mirror of
https://gitee.com/milvus-io/milvus.git
synced 2024-12-05 05:18:52 +08:00
5bbace1094
issue: #29880 Signed-off-by: nico <cheng.yuan@zilliz.com>
620 lines
32 KiB
Python
620 lines
32 KiB
Python
import multiprocessing
|
|
import numbers
|
|
import random
|
|
import numpy
|
|
import threading
|
|
import pytest
|
|
import pandas as pd
|
|
import decimal
|
|
from decimal import Decimal, getcontext
|
|
from time import sleep
|
|
import heapq
|
|
|
|
from base.client_base import TestcaseBase
|
|
from utils.util_log import test_log as log
|
|
from common import common_func as cf
|
|
from common import common_type as ct
|
|
from common.common_type import CaseLabel, CheckTasks
|
|
from utils.util_pymilvus import *
|
|
from common.constants import *
|
|
from pymilvus.orm.types import CONSISTENCY_STRONG, CONSISTENCY_BOUNDED, CONSISTENCY_SESSION, CONSISTENCY_EVENTUALLY
|
|
from base.high_level_api_wrapper import HighLevelApiWrapper
|
|
client_w = HighLevelApiWrapper()
|
|
|
|
prefix = "milvus_client_api_index"
|
|
epsilon = ct.epsilon
|
|
default_nb = ct.default_nb
|
|
default_nb_medium = ct.default_nb_medium
|
|
default_nq = ct.default_nq
|
|
default_dim = ct.default_dim
|
|
default_limit = ct.default_limit
|
|
default_search_exp = "id >= 0"
|
|
exp_res = "exp_res"
|
|
default_search_string_exp = "varchar >= \"0\""
|
|
default_search_mix_exp = "int64 >= 0 && varchar >= \"0\""
|
|
default_invaild_string_exp = "varchar >= 0"
|
|
default_json_search_exp = "json_field[\"number\"] >= 0"
|
|
perfix_expr = 'varchar like "0%"'
|
|
default_search_field = ct.default_float_vec_field_name
|
|
default_search_params = ct.default_search_params
|
|
default_primary_key_field_name = "id"
|
|
default_vector_field_name = "vector"
|
|
default_multiple_vector_field_name = "vector_new"
|
|
default_float_field_name = ct.default_float_field_name
|
|
default_bool_field_name = ct.default_bool_field_name
|
|
default_string_field_name = ct.default_string_field_name
|
|
default_int32_array_field_name = ct.default_int32_array_field_name
|
|
default_string_array_field_name = ct.default_string_array_field_name
|
|
|
|
|
|
class TestMilvusClientIndexInvalid(TestcaseBase):
|
|
""" Test case of search interface """
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
def auto_id(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["COSINE", "L2"])
|
|
def metric_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are invalid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("name", ["12-s", "12 s", "(mn)", "中文", "%$#"])
|
|
def test_milvus_client_index_invalid_collection_name(self, name):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._connect(enable_milvus_client_api=True)
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
client_w.release_collection(client, collection_name)
|
|
client_w.drop_index(client, collection_name, "vector")
|
|
# 2. prepare index params
|
|
index_params = client_w.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name = "vector")
|
|
# 3. create index
|
|
error = {ct.err_code: 1100, ct.err_msg: f"Invalid collection name: {name}. the first character of a collection "
|
|
f"name must be an underscore or letter: invalid parameter"}
|
|
client_w.create_index(client, name, index_params,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
client_w.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("name", ["a".join("a" for i in range(256))])
|
|
def test_milvus_client_index_collection_name_over_max_length(self, name):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._connect(enable_milvus_client_api=True)
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
client_w.release_collection(client, collection_name)
|
|
client_w.drop_index(client, collection_name, "vector")
|
|
# 2. prepare index params
|
|
index_params = client_w.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name = "vector")
|
|
# 3. create index
|
|
error = {ct.err_code: 1100, ct.err_msg: f"Invalid collection name: {name}. the length of a collection name "
|
|
f"must be less than 255 characters: invalid parameter"}
|
|
client_w.create_index(client, name, index_params,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
client_w.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_index_not_exist_collection_name(self):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._connect(enable_milvus_client_api=True)
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
not_existed_collection_name = cf.gen_unique_str("not_existed_collection")
|
|
# 1. create collection
|
|
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
client_w.release_collection(client, collection_name)
|
|
client_w.drop_index(client, collection_name, "vector")
|
|
# 2. prepare index params
|
|
index_params = client_w.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name = "vector")
|
|
# 3. create index
|
|
error = {ct.err_code: 100, ct.err_msg: f"can't find collection collection not "
|
|
f"found[database=default][collection=not_existed]"}
|
|
client_w.create_index(client, not_existed_collection_name, index_params,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
client_w.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.skip(reason="pymilvus issue 1885")
|
|
@pytest.mark.parametrize("index", ["12-s", "12 s", "(mn)", "中文", "%$#", "a".join("a" for i in range(256))])
|
|
def test_milvus_client_index_invalid_index_type(self, index):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._connect(enable_milvus_client_api=True)
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
client_w.release_collection(client, collection_name)
|
|
client_w.drop_index(client, collection_name, "vector")
|
|
# 2. prepare index params
|
|
index_params = client_w.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name = "vector", index_type=index)
|
|
# 3. create index
|
|
error = {ct.err_code: 100, ct.err_msg: f"can't find collection collection not "
|
|
f"found[database=default][collection=not_existed]"}
|
|
client_w.create_index(client, collection_name, index_params,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
client_w.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.skip(reason="pymilvus issue 1885")
|
|
@pytest.mark.parametrize("metric", ["12-s", "12 s", "(mn)", "中文", "%$#", "a".join("a" for i in range(256))])
|
|
def test_milvus_client_index_invalid_metric_type(self, metric):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._connect(enable_milvus_client_api=True)
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
client_w.release_collection(client, collection_name)
|
|
client_w.drop_index(client, collection_name, "vector")
|
|
# 2. prepare index params
|
|
index_params = client_w.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name = "vector", metric_type = metric)
|
|
# 3. create index
|
|
error = {ct.err_code: 100, ct.err_msg: f"can't find collection collection not "
|
|
f"found[database=default][collection=not_existed]"}
|
|
client_w.create_index(client, collection_name, index_params,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
client_w.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_index_drop_index_before_release(self):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._connect(enable_milvus_client_api=True)
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
error = {ct.err_code: 65535, ct.err_msg: f"index cannot be dropped, collection is loaded, "
|
|
f"please release it first"}
|
|
client_w.drop_index(client, collection_name, "vector",
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
client_w.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.skip(reason="pymilvus issue 1886")
|
|
def test_milvus_client_index_multiple_indexes_one_field(self):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._connect(enable_milvus_client_api=True)
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. prepare index params
|
|
index_params = client_w.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name = "vector", index_type="HNSW", metric_type="IP")
|
|
# 3. create index
|
|
client_w.create_index(client, collection_name, index_params)
|
|
# 4. prepare index params
|
|
index_params = client_w.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name="vector", index_type="IVF_FLAT", metric_type="L2")
|
|
error = {ct.err_code: 1100, ct.err_msg: f""}
|
|
# 5. create another index
|
|
client_w.create_index(client, collection_name, index_params,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
client_w.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.skip(reason="pymilvus issue 1886")
|
|
def test_milvus_client_create_diff_index_without_release(self):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: raise exception
|
|
"""
|
|
client = self._connect(enable_milvus_client_api=True)
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. prepare index params
|
|
index_params = client_w.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name = "vector", index_type="HNSW", metric_type="L2")
|
|
# 3. create index
|
|
client_w.create_index(client, collection_name, index_params)
|
|
client_w.drop_collection(client, collection_name)
|
|
|
|
|
|
class TestMilvusClientIndexValid(TestcaseBase):
|
|
""" Test case of search interface """
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
def auto_id(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["COSINE", "L2", "IP"])
|
|
def metric_type(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["TRIE", "STL_SORT", "AUTOINDEX"])
|
|
def scalar_index(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are valid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.skip("https://github.com/milvus-io/pymilvus/issues/1886")
|
|
@pytest.mark.parametrize("index, params",
|
|
zip(ct.all_index_types[:7],
|
|
ct.default_index_params[:7]))
|
|
def test_milvus_client_index_default(self, index, params, metric_type):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._connect(enable_milvus_client_api=True)
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
client_w.release_collection(client, collection_name)
|
|
client_w.drop_index(client, collection_name, "vector")
|
|
res = client_w.list_indexes(client, collection_name)[0]
|
|
assert res == []
|
|
# 2. prepare index params
|
|
index_params = client_w.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name="vector", index_type=index, metric_type=metric_type)
|
|
# 3. create index
|
|
client_w.create_index(client, collection_name, index_params)
|
|
# 4. create same index twice
|
|
client_w.create_index(client, collection_name, index_params)
|
|
# 5. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
client_w.insert(client, collection_name, rows)
|
|
# 6. load collection
|
|
client_w.load_collection(client, collection_name)
|
|
# 7. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
client_w.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit})
|
|
# 8. query
|
|
client_w.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"primary_field": default_primary_key_field_name})
|
|
client_w.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.skip(reason="pymilvus issue 1884")
|
|
@pytest.mark.parametrize("index, params",
|
|
zip(ct.all_index_types[:7],
|
|
ct.default_index_params[:7]))
|
|
def test_milvus_client_index_with_params(self, index, params, metric_type):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._connect(enable_milvus_client_api=True)
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
client_w.release_collection(client, collection_name)
|
|
client_w.drop_index(client, collection_name, "vector")
|
|
res = client_w.list_indexes(client, collection_name)[0]
|
|
assert res == []
|
|
# 2. prepare index params
|
|
index_params = client_w.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name = "vector", index_type=index, params=params,metric_type = metric_type)
|
|
# 3. create index
|
|
client_w.create_index(client, collection_name, index_params)
|
|
# 4. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
client_w.insert(client, collection_name, rows)
|
|
# 5. load collection
|
|
client_w.load_collection(client, collection_name)
|
|
# 6. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
client_w.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit})
|
|
# 7. query
|
|
client_w.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"primary_field": default_primary_key_field_name})
|
|
client_w.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.skip("wait for modification")
|
|
@pytest.mark.parametrize("index, params",
|
|
zip(ct.all_index_types[:7],
|
|
ct.default_index_params[:7]))
|
|
def test_milvus_client_index_after_insert(self, index, params, metric_type):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._connect(enable_milvus_client_api=True)
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
client_w.release_collection(client, collection_name)
|
|
client_w.drop_index(client, collection_name, "vector")
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
client_w.insert(client, collection_name, rows)
|
|
# 3. prepare index params
|
|
index_params = client_w.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name = "vector", index_type=index, metric_type = metric_type)
|
|
# 4. create index
|
|
client_w.create_index(client, collection_name, index_params)
|
|
# 5. load collection
|
|
client_w.load_collection(client, collection_name)
|
|
# 5. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
client_w.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit})
|
|
# 4. query
|
|
client_w.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"primary_field": default_primary_key_field_name})
|
|
client_w.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.skip("wait for modification")
|
|
def test_milvus_client_index_auto_index(self, scalar_index, metric_type):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._connect(enable_milvus_client_api=True)
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
client_w.release_collection(client, collection_name)
|
|
client_w.drop_index(client, collection_name, "vector")
|
|
res = client_w.list_indexes(client, collection_name)[0]
|
|
assert res == []
|
|
# 2. prepare index params
|
|
index = "AUTOINDEX"
|
|
index_params = client_w.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name = "vector", index_type=index, metric_type = metric_type)
|
|
index_params.add_index(field_name="id", index_type=scalar_index, metric_type=metric_type)
|
|
# 3. create index
|
|
client_w.create_index(client, collection_name, index_params)
|
|
# 4. drop index
|
|
client_w.drop_index(client, collection_name, "vector")
|
|
client_w.drop_index(client, collection_name, "id")
|
|
# 5. create index
|
|
client_w.create_index(client, collection_name, index_params)
|
|
# 6. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
client_w.insert(client, collection_name, rows)
|
|
# 7. load collection
|
|
client_w.load_collection(client, collection_name)
|
|
# 8. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
client_w.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit})
|
|
# 9. query
|
|
client_w.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"primary_field": default_primary_key_field_name})
|
|
client_w.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.skip("wait for modification")
|
|
def test_milvus_client_index_multiple_vectors(self, scalar_index, metric_type):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._connect(enable_milvus_client_api=True)
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
client_w.release_collection(client, collection_name)
|
|
client_w.drop_index(client, collection_name, "vector")
|
|
res = client_w.list_indexes(client, collection_name)[0]
|
|
assert res == []
|
|
# 2. prepare index params
|
|
index = "AUTOINDEX"
|
|
index_params = client_w.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name = "vector", index_type=index, metric_type = metric_type)
|
|
index_params.add_index(field_name="id", index_type=scalar_index, metric_type=metric_type)
|
|
# 3. create index
|
|
client_w.create_index(client, collection_name, index_params)
|
|
# 4. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i),
|
|
default_multiple_vector_field_name: list(rng.random((1, default_dim))[0])} for i in range(default_nb)]
|
|
client_w.insert(client, collection_name, rows)
|
|
# 5. load collection
|
|
client_w.load_collection(client, collection_name)
|
|
# 6. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
client_w.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit})
|
|
# 7. query
|
|
client_w.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"primary_field": default_primary_key_field_name})
|
|
client_w.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.skip("wait for modification")
|
|
@pytest.mark.parametrize("index, params",
|
|
zip(ct.all_index_types[:7],
|
|
ct.default_index_params[:7]))
|
|
def test_milvus_client_index_drop_create_same_index(self, index, params, metric_type):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._connect(enable_milvus_client_api=True)
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
client_w.release_collection(client, collection_name)
|
|
client_w.drop_index(client, collection_name, "vector")
|
|
res = client_w.list_indexes(client, collection_name)[0]
|
|
assert res == []
|
|
# 2. prepare index params
|
|
index_params = client_w.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name = "vector", index_type=index, metric_type = metric_type)
|
|
# 3. create index
|
|
client_w.create_index(client, collection_name, index_params)
|
|
# 4. drop index
|
|
client_w.drop_index(client, collection_name, "vector")
|
|
# 4. create same index twice
|
|
client_w.create_index(client, collection_name, index_params)
|
|
# 5. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
client_w.insert(client, collection_name, rows)
|
|
# 6. load collection
|
|
client_w.load_collection(client, collection_name)
|
|
# 7. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
client_w.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit})
|
|
# 8. query
|
|
client_w.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"primary_field": default_primary_key_field_name})
|
|
client_w.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.skip("wait for modification")
|
|
@pytest.mark.parametrize("index, params",
|
|
zip(ct.all_index_types[:7],
|
|
ct.default_index_params[:7]))
|
|
def test_milvus_client_index_drop_create_different_index(self, index, params, metric_type):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._connect(enable_milvus_client_api=True)
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
client_w.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
client_w.release_collection(client, collection_name)
|
|
client_w.drop_index(client, collection_name, "vector")
|
|
res = client_w.list_indexes(client, collection_name)[0]
|
|
assert res == []
|
|
# 2. prepare index params
|
|
index_params = client_w.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name="vector", metric_type=metric_type)
|
|
# 3. create index
|
|
client_w.create_index(client, collection_name, index_params)
|
|
# 4. drop index
|
|
client_w.drop_index(client, collection_name, "vector")
|
|
# 4. create different index
|
|
index_params.add_index(field_name="vector", index_type=index, metric_type=metric_type)
|
|
client_w.create_index(client, collection_name, index_params)
|
|
# 5. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
client_w.insert(client, collection_name, rows)
|
|
# 6. load collection
|
|
client_w.load_collection(client, collection_name)
|
|
# 7. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
client_w.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit})
|
|
# 8. query
|
|
client_w.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"primary_field": default_primary_key_field_name})
|
|
client_w.drop_collection(client, collection_name) |