milvus/tests/python_client/chaos/scripts/verify_all_collections.py
zhuwenxing 7d8d1ff99a
[skip e2e]Split verification into more steps (#16467)
Signed-off-by: zhuwenxing <wenxing.zhu@zilliz.com>
2022-04-13 11:39:34 +08:00

123 lines
4.2 KiB
Python

# Copyright (C) 2019-2020 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
# or implied. See the License for the specific language governing permissions and limitations under the License.
import random
import numpy as np
import time
import argparse
from pymilvus import (
connections, list_collections,
FieldSchema, CollectionSchema, DataType,
Collection, utility
)
TIMEOUT = 120
def hello_milvus(collection_name):
import time
# create collection
dim = 128
default_fields = [
FieldSchema(name="int64", dtype=DataType.INT64, is_primary=True),
FieldSchema(name="float", dtype=DataType.FLOAT),
FieldSchema(name="float_vector", dtype=DataType.FLOAT_VECTOR, dim=dim)
]
default_schema = CollectionSchema(fields=default_fields, description="test collection")
if utility.has_collection(collection_name):
print("collection is exist")
collection = Collection(name=collection_name)
default_schema = collection.schema
dim = [field.params['dim'] for field in default_schema.fields if field.dtype in [101, 102]][0]
print(f"\nCreate collection...")
collection = Collection(name=collection_name, schema=default_schema)
# insert data
nb = 3000
vectors = [[random.random() for _ in range(dim)] for _ in range(nb)]
t0 = time.time()
collection.insert(
[
[i for i in range(nb)],
[np.float32(i) for i in range(nb)],
vectors
]
)
t1 = time.time()
print(f"\nInsert {nb} vectors cost {t1 - t0:.4f} seconds")
t0 = time.time()
print(f"\nGet collection entities...")
print(collection.num_entities)
t1 = time.time()
print(f"\nGet collection entities cost {t1 - t0:.4f} seconds")
# create index and load table
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
print(f"\nCreate index...")
t0 = time.time()
collection.create_index(field_name="float_vector", index_params=default_index)
t1 = time.time()
print(f"\nCreate index cost {t1 - t0:.4f} seconds")
print(f"\nload collection...")
t0 = time.time()
collection.load()
t1 = time.time()
print(f"\nload collection cost {t1 - t0:.4f} seconds")
# load and search
topK = 5
search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
t0 = time.time()
print(f"\nSearch...")
# define output_fields of search result
res = collection.search(
vectors[-2:], "float_vector", search_params, topK,
"int64 > 100", output_fields=["int64", "float"], timeout=TIMEOUT
)
t1 = time.time()
print(f"search cost {t1 - t0:.4f} seconds")
# show result
for hits in res:
for hit in hits:
# Get value of the random value field for search result
print(hit, hit.entity.get("float"))
# query
expr = "int64 in [2,4,6,8]"
output_fields = ["int64", "float"]
res = collection.query(expr, output_fields, timeout=TIMEOUT)
sorted_res = sorted(res, key=lambda k: k['int64'])
for r in sorted_res:
print(r)
collection.release()
parser = argparse.ArgumentParser(description='host ip')
parser.add_argument('--host', type=str, default='10.96.77.209', help='host ip')
args = parser.parse_args()
# add time stamp
print(f"\nStart time: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))}")
# create connection
connections.connect(host=args.host, port="19530")
print(f"\nList collections...")
collection_list = list_collections()
print(collection_list)
# keep 10 collections with prefix "CreateChecker_", others will be skiped
cnt = 0
for collection_name in collection_list:
if collection_name.startswith("CreateChecker_"):
cnt += 1
if collection_name.startswith("CreateChecker_") and cnt > 10:
continue
print(f"check collection {collection_name}")
hello_milvus(collection_name)