milvus/tests/python_client/milvus_client/test_milvus_client_partition.py
binbin a847d56ac0
test: add part of milvus client test cases (#30222)
issue: #30221

Signed-off-by: binbin lv <binbin.lv@zilliz.com>
2024-01-26 09:25:01 +08:00

271 lines
13 KiB
Python

import multiprocessing
import numbers
import random
import numpy
import threading
import pytest
import pandas as pd
import decimal
from decimal import Decimal, getcontext
from time import sleep
import heapq
from pymilvus import DataType
from base.client_base import TestcaseBase
from utils.util_log import test_log as log
from common import common_func as cf
from common import common_type as ct
from common.common_type import CaseLabel, CheckTasks
from utils.util_pymilvus import *
from common.constants import *
from pymilvus.orm.types import CONSISTENCY_STRONG, CONSISTENCY_BOUNDED, CONSISTENCY_SESSION, CONSISTENCY_EVENTUALLY
from base.high_level_api_wrapper import HighLevelApiWrapper
client_w = HighLevelApiWrapper()
prefix = "milvus_client_api_partition"
partition_prefix = "milvus_client_api_partition"
epsilon = ct.epsilon
default_nb = ct.default_nb
default_nb_medium = ct.default_nb_medium
default_nq = ct.default_nq
default_dim = ct.default_dim
default_limit = ct.default_limit
default_search_exp = "id >= 0"
exp_res = "exp_res"
default_search_string_exp = "varchar >= \"0\""
default_search_mix_exp = "int64 >= 0 && varchar >= \"0\""
default_invaild_string_exp = "varchar >= 0"
default_json_search_exp = "json_field[\"number\"] >= 0"
perfix_expr = 'varchar like "0%"'
default_search_field = ct.default_float_vec_field_name
default_search_params = ct.default_search_params
default_primary_key_field_name = "id"
default_vector_field_name = "vector"
default_float_field_name = ct.default_float_field_name
default_bool_field_name = ct.default_bool_field_name
default_string_field_name = ct.default_string_field_name
default_int32_array_field_name = ct.default_int32_array_field_name
default_string_array_field_name = ct.default_string_array_field_name
class TestMilvusClientPartitionInvalid(TestcaseBase):
""" Test case of search interface """
@pytest.fixture(scope="function", params=[False, True])
def auto_id(self, request):
yield request.param
@pytest.fixture(scope="function", params=["COSINE", "L2"])
def metric_type(self, request):
yield request.param
"""
******************************************************************
# The following are invalid base cases
******************************************************************
"""
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("collection_name", ["12-s", "12 s", "(mn)", "中文", "%$#"])
def test_milvus_client_collection_invalid_collection_name(self, collection_name):
"""
target: test fast create collection normal case
method: create collection
expected: create collection with default schema, index, and load successfully
"""
client = self._connect(enable_milvus_client_api=True)
# 1. create collection
error = {ct.err_code: 1100, ct.err_msg: f"invalid dimension: {collection_name}. should be in range 1 ~ 32768"}
client_w.create_collection(client, collection_name, default_dim,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_collection_name_over_max_length(self):
"""
target: test fast create collection normal case
method: create collection
expected: create collection with default schema, index, and load successfully
"""
client = self._connect(enable_milvus_client_api=True)
# 1. create collection
collection_name = "a".join("a" for i in range(256))
error = {ct.err_code: 1100, ct.err_msg: f"invalid dimension: {collection_name}. "
f"the length of a collection name must be less than 255 characters: "
f"invalid parameter"}
client_w.create_collection(client, collection_name, default_dim,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_collection_name_empty(self):
"""
target: test fast create collection normal case
method: create collection
expected: create collection with default schema, index, and load successfully
"""
client = self._connect(enable_milvus_client_api=True)
# 1. create collection
collection_name = " "
error = {ct.err_code: 0, ct.err_msg: "collection name should not be empty: invalid parameter"}
client_w.create_collection(client, collection_name, default_dim,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("dim", [ct.min_dim-1, ct.max_dim+1])
def test_milvus_client_collection_invalid_dim(self, dim):
"""
target: test fast create collection normal case
method: create collection
expected: create collection with default schema, index, and load successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
error = {ct.err_code: 65535, ct.err_msg: f"invalid dimension: {dim}. should be in range 1 ~ 32768"}
client_w.create_collection(client, collection_name, dim,
check_task=CheckTasks.err_res, check_items=error)
client_w.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.xfail(reason="pymilvus issue 1554")
def test_milvus_client_collection_invalid_primary_field(self):
"""
target: test high level api: client.create_collection
method: create collection with invalid primary field
expected: Raise exception
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
error = {ct.err_code: 1, ct.err_msg: f"Param id_type must be int or string"}
client_w.create_collection(client, collection_name, default_dim, id_type="invalid",
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_milvus_client_collection_string_auto_id(self):
"""
target: test high level api: client.create_collection
method: create collection with auto id on string primary key
expected: Raise exception
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
error = {ct.err_code: 65535, ct.err_msg: f"type param(max_length) should be specified for varChar "
f"field of collection {collection_name}"}
client_w.create_collection(client, collection_name, default_dim, id_type="string", auto_id=True,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_milvus_client_create_same_collection_different_params(self):
"""
target: test high level api: client.create_collection
method: create
expected: 1. Successfully to create collection with same params
2. Report errors for creating collection with same name and different params
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim)
# 2. create collection with same params
client_w.create_collection(client, collection_name, default_dim)
# 3. create collection with same name and different params
error = {ct.err_code: 1, ct.err_msg: f"create duplicate collection with different parameters, "
f"collection: {collection_name}"}
client_w.create_collection(client, collection_name, default_dim+1,
check_task=CheckTasks.err_res, check_items=error)
client_w.drop_collection(client, collection_name)
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.xfail(reason="pymilvus issue 1872")
@pytest.mark.parametrize("metric_type", [1, " ", "invalid"])
def test_milvus_client_collection_invalid_metric_type(self, metric_type):
"""
target: test high level api: client.create_collection
method: create collection with auto id on string primary key
expected: Raise exception
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
# 1. create collection
error = {ct.err_code: 65535,
ct.err_msg: "metric type not found or not supported, supported: [L2 IP COSINE HAMMING JACCARD]"}
client_w.create_collection(client, collection_name, default_dim, metric_type=metric_type,
check_task=CheckTasks.err_res, check_items=error)
class TestMilvusClientPartitionValid(TestcaseBase):
""" Test case of search interface """
@pytest.fixture(scope="function", params=[False, True])
def auto_id(self, request):
yield request.param
@pytest.fixture(scope="function", params=["COSINE", "L2", "IP"])
def metric_type(self, request):
yield request.param
@pytest.fixture(scope="function", params=["int", "string"])
def id_type(self, request):
yield request.param
"""
******************************************************************
# The following are valid base cases
******************************************************************
"""
@pytest.mark.tags(CaseLabel.L0)
@pytest.mark.skip(reason="pymilvus issue 1880")
def test_milvus_client_partition_default(self):
"""
target: test fast create collection normal case
method: create collection
expected: create collection with default schema, index, and load successfully
"""
client = self._connect(enable_milvus_client_api=True)
collection_name = cf.gen_unique_str(prefix)
partition_name = cf.gen_unique_str(partition_prefix)
# 1. create collection
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
# 2. create partition
client_w.create_partition(client, collection_name, partition_name)
partitions = client_w.list_partitions(client, collection_name)[0]
assert partition_name in partitions
index = client_w.list_indexes(client, collection_name)[0]
assert index == ['vector']
# load_state = client_w.get_load_state(collection_name)[0]
# 3. insert
rng = np.random.default_rng(seed=19530)
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
client_w.insert(client, collection_name, rows)
# 3. search
vectors_to_search = rng.random((1, default_dim))
insert_ids = [i for i in range(default_nb)]
client_w.search(client, collection_name, vectors_to_search,
partition_names=partitions,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": len(vectors_to_search),
"ids": insert_ids,
"limit": default_limit})
# 4. query
res = client_w.query(client, collection_name, filter=default_search_exp,
output_fields=["vector"], partition_names=partitions,
check_task=CheckTasks.check_query_results,
check_items={exp_res: rows,
"with_vec": True,
"primary_field": default_primary_key_field_name})[0]
assert set(res[0].keys()) == {"ids", "vector"}
partition_number = client_w.get_partition_stats(client, collection_name, "_default")[0]
assert partition_number == default_nb
partition_number = client_w.get_partition_stats(client, collection_name, partition_name)[0]
assert partition_number[0]['value'] == 0
if client_w.has_partition(client, collection_name, partition_name)[0]:
client_w.release_partitions(client, collection_name, partition_name)
client_w.drop_partition(client, collection_name, partition_name)
if client_w.has_collection(client, collection_name)[0]:
client_w.drop_collection(client, collection_name)