mirror of
https://gitee.com/milvus-io/milvus.git
synced 2024-12-04 21:09:06 +08:00
f80536ed77
Signed-off-by: cai.zhang <cai.zhang@zilliz.com>
216 lines
7.5 KiB
C++
216 lines
7.5 KiB
C++
// Copyright (C) 2019-2020 Zilliz. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software distributed under the License
|
|
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
|
// or implied. See the License for the specific language governing permissions and limitations under the License
|
|
|
|
//
|
|
// Created by mike on 12/28/20.
|
|
//
|
|
#include "test_utils/DataGen.h"
|
|
#include <gtest/gtest.h>
|
|
#include <knowhere/index/vector_index/VecIndex.h>
|
|
#include <knowhere/index/vector_index/adapter/VectorAdapter.h>
|
|
#include <knowhere/index/vector_index/VecIndexFactory.h>
|
|
#include <knowhere/index/vector_index/IndexIVF.h>
|
|
|
|
using namespace milvus;
|
|
using namespace milvus::segcore;
|
|
using namespace milvus;
|
|
|
|
TEST(Sealed, without_predicate) {
|
|
using namespace milvus::query;
|
|
using namespace milvus::segcore;
|
|
auto schema = std::make_shared<Schema>();
|
|
auto dim = 16;
|
|
auto topK = 5;
|
|
auto metric_type = MetricType::METRIC_L2;
|
|
schema->AddField("fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
|
|
schema->AddField("age", DataType::FLOAT);
|
|
std::string dsl = R"({
|
|
"bool": {
|
|
"must": [
|
|
{
|
|
"vector": {
|
|
"fakevec": {
|
|
"metric_type": "L2",
|
|
"params": {
|
|
"nprobe": 10
|
|
},
|
|
"query": "$0",
|
|
"topk": 5
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
})";
|
|
|
|
int64_t N = 1000 * 1000;
|
|
|
|
auto dataset = DataGen(schema, N);
|
|
auto vec_col = dataset.get_col<float>(0);
|
|
for (int64_t i = 0; i < 1000 * dim; ++i) {
|
|
vec_col.push_back(0);
|
|
}
|
|
auto query_ptr = vec_col.data() + 4200 * dim;
|
|
auto segment = CreateSegment(schema);
|
|
segment->PreInsert(N);
|
|
segment->Insert(0, N, dataset.row_ids_.data(), dataset.timestamps_.data(), dataset.raw_);
|
|
|
|
auto plan = CreatePlan(*schema, dsl);
|
|
auto num_queries = 5;
|
|
auto ph_group_raw = CreatePlaceholderGroupFromBlob(num_queries, 16, query_ptr);
|
|
auto ph_group = ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
|
|
|
|
QueryResult qr;
|
|
Timestamp time = 1000000;
|
|
std::vector<const PlaceholderGroup*> ph_group_arr = {ph_group.get()};
|
|
|
|
segment->Search(plan.get(), ph_group_arr.data(), &time, 1, qr);
|
|
auto pre_result = QueryResultToJson(qr);
|
|
auto indexing = std::make_shared<knowhere::IVF>();
|
|
|
|
auto conf = knowhere::Config{{knowhere::meta::DIM, dim},
|
|
{knowhere::meta::TOPK, topK},
|
|
{knowhere::IndexParams::nlist, 100},
|
|
{knowhere::IndexParams::nprobe, 10},
|
|
{knowhere::Metric::TYPE, milvus::knowhere::Metric::L2},
|
|
{knowhere::meta::DEVICEID, 0}};
|
|
|
|
auto database = knowhere::GenDataset(N, dim, vec_col.data() + 1000 * dim);
|
|
indexing->Train(database, conf);
|
|
indexing->AddWithoutIds(database, conf);
|
|
|
|
EXPECT_EQ(indexing->Count(), N);
|
|
EXPECT_EQ(indexing->Dim(), dim);
|
|
|
|
auto query_dataset = knowhere::GenDataset(num_queries, dim, query_ptr);
|
|
|
|
auto result = indexing->Query(query_dataset, conf, nullptr);
|
|
|
|
auto ids = result->Get<int64_t*>(milvus::knowhere::meta::IDS); // for comparison
|
|
auto dis = result->Get<float*>(milvus::knowhere::meta::DISTANCE); // for comparison
|
|
std::vector<int64_t> vec_ids(ids, ids + topK * num_queries);
|
|
std::vector<float> vec_dis(dis, dis + topK * num_queries);
|
|
|
|
qr.internal_seg_offsets_ = vec_ids;
|
|
qr.result_distances_ = vec_dis;
|
|
auto ref_result = QueryResultToJson(qr);
|
|
|
|
LoadIndexInfo load_info;
|
|
load_info.field_name = "fakevec";
|
|
load_info.field_id = 42;
|
|
load_info.index = indexing;
|
|
load_info.index_params["metric_type"] = "L2";
|
|
|
|
segment->LoadIndexing(load_info);
|
|
qr = QueryResult();
|
|
|
|
segment->Search(plan.get(), ph_group_arr.data(), &time, 1, qr);
|
|
|
|
auto post_result = QueryResultToJson(qr);
|
|
std::cout << ref_result.dump(1);
|
|
std::cout << post_result.dump(1);
|
|
ASSERT_EQ(ref_result.dump(2), post_result.dump(2));
|
|
}
|
|
|
|
TEST(Sealed, with_predicate) {
|
|
using namespace milvus::query;
|
|
using namespace milvus::segcore;
|
|
auto schema = std::make_shared<Schema>();
|
|
auto dim = 16;
|
|
auto topK = 5;
|
|
auto metric_type = MetricType::METRIC_L2;
|
|
schema->AddField("fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
|
|
schema->AddField("counter", DataType::INT64);
|
|
std::string dsl = R"({
|
|
"bool": {
|
|
"must": [
|
|
{
|
|
"range": {
|
|
"counter": {
|
|
"GE": 420000,
|
|
"LT": 420005
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"vector": {
|
|
"fakevec": {
|
|
"metric_type": "L2",
|
|
"params": {
|
|
"nprobe": 10
|
|
},
|
|
"query": "$0",
|
|
"topk": 5
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
})";
|
|
|
|
int64_t N = 1000 * 1000;
|
|
|
|
auto dataset = DataGen(schema, N);
|
|
auto vec_col = dataset.get_col<float>(0);
|
|
auto query_ptr = vec_col.data() + 420000 * dim;
|
|
auto segment = CreateSegment(schema);
|
|
segment->PreInsert(N);
|
|
segment->Insert(0, N, dataset.row_ids_.data(), dataset.timestamps_.data(), dataset.raw_);
|
|
|
|
auto plan = CreatePlan(*schema, dsl);
|
|
auto num_queries = 5;
|
|
auto ph_group_raw = CreatePlaceholderGroupFromBlob(num_queries, 16, query_ptr);
|
|
auto ph_group = ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
|
|
|
|
QueryResult qr;
|
|
Timestamp time = 10000000;
|
|
std::vector<const PlaceholderGroup*> ph_group_arr = {ph_group.get()};
|
|
|
|
segment->Search(plan.get(), ph_group_arr.data(), &time, 1, qr);
|
|
auto pre_qr = qr;
|
|
auto indexing = std::make_shared<knowhere::IVF>();
|
|
|
|
auto conf = knowhere::Config{{knowhere::meta::DIM, dim},
|
|
{knowhere::meta::TOPK, topK},
|
|
{knowhere::IndexParams::nlist, 100},
|
|
{knowhere::IndexParams::nprobe, 10},
|
|
{knowhere::Metric::TYPE, milvus::knowhere::Metric::L2},
|
|
{knowhere::meta::DEVICEID, 0}};
|
|
|
|
auto database = knowhere::GenDataset(N, dim, vec_col.data());
|
|
indexing->Train(database, conf);
|
|
indexing->AddWithoutIds(database, conf);
|
|
|
|
EXPECT_EQ(indexing->Count(), N);
|
|
EXPECT_EQ(indexing->Dim(), dim);
|
|
|
|
auto query_dataset = knowhere::GenDataset(num_queries, dim, query_ptr);
|
|
|
|
auto result = indexing->Query(query_dataset, conf, nullptr);
|
|
|
|
LoadIndexInfo load_info;
|
|
load_info.field_name = "fakevec";
|
|
load_info.field_id = 42;
|
|
load_info.index = indexing;
|
|
load_info.index_params["metric_type"] = "L2";
|
|
|
|
segment->LoadIndexing(load_info);
|
|
qr = QueryResult();
|
|
|
|
segment->Search(plan.get(), ph_group_arr.data(), &time, 1, qr);
|
|
|
|
auto post_qr = qr;
|
|
for (int i = 0; i < num_queries; ++i) {
|
|
auto offset = i * topK;
|
|
ASSERT_EQ(post_qr.internal_seg_offsets_[offset], 420000 + i);
|
|
ASSERT_EQ(post_qr.result_distances_[offset], 0.0);
|
|
}
|
|
} |