milvus/internal/core/unittest/test_indexing.cpp
Buqian Zheng f4a91e135b
enhance: Allow empty sparse row (#34700)
issue: #29419

* If a sparse vector with 0 non-zero value is inserted, no ANN search on
this sparse vector field will return it as a result. User may retrieve
this row via scalar query or ANN search on another vector field though.
* If the user uses an empty sparse vector as the query vector for a ANN
search, no neighbor will be returned.

Signed-off-by: Buqian Zheng <zhengbuqian@gmail.com>
2024-08-16 14:14:54 +08:00

988 lines
38 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <arrow/record_batch.h>
#include <arrow/type_fwd.h>
#include <gtest/gtest.h>
#include <boost/filesystem/operations.hpp>
#include <iostream>
#include <memory>
#include <random>
#include <string>
#include <vector>
#include "arrow/type.h"
#include "common/EasyAssert.h"
#include "common/Tracer.h"
#include "common/Types.h"
#include "index/Index.h"
#include "knowhere/comp/index_param.h"
#include "nlohmann/json.hpp"
#include "query/SearchBruteForce.h"
#include "segcore/reduce/Reduce.h"
#include "index/IndexFactory.h"
#include "common/QueryResult.h"
#include "segcore/Types.h"
#include "test_utils/indexbuilder_test_utils.h"
#include "test_utils/storage_test_utils.h"
#include "test_utils/DataGen.h"
#include "test_utils/Timer.h"
#include "storage/Util.h"
#include <boost/filesystem.hpp>
using namespace milvus;
using namespace milvus::segcore;
namespace {
template <int DIM>
auto
generate_data(int N) {
std::vector<float> raw_data;
std::vector<uint64_t> timestamps;
std::vector<int64_t> uids;
std::default_random_engine er(42);
std::uniform_real_distribution<> distribution(0.0, 1.0);
std::default_random_engine ei(42);
for (int i = 0; i < N; ++i) {
uids.push_back(10 * N + i);
timestamps.push_back(0);
// append vec
std::vector<float> vec(DIM);
for (auto& x : vec) {
x = distribution(er);
}
raw_data.insert(raw_data.end(), std::begin(vec), std::end(vec));
}
return std::make_tuple(raw_data, timestamps, uids);
}
} // namespace
SegcoreError
merge_into(int64_t queries,
int64_t topk,
float* distances,
int64_t* uids,
const float* new_distances,
const int64_t* new_uids) {
for (int64_t qn = 0; qn < queries; ++qn) {
auto base = qn * topk;
auto src2_dis = distances + base;
auto src2_uids = uids + base;
auto src1_dis = new_distances + base;
auto src1_uids = new_uids + base;
std::vector<float> buf_dis(topk);
std::vector<int64_t> buf_uids(topk);
auto it1 = 0;
auto it2 = 0;
for (auto buf = 0; buf < topk; ++buf) {
if (src1_dis[it1] <= src2_dis[it2]) {
buf_dis[buf] = src1_dis[it1];
buf_uids[buf] = src1_uids[it1];
++it1;
} else {
buf_dis[buf] = src2_dis[it2];
buf_uids[buf] = src2_uids[it2];
++it2;
}
}
std::copy_n(buf_dis.data(), topk, src2_dis);
std::copy_n(buf_uids.data(), topk, src2_uids);
}
return SegcoreError::success();
}
/*
TEST(Indexing, SmartBruteForce) {
int64_t N = 1000;
auto [raw_data, timestamps, uids] = generate_data<DIM>(N);
constexpr int64_t queries = 3;
auto total_count = queries * K;
auto raw = (const float*)raw_data.data();
EXPECT_NE(raw, nullptr);
auto query_data = raw;
std::vector<int64_t> final_uids(total_count, -1);
std::vector<float> final_dis(total_count, std::numeric_limits<float>::max());
for (int beg = 0; beg < N; beg += TestChunkSize) {
std::vector<int64_t> buf_uids(total_count, -1);
std::vector<float> buf_dis(total_count, std::numeric_limits<float>::max());
faiss::float_maxheap_array_t buf = {queries, K, buf_uids.data(), buf_dis.data()};
auto end = beg + TestChunkSize;
if (end > N) {
end = N;
}
auto nsize = end - beg;
auto src_data = raw + beg * DIM;
faiss::knn_L2sqr(query_data, src_data, DIM, queries, nsize, &buf, nullptr);
for (auto& x : buf_uids) {
x = uids[x + beg];
}
merge_into(queries, K, final_dis.data(), final_uids.data(), buf_dis.data(), buf_uids.data());
}
for (int qn = 0; qn < queries; ++qn) {
for (int kn = 0; kn < K; ++kn) {
auto index = qn * K + kn;
std::cout << final_uids[index] << "->" << final_dis[index] << std::endl;
}
std::cout << std::endl;
}
}
*/
TEST(Indexing, BinaryBruteForce) {
int64_t N = 100000;
int64_t num_queries = 10;
int64_t topk = 5;
int64_t round_decimal = 3;
int64_t dim = 8192;
Config search_params_ = {};
auto metric_type = knowhere::metric::JACCARD;
auto result_count = topk * num_queries;
auto schema = std::make_shared<Schema>();
auto vec_fid = schema->AddDebugField(
"vecbin", DataType::VECTOR_BINARY, dim, metric_type);
auto i64_fid = schema->AddDebugField("age", DataType::INT64);
auto dataset = DataGen(schema, N, 10);
auto bin_vec = dataset.get_col<uint8_t>(vec_fid);
auto query_data = 1024 * dim / 8 + bin_vec.data();
query::dataset::SearchDataset search_dataset{
metric_type, //
num_queries, //
topk, //
round_decimal,
dim, //
query_data //
};
SearchInfo search_info;
search_info.topk_ = topk;
search_info.round_decimal_ = round_decimal;
search_info.metric_type_ = metric_type;
auto sub_result = query::BruteForceSearch(search_dataset,
bin_vec.data(),
N,
search_info,
nullptr,
DataType::VECTOR_BINARY);
SearchResult sr;
sr.total_nq_ = num_queries;
sr.unity_topK_ = topk;
sr.seg_offsets_ = std::move(sub_result.mutable_seg_offsets());
sr.distances_ = std::move(sub_result.mutable_distances());
auto json = SearchResultToJson(sr);
std::cout << json.dump(2);
#ifdef __linux__
auto ref = nlohmann::json::parse(R"(
[
[
[ "1024->0.000000", "48942->0.642000", "18494->0.644000", "68225->0.644000", "93557->0.644000" ],
[ "1025->0.000000", "73557->0.641000", "53086->0.643000", "9737->0.643000", "62855->0.644000" ],
[ "1026->0.000000", "62904->0.644000", "46758->0.644000", "57969->0.645000", "98113->0.646000" ],
[ "1027->0.000000", "92446->0.638000", "96034->0.640000", "92129->0.644000", "45887->0.644000" ],
[ "1028->0.000000", "22992->0.643000", "73903->0.644000", "19969->0.645000", "65178->0.645000" ],
[ "1029->0.000000", "19776->0.641000", "15166->0.642000", "85470->0.642000", "16730->0.643000" ],
[ "1030->0.000000", "55939->0.640000", "84253->0.643000", "31958->0.644000", "11667->0.646000" ],
[ "1031->0.000000", "89536->0.637000", "61622->0.638000", "9275->0.639000", "91403->0.640000" ],
[ "1032->0.000000", "69504->0.642000", "23414->0.644000", "48770->0.645000", "23231->0.645000" ],
[ "1033->0.000000", "33540->0.636000", "25310->0.640000", "18576->0.640000", "73729->0.642000" ]
]
]
)");
#else // for mac
auto ref = nlohmann::json::parse(R"(
[
[
[ "1024->0.000000", "59169->0.645000", "98548->0.646000", "3356->0.646000", "90373->0.647000" ],
[ "1025->0.000000", "61245->0.638000", "95271->0.639000", "31087->0.639000", "31549->0.640000" ],
[ "1026->0.000000", "65225->0.648000", "35750->0.648000", "14971->0.649000", "75385->0.649000" ],
[ "1027->0.000000", "70158->0.640000", "27076->0.640000", "3407->0.641000", "59527->0.641000" ],
[ "1028->0.000000", "45757->0.645000", "3356->0.645000", "77230->0.646000", "28690->0.647000" ],
[ "1029->0.000000", "13291->0.642000", "24960->0.643000", "83770->0.643000", "88244->0.643000" ],
[ "1030->0.000000", "96807->0.641000", "39920->0.643000", "62943->0.644000", "12603->0.644000" ],
[ "1031->0.000000", "65769->0.648000", "60493->0.648000", "48738->0.648000", "4353->0.648000" ],
[ "1032->0.000000", "57827->0.637000", "8213->0.638000", "22221->0.639000", "23328->0.640000" ],
[ "1033->0.000000", "676->0.645000", "91430->0.646000", "85353->0.646000", "6014->0.646000" ]
]
]
)");
#endif
auto json_str = json.dump(2);
auto ref_str = ref.dump(2);
ASSERT_EQ(json_str, ref_str);
}
TEST(Indexing, Naive) {
constexpr int N = 10000;
constexpr int TOPK = 10;
auto [raw_data, timestamps, uids] = generate_data<DIM>(N);
milvus::index::CreateIndexInfo create_index_info;
create_index_info.field_type = DataType::VECTOR_FLOAT;
create_index_info.metric_type = knowhere::metric::L2;
create_index_info.index_type = knowhere::IndexEnum::INDEX_FAISS_IVFPQ;
create_index_info.index_engine_version =
knowhere::Version::GetCurrentVersion().VersionNumber();
auto index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, milvus::storage::FileManagerContext());
auto build_conf = knowhere::Json{
{knowhere::meta::METRIC_TYPE, knowhere::metric::L2},
{knowhere::meta::DIM, std::to_string(DIM)},
{knowhere::indexparam::NLIST, "100"},
{knowhere::indexparam::M, "4"},
{knowhere::indexparam::NBITS, "8"},
};
auto search_conf = knowhere::Json{
{knowhere::meta::METRIC_TYPE, knowhere::metric::L2},
{knowhere::indexparam::NPROBE, 4},
};
std::vector<knowhere::DataSetPtr> datasets;
std::vector<std::vector<float>> ftrashs;
auto raw = raw_data.data();
for (int beg = 0; beg < N; beg += TestChunkSize) {
auto end = beg + TestChunkSize;
if (end > N) {
end = N;
}
std::vector<float> ft(raw + DIM * beg, raw + DIM * end);
auto ds = knowhere::GenDataSet(end - beg, DIM, ft.data());
datasets.push_back(ds);
ftrashs.push_back(std::move(ft));
}
for (auto& ds : datasets) {
index->BuildWithDataset(ds, build_conf);
}
auto bitmap = BitsetType(N, false);
// exclude the first
for (int i = 0; i < N / 2; ++i) {
bitmap.set(i);
}
BitsetView view = bitmap;
auto query_ds = knowhere::GenDataSet(1, DIM, raw_data.data());
milvus::SearchInfo searchInfo;
searchInfo.topk_ = TOPK;
searchInfo.metric_type_ = knowhere::metric::L2;
searchInfo.search_params_ = search_conf;
auto vec_index = dynamic_cast<index::VectorIndex*>(index.get());
SearchResult result;
vec_index->Query(query_ds, searchInfo, view, result);
for (int i = 0; i < TOPK; ++i) {
ASSERT_FALSE(result.seg_offsets_[i] < N / 2);
}
}
using Param = std::pair<knowhere::IndexType, knowhere::MetricType>;
class IndexTest : public ::testing::TestWithParam<Param> {
protected:
void
SetUp() override {
storage_config_ = get_default_local_storage_config();
auto param = GetParam();
index_type = param.first;
metric_type = param.second;
// try to reduce the test time,
// but the large dataset is needed for the case below.
auto test_name = std::string(
testing::UnitTest::GetInstance()->current_test_info()->name());
if (test_name == "Mmap" &&
index_type == knowhere::IndexEnum::INDEX_HNSW) {
NB = 270000;
}
build_conf = generate_build_conf(index_type, metric_type);
load_conf = generate_load_conf(index_type, metric_type, NB);
search_conf = generate_search_conf(index_type, metric_type);
range_search_conf = generate_range_search_conf(index_type, metric_type);
if (index_type == knowhere::IndexEnum::INDEX_SPARSE_INVERTED_INDEX ||
index_type == knowhere::IndexEnum::INDEX_SPARSE_WAND) {
is_sparse = true;
vec_field_data_type = milvus::DataType::VECTOR_SPARSE_FLOAT;
} else if (IsBinaryVectorMetricType(metric_type)) {
is_binary = true;
vec_field_data_type = milvus::DataType::VECTOR_BINARY;
} else {
vec_field_data_type = milvus::DataType::VECTOR_FLOAT;
}
auto dataset =
GenDatasetWithDataType(NB, metric_type, vec_field_data_type);
if (is_binary) {
// binary vector
xb_bin_data = dataset.get_col<uint8_t>(milvus::FieldId(100));
xb_dataset = knowhere::GenDataSet(NB, DIM, xb_bin_data.data());
xq_dataset = knowhere::GenDataSet(
NQ, DIM, xb_bin_data.data() + DIM * query_offset);
} else if (is_sparse) {
// sparse vector
xb_sparse_data =
dataset.get_col<knowhere::sparse::SparseRow<float>>(
milvus::FieldId(100));
xb_dataset =
knowhere::GenDataSet(NB, kTestSparseDim, xb_sparse_data.data());
xb_dataset->SetIsSparse(true);
xq_dataset = knowhere::GenDataSet(
NQ, kTestSparseDim, xb_sparse_data.data() + query_offset);
xq_dataset->SetIsSparse(true);
} else {
// float vector
xb_data = dataset.get_col<float>(milvus::FieldId(100));
xb_dataset = knowhere::GenDataSet(NB, DIM, xb_data.data());
xq_dataset = knowhere::GenDataSet(
NQ, DIM, xb_data.data() + DIM * query_offset);
}
}
void
TearDown() override {
}
protected:
std::string index_type, metric_type;
bool is_binary = false;
bool is_sparse = false;
milvus::Config build_conf;
milvus::Config load_conf;
milvus::Config search_conf;
milvus::Config range_search_conf;
milvus::DataType vec_field_data_type;
knowhere::DataSetPtr xb_dataset;
FixedVector<float> xb_data;
FixedVector<uint8_t> xb_bin_data;
FixedVector<knowhere::sparse::SparseRow<float>> xb_sparse_data;
knowhere::DataSetPtr xq_dataset;
int64_t query_offset = 100;
int64_t NB = 3000; // will be updated to 27000 for mmap+hnsw
StorageConfig storage_config_;
};
INSTANTIATE_TEST_SUITE_P(
IndexTypeParameters,
IndexTest,
::testing::Values(
std::pair(knowhere::IndexEnum::INDEX_FAISS_IDMAP, knowhere::metric::L2),
std::pair(knowhere::IndexEnum::INDEX_FAISS_IVFPQ, knowhere::metric::L2),
std::pair(knowhere::IndexEnum::INDEX_FAISS_IVFFLAT,
knowhere::metric::L2),
std::pair(knowhere::IndexEnum::INDEX_FAISS_IVFSQ8,
knowhere::metric::L2),
std::pair(knowhere::IndexEnum::INDEX_FAISS_BIN_IVFFLAT,
knowhere::metric::JACCARD),
std::pair(knowhere::IndexEnum::INDEX_FAISS_BIN_IDMAP,
knowhere::metric::JACCARD),
std::pair(knowhere::IndexEnum::INDEX_SPARSE_INVERTED_INDEX,
knowhere::metric::IP),
std::pair(knowhere::IndexEnum::INDEX_SPARSE_WAND, knowhere::metric::IP),
#ifdef BUILD_DISK_ANN
std::pair(knowhere::IndexEnum::INDEX_DISKANN, knowhere::metric::L2),
#endif
std::pair(knowhere::IndexEnum::INDEX_HNSW, knowhere::metric::L2)));
TEST(Indexing, Iterator) {
constexpr int N = 10240;
constexpr int TOPK = 100;
constexpr int dim = 128;
auto [raw_data, timestamps, uids] = generate_data<dim>(N);
milvus::index::CreateIndexInfo create_index_info;
create_index_info.field_type = DataType::VECTOR_FLOAT;
create_index_info.metric_type = knowhere::metric::L2;
create_index_info.index_type = knowhere::IndexEnum::INDEX_FAISS_IVFFLAT_CC;
create_index_info.index_engine_version =
knowhere::Version::GetCurrentVersion().VersionNumber();
auto index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, milvus::storage::FileManagerContext());
auto build_conf = knowhere::Json{
{knowhere::meta::METRIC_TYPE, knowhere::metric::L2},
{knowhere::meta::DIM, std::to_string(dim)},
{knowhere::indexparam::NLIST, "128"},
};
auto search_conf = knowhere::Json{
{knowhere::meta::METRIC_TYPE, knowhere::metric::L2},
{knowhere::indexparam::NPROBE, 4},
};
index->BuildWithDataset(knowhere::GenDataSet(N, dim, raw_data.data()),
build_conf);
auto bitmap = BitsetType(N, false);
BitsetView view = bitmap;
auto query_ds = knowhere::GenDataSet(1, dim, raw_data.data());
milvus::SearchInfo searchInfo;
searchInfo.topk_ = TOPK;
searchInfo.metric_type_ = knowhere::metric::L2;
searchInfo.search_params_ = search_conf;
auto vec_index = dynamic_cast<index::VectorIndex*>(index.get());
knowhere::expected<std::vector<knowhere::IndexNode::IteratorPtr>>
kw_iterators = vec_index->VectorIterators(
query_ds, searchInfo.search_params_, view);
ASSERT_TRUE(kw_iterators.has_value());
ASSERT_EQ(kw_iterators.value().size(), 1);
auto iterator = kw_iterators.value()[0];
ASSERT_TRUE(iterator->HasNext());
while (iterator->HasNext()) {
auto [off, dis] = iterator->Next();
ASSERT_TRUE(off >= 0);
ASSERT_TRUE(dis >= 0);
}
}
TEST_P(IndexTest, BuildAndQuery) {
milvus::index::CreateIndexInfo create_index_info;
create_index_info.index_type = index_type;
create_index_info.metric_type = metric_type;
create_index_info.field_type = vec_field_data_type;
create_index_info.index_engine_version =
knowhere::Version::GetCurrentVersion().VersionNumber();
index::IndexBasePtr index;
milvus::storage::FieldDataMeta field_data_meta{1, 2, 3, 100};
milvus::storage::IndexMeta index_meta{3, 100, 1000, 1};
auto chunk_manager = milvus::storage::CreateChunkManager(storage_config_);
milvus::storage::FileManagerContext file_manager_context(
field_data_meta, index_meta, chunk_manager);
index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, file_manager_context);
ASSERT_NO_THROW(index->BuildWithDataset(xb_dataset, build_conf));
milvus::index::IndexBasePtr new_index;
milvus::index::VectorIndex* vec_index = nullptr;
auto binary_set = index->Upload();
index.reset();
new_index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, file_manager_context);
vec_index = dynamic_cast<milvus::index::VectorIndex*>(new_index.get());
std::vector<std::string> index_files;
for (auto& binary : binary_set.binary_map_) {
index_files.emplace_back(binary.first);
}
load_conf = generate_load_conf(index_type, metric_type, 0);
load_conf["index_files"] = index_files;
ASSERT_NO_THROW(vec_index->Load(milvus::tracer::TraceContext{}, load_conf));
EXPECT_EQ(vec_index->Count(), NB);
if (!is_sparse) {
EXPECT_EQ(vec_index->GetDim(), DIM);
}
milvus::SearchInfo search_info;
search_info.topk_ = K;
search_info.metric_type_ = metric_type;
search_info.search_params_ = search_conf;
SearchResult result;
vec_index->Query(xq_dataset, search_info, nullptr, result);
EXPECT_EQ(result.total_nq_, NQ);
EXPECT_EQ(result.unity_topK_, K);
EXPECT_EQ(result.distances_.size(), NQ * K);
EXPECT_EQ(result.seg_offsets_.size(), NQ * K);
if (metric_type == knowhere::metric::L2) {
// for L2 metric each vector is closest to itself
for (int i = 0; i < NQ; i++) {
EXPECT_EQ(result.seg_offsets_[i * K], query_offset + i);
}
// for other metrics we can't verify the correctness unless we perform
// brute force search to get the ground truth.
}
if (!is_sparse) {
// sparse doesn't support range search yet
search_info.search_params_ = range_search_conf;
vec_index->Query(xq_dataset, search_info, nullptr, result);
}
}
TEST_P(IndexTest, Mmap) {
milvus::index::CreateIndexInfo create_index_info;
create_index_info.index_type = index_type;
create_index_info.metric_type = metric_type;
create_index_info.field_type = vec_field_data_type;
create_index_info.index_engine_version =
knowhere::Version::GetCurrentVersion().VersionNumber();
index::IndexBasePtr index;
milvus::storage::FieldDataMeta field_data_meta{1, 2, 3, 100};
milvus::storage::IndexMeta index_meta{3, 100, 1000, 1};
auto chunk_manager = milvus::storage::CreateChunkManager(storage_config_);
milvus::storage::FileManagerContext file_manager_context(
field_data_meta, index_meta, chunk_manager);
index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, file_manager_context);
ASSERT_NO_THROW(index->BuildWithDataset(xb_dataset, build_conf));
milvus::index::IndexBasePtr new_index;
milvus::index::VectorIndex* vec_index = nullptr;
auto binary_set = index->Upload();
index.reset();
new_index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, file_manager_context);
if (!new_index->IsMmapSupported()) {
return;
}
vec_index = dynamic_cast<milvus::index::VectorIndex*>(new_index.get());
std::vector<std::string> index_files;
for (auto& binary : binary_set.binary_map_) {
index_files.emplace_back(binary.first);
}
load_conf = generate_load_conf(index_type, metric_type, 0);
load_conf["index_files"] = index_files;
load_conf["mmap_filepath"] = "mmap/test_index_mmap_" + index_type;
vec_index->Load(milvus::tracer::TraceContext{}, load_conf);
EXPECT_EQ(vec_index->Count(), NB);
EXPECT_EQ(vec_index->GetDim(), is_sparse ? kTestSparseDim : DIM);
milvus::SearchInfo search_info;
search_info.topk_ = K;
search_info.metric_type_ = metric_type;
search_info.search_params_ = search_conf;
SearchResult result;
vec_index->Query(xq_dataset, search_info, nullptr, result);
EXPECT_EQ(result.total_nq_, NQ);
EXPECT_EQ(result.unity_topK_, K);
EXPECT_EQ(result.distances_.size(), NQ * K);
EXPECT_EQ(result.seg_offsets_.size(), NQ * K);
if (!is_binary) {
EXPECT_EQ(result.seg_offsets_[0], query_offset);
}
search_info.search_params_ = range_search_conf;
vec_index->Query(xq_dataset, search_info, nullptr, result);
}
TEST_P(IndexTest, GetVector) {
milvus::index::CreateIndexInfo create_index_info;
create_index_info.index_type = index_type;
create_index_info.metric_type = metric_type;
create_index_info.field_type = vec_field_data_type;
create_index_info.index_engine_version =
knowhere::Version::GetCurrentVersion().VersionNumber();
index::IndexBasePtr index;
milvus::storage::FieldDataMeta field_data_meta{1, 2, 3, 100};
milvus::storage::IndexMeta index_meta{3, 100, 1000, 1};
auto chunk_manager = milvus::storage::CreateChunkManager(storage_config_);
milvus::storage::FileManagerContext file_manager_context(
field_data_meta, index_meta, chunk_manager);
index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, file_manager_context);
ASSERT_NO_THROW(index->BuildWithDataset(xb_dataset, build_conf));
milvus::index::IndexBasePtr new_index;
milvus::index::VectorIndex* vec_index = nullptr;
auto binary_set = index->Upload();
index.reset();
std::vector<std::string> index_files;
for (auto& binary : binary_set.binary_map_) {
index_files.emplace_back(binary.first);
}
new_index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, file_manager_context);
load_conf = generate_load_conf(index_type, metric_type, 0);
load_conf["index_files"] = index_files;
vec_index = dynamic_cast<milvus::index::VectorIndex*>(new_index.get());
if (index_type == knowhere::IndexEnum::INDEX_DISKANN) {
vec_index->Load(binary_set, load_conf);
EXPECT_EQ(vec_index->Count(), NB);
} else {
vec_index->Load(milvus::tracer::TraceContext{}, load_conf);
}
if (!is_sparse) {
EXPECT_EQ(vec_index->GetDim(), DIM);
}
EXPECT_EQ(vec_index->Count(), NB);
if (!vec_index->HasRawData()) {
return;
}
auto ids_ds = GenRandomIds(NB);
if (is_binary) {
auto results = vec_index->GetVector(ids_ds);
EXPECT_EQ(results.size(), xb_bin_data.size());
const auto data_bytes = DIM / 8;
for (size_t i = 0; i < NB; ++i) {
auto id = ids_ds->GetIds()[i];
for (size_t j = 0; j < data_bytes; ++j) {
ASSERT_EQ(results[i * data_bytes + j],
xb_bin_data[id * data_bytes + j]);
}
}
} else if (is_sparse) {
auto sparse_rows = vec_index->GetSparseVector(ids_ds);
for (size_t i = 0; i < NB; ++i) {
auto id = ids_ds->GetIds()[i];
auto& row = sparse_rows[i];
ASSERT_EQ(row.size(), xb_sparse_data[id].size());
for (size_t j = 0; j < row.size(); ++j) {
ASSERT_EQ(row[j].id, xb_sparse_data[id][j].id);
ASSERT_EQ(row[j].val, xb_sparse_data[id][j].val);
}
}
} else {
auto results = vec_index->GetVector(ids_ds);
std::vector<float> result_vectors(results.size() / (sizeof(float)));
memcpy(result_vectors.data(), results.data(), results.size());
ASSERT_EQ(result_vectors.size(), xb_data.size());
for (size_t i = 0; i < NB; ++i) {
auto id = ids_ds->GetIds()[i];
for (size_t j = 0; j < DIM; ++j) {
ASSERT_EQ(result_vectors[i * DIM + j], xb_data[id * DIM + j]);
}
}
}
}
// This ut runs for sparse only. And will not use the default xb_sparse_dataset.
TEST_P(IndexTest, GetVector_EmptySparseVector) {
if (index_type != knowhere::IndexEnum::INDEX_SPARSE_INVERTED_INDEX &&
index_type != knowhere::IndexEnum::INDEX_SPARSE_WAND) {
return;
}
NB = 3;
std::vector<knowhere::sparse::SparseRow<float>> vec;
vec.reserve(NB);
vec.emplace_back(2);
vec[0].set_at(0, 1, 1.0);
vec[0].set_at(1, 2, 2.0);
// row1 is an explicit empty row
vec.emplace_back(0);
// row2 is an implicit empty row(provided dim has a value of 0)
vec.emplace_back(1);
vec[2].set_at(0, 1, 0);
auto dataset = knowhere::GenDataSet(NB, 3, vec.data());
milvus::index::CreateIndexInfo create_index_info;
create_index_info.index_type = index_type;
create_index_info.metric_type = metric_type;
create_index_info.field_type = vec_field_data_type;
create_index_info.index_engine_version =
knowhere::Version::GetCurrentVersion().VersionNumber();
index::IndexBasePtr index;
milvus::storage::FieldDataMeta field_data_meta{1, 2, 3, 100};
milvus::storage::IndexMeta index_meta{3, 100, 1000, 1};
auto chunk_manager = milvus::storage::CreateChunkManager(storage_config_);
milvus::storage::FileManagerContext file_manager_context(
field_data_meta, index_meta, chunk_manager);
index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, file_manager_context);
// use custom dataset instead of xb_dataset
ASSERT_NO_THROW(index->BuildWithDataset(dataset, build_conf));
milvus::index::IndexBasePtr new_index;
milvus::index::VectorIndex* vec_index = nullptr;
auto binary_set = index->Upload();
index.reset();
std::vector<std::string> index_files;
for (auto& binary : binary_set.binary_map_) {
index_files.emplace_back(binary.first);
}
new_index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, file_manager_context);
load_conf = generate_load_conf(index_type, metric_type, 0);
load_conf["index_files"] = index_files;
vec_index = dynamic_cast<milvus::index::VectorIndex*>(new_index.get());
vec_index->Load(milvus::tracer::TraceContext{}, load_conf);
EXPECT_EQ(vec_index->Count(), NB);
auto ids_ds = GenRandomIds(NB);
auto sparse_rows = vec_index->GetSparseVector(ids_ds);
for (size_t i = 0; i < NB; ++i) {
auto id = ids_ds->GetIds()[i];
auto& row = sparse_rows[i];
ASSERT_EQ(row.size(), vec[id].size());
for (size_t j = 0; j < row.size(); ++j) {
ASSERT_EQ(row[j].id, vec[id][j].id);
ASSERT_EQ(row[j].val, vec[id][j].val);
}
}
}
#ifdef BUILD_DISK_ANN
TEST(Indexing, SearchDiskAnnWithInvalidParam) {
int64_t NB = 1000;
IndexType index_type = knowhere::IndexEnum::INDEX_DISKANN;
MetricType metric_type = knowhere::metric::L2;
milvus::index::CreateIndexInfo create_index_info;
create_index_info.index_type = index_type;
create_index_info.metric_type = metric_type;
create_index_info.field_type = milvus::DataType::VECTOR_FLOAT;
create_index_info.index_engine_version =
knowhere::Version::GetCurrentVersion().VersionNumber();
int64_t collection_id = 1;
int64_t partition_id = 2;
int64_t segment_id = 3;
int64_t field_id = 100;
int64_t build_id = 1000;
int64_t index_version = 1;
StorageConfig storage_config = get_default_local_storage_config();
milvus::storage::FieldDataMeta field_data_meta{
collection_id, partition_id, segment_id, field_id};
milvus::storage::IndexMeta index_meta{
segment_id, field_id, build_id, index_version};
auto chunk_manager = storage::CreateChunkManager(storage_config);
milvus::storage::FileManagerContext file_manager_context(
field_data_meta, index_meta, chunk_manager);
auto index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, file_manager_context);
auto build_conf = Config{
{knowhere::meta::METRIC_TYPE, metric_type},
{knowhere::meta::DIM, std::to_string(DIM)},
{milvus::index::DISK_ANN_MAX_DEGREE, std::to_string(24)},
{milvus::index::DISK_ANN_SEARCH_LIST_SIZE, std::to_string(56)},
{milvus::index::DISK_ANN_PQ_CODE_BUDGET, std::to_string(0.001)},
{milvus::index::DISK_ANN_BUILD_DRAM_BUDGET, std::to_string(2)},
{milvus::index::DISK_ANN_BUILD_THREAD_NUM, std::to_string(2)},
};
// build disk ann index
auto dataset = GenDataset(NB, metric_type, false);
FixedVector<float> xb_data =
dataset.get_col<float>(milvus::FieldId(field_id));
knowhere::DataSetPtr xb_dataset =
knowhere::GenDataSet(NB, DIM, xb_data.data());
ASSERT_NO_THROW(index->BuildWithDataset(xb_dataset, build_conf));
// serialize and load disk index, disk index can only be search after loading for now
auto binary_set = index->Upload();
index.reset();
auto new_index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, file_manager_context);
auto vec_index = dynamic_cast<milvus::index::VectorIndex*>(new_index.get());
std::vector<std::string> index_files;
for (auto& binary : binary_set.binary_map_) {
index_files.emplace_back(binary.first);
}
auto load_conf = generate_load_conf(index_type, metric_type, NB);
load_conf["index_files"] = index_files;
vec_index->Load(milvus::tracer::TraceContext{}, load_conf);
EXPECT_EQ(vec_index->Count(), NB);
// search disk index with search_list == limit
int query_offset = 100;
knowhere::DataSetPtr xq_dataset =
knowhere::GenDataSet(NQ, DIM, xb_data.data() + DIM * query_offset);
milvus::SearchInfo search_info;
search_info.topk_ = K;
search_info.metric_type_ = metric_type;
search_info.search_params_ = milvus::Config{
{knowhere::meta::METRIC_TYPE, metric_type},
{milvus::index::DISK_ANN_QUERY_LIST, K - 1},
};
SearchResult result;
EXPECT_THROW(vec_index->Query(xq_dataset, search_info, nullptr, result),
std::runtime_error);
}
TEST(Indexing, SearchDiskAnnWithFloat16) {
int64_t NB = 1000;
int64_t NQ = 2;
int64_t K = 4;
IndexType index_type = knowhere::IndexEnum::INDEX_DISKANN;
MetricType metric_type = knowhere::metric::L2;
milvus::index::CreateIndexInfo create_index_info;
create_index_info.index_type = index_type;
create_index_info.metric_type = metric_type;
create_index_info.field_type = milvus::DataType::VECTOR_FLOAT16;
create_index_info.index_engine_version =
knowhere::Version::GetCurrentVersion().VersionNumber();
int64_t collection_id = 1;
int64_t partition_id = 2;
int64_t segment_id = 3;
int64_t field_id = 100;
int64_t build_id = 1000;
int64_t index_version = 1;
StorageConfig storage_config = get_default_local_storage_config();
milvus::storage::FieldDataMeta field_data_meta{
collection_id, partition_id, segment_id, field_id};
milvus::storage::IndexMeta index_meta{
segment_id, field_id, build_id, index_version};
auto chunk_manager = storage::CreateChunkManager(storage_config);
milvus::storage::FileManagerContext file_manager_context(
field_data_meta, index_meta, chunk_manager);
auto index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, file_manager_context);
auto build_conf = Config{
{knowhere::meta::METRIC_TYPE, metric_type},
{knowhere::meta::DIM, std::to_string(DIM)},
{milvus::index::DISK_ANN_MAX_DEGREE, std::to_string(24)},
{milvus::index::DISK_ANN_SEARCH_LIST_SIZE, std::to_string(56)},
{milvus::index::DISK_ANN_PQ_CODE_BUDGET, std::to_string(0.001)},
{milvus::index::DISK_ANN_BUILD_DRAM_BUDGET, std::to_string(2)},
{milvus::index::DISK_ANN_BUILD_THREAD_NUM, std::to_string(2)},
};
// build disk ann index
auto dataset = GenDatasetWithDataType(
NB, metric_type, milvus::DataType::VECTOR_FLOAT16);
FixedVector<float16> xb_data =
dataset.get_col<float16>(milvus::FieldId(field_id));
knowhere::DataSetPtr xb_dataset =
knowhere::GenDataSet(NB, DIM, xb_data.data());
ASSERT_NO_THROW(index->BuildWithDataset(xb_dataset, build_conf));
// serialize and load disk index, disk index can only be search after loading for now
auto binary_set = index->Upload();
index.reset();
auto new_index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, file_manager_context);
auto vec_index = dynamic_cast<milvus::index::VectorIndex*>(new_index.get());
std::vector<std::string> index_files;
for (auto& binary : binary_set.binary_map_) {
index_files.emplace_back(binary.first);
}
auto load_conf = generate_load_conf<float16>(index_type, metric_type, NB);
load_conf["index_files"] = index_files;
vec_index->Load(milvus::tracer::TraceContext{}, load_conf);
EXPECT_EQ(vec_index->Count(), NB);
// search disk index with search_list == limit
int query_offset = 100;
knowhere::DataSetPtr xq_dataset =
knowhere::GenDataSet(NQ, DIM, xb_data.data() + DIM * query_offset);
milvus::SearchInfo search_info;
search_info.topk_ = K;
search_info.metric_type_ = metric_type;
search_info.search_params_ = milvus::Config{
{knowhere::meta::METRIC_TYPE, metric_type},
{milvus::index::DISK_ANN_QUERY_LIST, K * 2},
};
SearchResult result;
EXPECT_NO_THROW(vec_index->Query(xq_dataset, search_info, nullptr, result));
}
TEST(Indexing, SearchDiskAnnWithBFloat16) {
int64_t NB = 1000;
int64_t NQ = 2;
int64_t K = 4;
IndexType index_type = knowhere::IndexEnum::INDEX_DISKANN;
MetricType metric_type = knowhere::metric::L2;
milvus::index::CreateIndexInfo create_index_info;
create_index_info.index_type = index_type;
create_index_info.metric_type = metric_type;
create_index_info.field_type = milvus::DataType::VECTOR_BFLOAT16;
create_index_info.index_engine_version =
knowhere::Version::GetCurrentVersion().VersionNumber();
int64_t collection_id = 1;
int64_t partition_id = 2;
int64_t segment_id = 3;
int64_t field_id = 100;
int64_t build_id = 1000;
int64_t index_version = 1;
StorageConfig storage_config = get_default_local_storage_config();
milvus::storage::FieldDataMeta field_data_meta{
collection_id, partition_id, segment_id, field_id};
milvus::storage::IndexMeta index_meta{
segment_id, field_id, build_id, index_version};
auto chunk_manager = storage::CreateChunkManager(storage_config);
milvus::storage::FileManagerContext file_manager_context(
field_data_meta, index_meta, chunk_manager);
auto index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, file_manager_context);
auto build_conf = Config{
{knowhere::meta::METRIC_TYPE, metric_type},
{knowhere::meta::DIM, std::to_string(DIM)},
{milvus::index::DISK_ANN_MAX_DEGREE, std::to_string(24)},
{milvus::index::DISK_ANN_SEARCH_LIST_SIZE, std::to_string(56)},
{milvus::index::DISK_ANN_PQ_CODE_BUDGET, std::to_string(0.001)},
{milvus::index::DISK_ANN_BUILD_DRAM_BUDGET, std::to_string(2)},
{milvus::index::DISK_ANN_BUILD_THREAD_NUM, std::to_string(2)},
};
// build disk ann index
auto dataset = GenDatasetWithDataType(
NB, metric_type, milvus::DataType::VECTOR_BFLOAT16);
FixedVector<bfloat16> xb_data =
dataset.get_col<bfloat16>(milvus::FieldId(field_id));
knowhere::DataSetPtr xb_dataset =
knowhere::GenDataSet(NB, DIM, xb_data.data());
ASSERT_NO_THROW(index->BuildWithDataset(xb_dataset, build_conf));
// serialize and load disk index, disk index can only be search after loading for now
auto binary_set = index->Upload();
index.reset();
auto new_index = milvus::index::IndexFactory::GetInstance().CreateIndex(
create_index_info, file_manager_context);
auto vec_index = dynamic_cast<milvus::index::VectorIndex*>(new_index.get());
std::vector<std::string> index_files;
for (auto& binary : binary_set.binary_map_) {
index_files.emplace_back(binary.first);
}
auto load_conf = generate_load_conf<bfloat16>(index_type, metric_type, NB);
load_conf["index_files"] = index_files;
vec_index->Load(milvus::tracer::TraceContext{}, load_conf);
EXPECT_EQ(vec_index->Count(), NB);
// search disk index with search_list == limit
int query_offset = 100;
knowhere::DataSetPtr xq_dataset =
knowhere::GenDataSet(NQ, DIM, xb_data.data() + DIM * query_offset);
milvus::SearchInfo search_info;
search_info.topk_ = K;
search_info.metric_type_ = metric_type;
search_info.search_params_ = milvus::Config{
{knowhere::meta::METRIC_TYPE, metric_type},
{milvus::index::DISK_ANN_QUERY_LIST, K * 2},
};
SearchResult result;
EXPECT_NO_THROW(vec_index->Query(xq_dataset, search_info, nullptr, result));
}
#endif