memoryUsageRate of the sourceNode is higher than other query node sourceNodeID := availableNodeIDs[0] dstNodeID := availableNodeIDs[len(availableNodeIDs)-1] memUsageRateDiff := nodeID2MemUsageRate[sourceNodeID] - nodeID2MemUsageRate[dstNodeID] if nodeID2MemUsageRate[sourceNodeID] <= Params.QueryCoordCfg.OverloadedMemoryThresholdPercentage && memUsageRateDiff <= Params.QueryCoordCfg.MemoryUsageMaxDifferencePercentage { break } // if memoryUsageRate of source node is greater than 90%, and the max memUsageDiff is greater than 30% // then migrate the segments on source node to other query nodes segmentInfos := nodeID2SegmentInfos[sourceNodeID] // select the segment that needs balance on the source node selectedSegmentInfo, err := chooseSegmentToBalance(sourceNodeID, dstNodeID, segmentInfos, nodeID2MemUsage, nodeID2TotalMem, nodeID2MemUsageRate) if err != nil { break } if selectedSegmentInfo == nil { break } // select a segment to balance successfully, then recursive traversal whether there are other segments that can balance req := &querypb.LoadBalanceRequest{ Base: &commonpb.MsgBase{ MsgType: commonpb.MsgType_LoadBalanceSegments, }, BalanceReason: querypb.TriggerCondition_LoadBalance, SourceNodeIDs: []UniqueID{sourceNodeID}, DstNodeIDs: []UniqueID{dstNodeID}, SealedSegmentIDs: []UniqueID{selectedSegmentInfo.SegmentID}, } baseTask := newBaseTask(qc.loopCtx, querypb.TriggerCondition_LoadBalance) balanceTask := &loadBalanceTask{ baseTask: baseTask, LoadBalanceRequest: req, broker: qc.broker, cluster: qc.cluster, meta: qc.meta, } log.Info("loadBalanceSegmentLoop: generate a loadBalance task", zap.Int64("collection", replica.CollectionID), zap.Int64("replica", replica.ReplicaID), zap.Any("task", balanceTask)) loadBalanceTasks = append(loadBalanceTasks, balanceTask) nodeID2MemUsage[sourceNodeID] -= uint64(selectedSegmentInfo.MemSize) nodeID2MemUsage[dstNodeID] += uint64(selectedSegmentInfo.MemSize) nodeID2MemUsageRate[sourceNodeID] = float64(nodeID2MemUsage[sourceNodeID]) / float64(nodeID2TotalMem[sourceNodeID]) nodeID2MemUsageRate[dstNodeID] = float64(nodeID2MemUsage[dstNodeID]) / float64(nodeID2TotalMem[dstNodeID]) delete(nodeID2SegmentInfos[sourceNodeID], selectedSegmentInfo.SegmentID) nodeID2SegmentInfos[dstNodeID][selectedSegmentInfo.SegmentID] = selectedSegmentInfo continue } return loadBalanceTasks } func chooseSegmentToBalance(sourceNodeID int64, dstNodeID int64, segmentInfos map[UniqueID]*querypb.SegmentInfo, nodeID2MemUsage map[int64]uint64, nodeID2TotalMem map[int64]uint64, nodeID2MemUsageRate map[int64]float64) (*querypb.SegmentInfo, error) { memoryInsufficient := true minMemDiffPercentage := 1.0 var selectedSegmentInfo *querypb.SegmentInfo for _, info := range segmentInfos { dstNodeMemUsageAfterBalance := nodeID2MemUsage[dstNodeID] + uint64(info.MemSize) dstNodeMemUsageRateAfterBalance := float64(dstNodeMemUsageAfterBalance) / float64(nodeID2TotalMem[dstNodeID]) // if memUsageRate of dstNode is greater than OverloadedMemoryThresholdPercentage after balance, than can't balance if dstNodeMemUsageRateAfterBalance < Params.QueryCoordCfg.OverloadedMemoryThresholdPercentage { memoryInsufficient = false sourceNodeMemUsageAfterBalance := nodeID2MemUsage[sourceNodeID] - uint64(info.MemSize) sourceNodeMemUsageRateAfterBalance := float64(sourceNodeMemUsageAfterBalance) / float64(nodeID2TotalMem[sourceNodeID]) // assume all query node has same memory capacity // if the memUsageRateDiff between the two nodes does not become smaller after balance, there is no need for balance diffBeforBalance := nodeID2MemUsageRate[sourceNodeID] - nodeID2MemUsageRate[dstNodeID] diffAfterBalance := dstNodeMemUsageRateAfterBalance - sourceNodeMemUsageRateAfterBalance if diffAfterBalance < diffBeforBalance { if math.Abs(diffAfterBalance) < minMemDiffPercentage { selectedSegmentInfo = info } } } } if memoryInsufficient { return nil, errors.New("all QueryNode has insufficient memory") } return selectedSegmentInfo, nil }