// Copyright (C) 2019-2020 Zilliz. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software distributed under the License // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express // or implied. See the License for the specific language governing permissions and limitations under the License #include #include #include #include #include #include #include #include "segcore/ConcurrentVector.h" #include "segcore/SegmentGrowing.h" // #include "knowhere/index/vector_index/helpers/IndexParameter.h" #include "segcore/SegmentGrowing.h" #include "segcore/AckResponder.h" #include #include #include #include #include #include #include "test_utils/Timer.h" #include "segcore/Reduce.h" #include "test_utils/DataGen.h" #include "query/SearchBruteForce.h" using std::cin; using std::cout; using std::endl; using namespace milvus::engine; using namespace milvus::segcore; using std::vector; using namespace milvus; namespace { template auto generate_data(int N) { std::vector raw_data; std::vector timestamps; std::vector uids; std::default_random_engine er(42); std::uniform_real_distribution<> distribution(0.0, 1.0); std::default_random_engine ei(42); for (int i = 0; i < N; ++i) { uids.push_back(10 * N + i); timestamps.push_back(0); // append vec vector vec(DIM); for (auto& x : vec) { x = distribution(er); } raw_data.insert(raw_data.end(), std::begin(vec), std::end(vec)); } return std::make_tuple(raw_data, timestamps, uids); } } // namespace TEST(Indexing, SmartBruteForce) { // how to ? // I'd know constexpr int N = 100000; constexpr int DIM = 16; constexpr int TOPK = 10; auto bitmap = std::make_shared(N); // exclude the first for (int i = 0; i < N / 2; ++i) { bitmap->set(i); } auto [raw_data, timestamps, uids] = generate_data(N); auto total_count = DIM * TOPK; auto raw = (const float*)raw_data.data(); AssertInfo(raw, "wtf"); constexpr int64_t queries = 3; auto heap = faiss::float_maxheap_array_t{}; auto query_data = raw; vector final_uids(total_count, -1); vector final_dis(total_count, std::numeric_limits::max()); for (int beg = 0; beg < N; beg += TestChunkSize) { vector buf_uids(total_count, -1); vector buf_dis(total_count, std::numeric_limits::max()); faiss::float_maxheap_array_t buf = {queries, TOPK, buf_uids.data(), buf_dis.data()}; auto end = beg + TestChunkSize; if (end > N) { end = N; } auto nsize = end - beg; auto src_data = raw + beg * DIM; faiss::knn_L2sqr(query_data, src_data, DIM, queries, nsize, &buf, nullptr); for (auto& x : buf_uids) { x = uids[x + beg]; } merge_into(queries, TOPK, final_dis.data(), final_uids.data(), buf_dis.data(), buf_uids.data()); } for (int qn = 0; qn < queries; ++qn) { for (int kn = 0; kn < TOPK; ++kn) { auto index = qn * TOPK + kn; cout << final_uids[index] << "->" << final_dis[index] << endl; } cout << endl; } } TEST(Indexing, DISABLED_Naive) { constexpr int N = 10000; constexpr int DIM = 16; constexpr int TOPK = 10; auto [raw_data, timestamps, uids] = generate_data(N); auto index = knowhere::VecIndexFactory::GetInstance().CreateVecIndex(knowhere::IndexEnum::INDEX_FAISS_IVFPQ, knowhere::IndexMode::MODE_CPU); auto conf = milvus::knowhere::Config{ {knowhere::meta::DIM, DIM}, {knowhere::meta::TOPK, TOPK}, {knowhere::IndexParams::nlist, 100}, {knowhere::IndexParams::nprobe, 4}, {knowhere::IndexParams::m, 4}, {knowhere::IndexParams::nbits, 8}, {knowhere::Metric::TYPE, milvus::knowhere::Metric::L2}, {knowhere::meta::DEVICEID, 0}, }; // auto ds = knowhere::GenDataset(N, DIM, raw_data.data()); // auto ds2 = knowhere::GenDatasetWithIds(N / 2, DIM, raw_data.data() + // sizeof(float[DIM]) * N / 2, uids.data() + N / 2); // NOTE: you must train first and then add // index->Train(ds, conf); // index->Train(ds2, conf); // index->AddWithoutIds(ds, conf); // index->Add(ds2, conf); std::vector datasets; std::vector> ftrashs; auto raw = raw_data.data(); for (int beg = 0; beg < N; beg += TestChunkSize) { auto end = beg + TestChunkSize; if (end > N) { end = N; } std::vector ft(raw + DIM * beg, raw + DIM * end); auto ds = knowhere::GenDataset(end - beg, DIM, ft.data()); datasets.push_back(ds); ftrashs.push_back(std::move(ft)); // // NOTE: you must train first and then add // index->Train(ds, conf); // index->Add(ds, conf); } for (auto& ds : datasets) { index->Train(ds, conf); } for (auto& ds : datasets) { index->AddWithoutIds(ds, conf); } auto bitmap = std::make_shared(N); // exclude the first for (int i = 0; i < N / 2; ++i) { bitmap->set(i); } // index->SetBlacklist(bitmap); auto query_ds = knowhere::GenDataset(1, DIM, raw_data.data()); auto final = index->Query(query_ds, conf, bitmap); auto ids = final->Get(knowhere::meta::IDS); auto distances = final->Get(knowhere::meta::DISTANCE); for (int i = 0; i < TOPK; ++i) { if (ids[i] < N / 2) { cout << "WRONG: "; } cout << ids[i] << "->" << distances[i] << endl; } int i = 1 + 1; } TEST(Indexing, IVFFlatNM) { // hello, world constexpr auto DIM = 16; constexpr auto K = 10; auto N = 1024 * 1024 * 10; auto num_query = 100; Timer timer; auto [raw_data, timestamps, uids] = generate_data(N); std::cout << "generate data: " << timer.get_step_seconds() << " seconds" << endl; auto indexing = std::make_shared(); auto conf = knowhere::Config{{knowhere::meta::DIM, DIM}, {knowhere::meta::TOPK, K}, {knowhere::IndexParams::nlist, 100}, {knowhere::IndexParams::nprobe, 4}, {knowhere::Metric::TYPE, milvus::knowhere::Metric::L2}, {knowhere::meta::DEVICEID, 0}}; auto database = knowhere::GenDataset(N, DIM, raw_data.data()); std::cout << "init ivf " << timer.get_step_seconds() << " seconds" << endl; indexing->Train(database, conf); std::cout << "train ivf " << timer.get_step_seconds() << " seconds" << endl; indexing->AddWithoutIds(database, conf); std::cout << "insert ivf " << timer.get_step_seconds() << " seconds" << endl; EXPECT_EQ(indexing->Count(), N); EXPECT_EQ(indexing->Dim(), DIM); auto query_dataset = knowhere::GenDataset(num_query, DIM, raw_data.data() + DIM * 4200); auto result = indexing->Query(query_dataset, conf, nullptr); std::cout << "query ivf " << timer.get_step_seconds() << " seconds" << endl; auto ids = result->Get(milvus::knowhere::meta::IDS); auto dis = result->Get(milvus::knowhere::meta::DISTANCE); for (int i = 0; i < std::min(num_query * K, 100); ++i) { cout << ids[i] << "->" << dis[i] << endl; } } TEST(Indexing, BinaryBruteForce) { int64_t N = 100000; int64_t num_queries = 10; int64_t topk = 5; int64_t dim = 512; auto result_count = topk * num_queries; auto schema = std::make_shared(); schema->AddDebugField("vecbin", DataType::VECTOR_BINARY, dim, MetricType::METRIC_Jaccard); schema->AddDebugField("age", DataType::INT64); auto dataset = DataGen(schema, N, 10); auto bin_vec = dataset.get_col(0); auto query_data = 1024 * dim / 8 + bin_vec.data(); query::dataset::BinaryQueryDataset query_dataset{ faiss::MetricType::METRIC_Jaccard, // num_queries, // topk, // dim, // query_data // }; auto sub_result = query::BinarySearchBruteForce(query_dataset, bin_vec.data(), N, nullptr); QueryResult qr; qr.num_queries_ = num_queries; qr.topK_ = topk; qr.internal_seg_offsets_ = std::move(sub_result.mutable_labels()); qr.result_distances_ = std::move(sub_result.mutable_values()); auto json = QueryResultToJson(qr); auto ref = json::parse(R"( [ [ [ "1024->0.000000", "43190->0.578804", "5255->0.586207", "23247->0.586486", "4936->0.588889" ], [ "1025->0.000000", "15147->0.562162", "49910->0.564304", "67435->0.567867", "38292->0.569921" ], [ "1026->0.000000", "15332->0.569061", "56391->0.572559", "17187->0.572603", "26988->0.573771" ], [ "1027->0.000000", "4502->0.559585", "25879->0.566234", "66937->0.566489", "21228->0.566845" ], [ "1028->0.000000", "38490->0.578804", "12946->0.581717", "31677->0.582173", "94474->0.583569" ], [ "1029->0.000000", "59011->0.551630", "82575->0.555263", "42914->0.561828", "23705->0.564171" ], [ "1030->0.000000", "39782->0.579946", "65553->0.589947", "82154->0.590028", "13374->0.590164" ], [ "1031->0.000000", "47826->0.582873", "72669->0.587432", "334->0.588076", "80652->0.589333" ], [ "1032->0.000000", "31968->0.573034", "63545->0.575758", "76913->0.575916", "6286->0.576000" ], [ "1033->0.000000", "95635->0.570248", "93439->0.574866", "6709->0.578534", "6367->0.579634" ] ] ] )"); auto json_str = json.dump(2); auto ref_str = ref.dump(2); ASSERT_EQ(json_str, ref_str); }