mirror of
https://gitee.com/milvus-io/milvus.git
synced 2024-12-03 04:19:18 +08:00
365b5a5d01
Signed-off-by: yudong.cai <yudong.cai@zilliz.com>
123 lines
4.6 KiB
C++
123 lines
4.6 KiB
C++
// Copyright (C) 2019-2020 Zilliz. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software distributed under the License
|
|
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
|
// or implied. See the License for the specific language governing permissions and limitations under the License
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <queue>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include "query/SubSearchResult.h"
|
|
|
|
using namespace milvus;
|
|
using namespace milvus::query;
|
|
|
|
TEST(Reduce, SubQueryResult) {
|
|
int64_t num_queries = 512;
|
|
int64_t topk = 32;
|
|
int64_t iteration = 50;
|
|
int64_t round_decimal = 3;
|
|
constexpr int64_t limit = 100000000L;
|
|
auto metric_type = MetricType::METRIC_L2;
|
|
using queue_type = std::priority_queue<int64_t>;
|
|
|
|
std::vector<queue_type> ref_results(num_queries);
|
|
for (auto& ref_result : ref_results) {
|
|
for (int i = 0; i < topk; ++i) {
|
|
ref_result.push(limit);
|
|
}
|
|
}
|
|
std::default_random_engine e(42);
|
|
SubSearchResult final_result(num_queries, topk, metric_type, round_decimal);
|
|
for (int i = 0; i < iteration; ++i) {
|
|
std::vector<int64_t> ids;
|
|
std::vector<float> distances;
|
|
for (int n = 0; n < num_queries; ++n) {
|
|
for (int k = 0; k < topk; ++k) {
|
|
auto gen_x = e() % limit;
|
|
ref_results[n].push(gen_x);
|
|
ref_results[n].pop();
|
|
ids.push_back(gen_x);
|
|
distances.push_back(gen_x);
|
|
}
|
|
std::sort(ids.begin() + n * topk, ids.begin() + n * topk + topk);
|
|
std::sort(distances.begin() + n * topk, distances.begin() + n * topk + topk);
|
|
}
|
|
SubSearchResult sub_result(num_queries, topk, metric_type, round_decimal);
|
|
sub_result.mutable_distances() = distances;
|
|
sub_result.mutable_ids() = ids;
|
|
final_result.merge(sub_result);
|
|
}
|
|
|
|
for (int n = 0; n < num_queries; ++n) {
|
|
ASSERT_EQ(ref_results[n].size(), topk);
|
|
for (int k = 0; k < topk; ++k) {
|
|
auto ref_x = ref_results[n].top();
|
|
ref_results[n].pop();
|
|
auto index = n * topk + topk - 1 - k;
|
|
auto id = final_result.get_ids()[index];
|
|
auto distance = final_result.get_distances()[index];
|
|
ASSERT_EQ(id, ref_x);
|
|
ASSERT_EQ(distance, ref_x);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Reduce, SubSearchResultDesc) {
|
|
int64_t num_queries = 512;
|
|
int64_t topk = 32;
|
|
int64_t iteration = 50;
|
|
int64_t round_decimal = 3;
|
|
constexpr int64_t limit = 100000000L;
|
|
constexpr int64_t init_value = 0;
|
|
auto metric_type = MetricType::METRIC_INNER_PRODUCT;
|
|
using queue_type = std::priority_queue<int64_t, std::vector<int64_t>, std::greater<int64_t>>;
|
|
|
|
std::vector<queue_type> ref_results(num_queries);
|
|
for (auto& ref_result : ref_results) {
|
|
for (int i = 0; i < topk; ++i) {
|
|
ref_result.push(init_value);
|
|
}
|
|
}
|
|
std::default_random_engine e(42);
|
|
SubSearchResult final_result(num_queries, topk, metric_type, round_decimal);
|
|
for (int i = 0; i < iteration; ++i) {
|
|
std::vector<int64_t> ids;
|
|
std::vector<float> distances;
|
|
for (int n = 0; n < num_queries; ++n) {
|
|
for (int k = 0; k < topk; ++k) {
|
|
auto gen_x = e() % limit;
|
|
ref_results[n].push(gen_x);
|
|
ref_results[n].pop();
|
|
ids.push_back(gen_x);
|
|
distances.push_back(gen_x);
|
|
}
|
|
std::sort(ids.begin() + n * topk, ids.begin() + n * topk + topk, std::greater<int64_t>());
|
|
std::sort(distances.begin() + n * topk, distances.begin() + n * topk + topk, std::greater<float>());
|
|
}
|
|
SubSearchResult sub_result(num_queries, topk, metric_type, round_decimal);
|
|
sub_result.mutable_distances() = distances;
|
|
sub_result.mutable_ids() = ids;
|
|
final_result.merge(sub_result);
|
|
}
|
|
|
|
for (int n = 0; n < num_queries; ++n) {
|
|
ASSERT_EQ(ref_results[n].size(), topk);
|
|
for (int k = 0; k < topk; ++k) {
|
|
auto ref_x = ref_results[n].top();
|
|
ref_results[n].pop();
|
|
auto index = n * topk + topk - 1 - k;
|
|
auto id = final_result.get_ids()[index];
|
|
auto distance = final_result.get_distances()[index];
|
|
ASSERT_EQ(id, ref_x);
|
|
ASSERT_EQ(distance, ref_x);
|
|
}
|
|
}
|
|
} |