milvus/internal/datacoord/compaction.go
Bingyi Sun 5574a104c9
Add triggerInfo in compactionTask (#11517)
issue: #9904
Signed-off-by: sunby <bingyi.sun@zilliz.com>

Co-authored-by: sunby <bingyi.sun@zilliz.com>
2021-11-11 15:54:42 +08:00

292 lines
7.6 KiB
Go

package datacoord
import (
"context"
"errors"
"fmt"
"sync"
"time"
"github.com/milvus-io/milvus/internal/log"
"github.com/milvus-io/milvus/internal/proto/datapb"
"github.com/milvus-io/milvus/internal/util/tsoutil"
"go.uber.org/zap"
)
// TODO this num should be determined by resources of datanode, for now, we set to a fixed value for simple
const (
maxParallelCompactionTaskNum = 100
compactionTimeout = 10 * time.Second
compactionExpirationCheckInterval = 60 * time.Second
)
type compactionPlanContext interface {
start()
stop()
// execCompactionPlan start to execute plan and return immediately
execCompactionPlan(signal *compactionSignal, plan *datapb.CompactionPlan) error
// completeCompaction record the result of a compaction
completeCompaction(result *datapb.CompactionResult) error
// getCompaction return compaction task. If planId does not exist, return nil.
getCompaction(planID int64) *compactionTask
// expireCompaction set the compaction state to expired
expireCompaction(ts Timestamp) error
// isFull return true if the task pool is full
isFull() bool
// get compaction tasks by signal id
getCompactionTasksBySignalID(signalID int64) []*compactionTask
}
type compactionTaskState int8
const (
executing compactionTaskState = iota + 1
completed
timeout
)
var (
errChannelNotWatched = errors.New("channel is not watched")
errChannelInBuffer = errors.New("channel is in buffer")
)
type compactionTask struct {
triggerInfo *compactionSignal
plan *datapb.CompactionPlan
state compactionTaskState
dataNodeID int64
result *datapb.CompactionResult
}
func (t *compactionTask) shadowClone(opts ...compactionTaskOpt) *compactionTask {
task := &compactionTask{
triggerInfo: t.triggerInfo,
plan: t.plan,
state: t.state,
dataNodeID: t.dataNodeID,
}
for _, opt := range opts {
opt(task)
}
return task
}
var _ compactionPlanContext = (*compactionPlanHandler)(nil)
type compactionPlanHandler struct {
plans map[int64]*compactionTask // planid -> task
sessions *SessionManager
meta *meta
chManager *ChannelManager
mu sync.RWMutex
executingTaskNum int
allocator allocator
quit chan struct{}
wg sync.WaitGroup
flushCh chan UniqueID
}
func newCompactionPlanHandler(sessions *SessionManager, cm *ChannelManager, meta *meta,
allocator allocator, flush chan UniqueID) *compactionPlanHandler {
return &compactionPlanHandler{
plans: make(map[int64]*compactionTask),
chManager: cm,
meta: meta,
sessions: sessions,
allocator: allocator,
flushCh: flush,
}
}
func (c *compactionPlanHandler) start() {
ticker := time.NewTicker(compactionExpirationCheckInterval)
c.quit = make(chan struct{})
c.wg.Add(1)
go func() {
defer c.wg.Done()
for {
select {
case <-c.quit:
ticker.Stop()
log.Info("compaction handler quit")
return
case <-ticker.C:
cctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
ts, err := c.allocator.allocTimestamp(cctx)
if err != nil {
log.Warn("unable to alloc timestamp", zap.Error(err))
cancel()
continue
}
cancel()
_ = c.expireCompaction(ts)
}
}
}()
}
func (c *compactionPlanHandler) stop() {
close(c.quit)
c.wg.Wait()
}
// execCompactionPlan start to execute plan and return immediately
func (c *compactionPlanHandler) execCompactionPlan(signal *compactionSignal, plan *datapb.CompactionPlan) error {
c.mu.Lock()
defer c.mu.Unlock()
nodeID, err := c.chManager.FindWatcher(plan.GetChannel())
if err != nil {
return err
}
c.setSegmentsCompacting(plan, true)
// FIXME: check response of compaction call and restore segment state if failed
c.sessions.Compaction(nodeID, plan)
task := &compactionTask{
triggerInfo: signal,
plan: plan,
state: executing,
dataNodeID: nodeID,
}
c.plans[plan.PlanID] = task
c.executingTaskNum++
return nil
}
func (c *compactionPlanHandler) setSegmentsCompacting(plan *datapb.CompactionPlan, compacting bool) {
for _, segmentBinlogs := range plan.GetSegmentBinlogs() {
c.meta.SetSegmentCompacting(segmentBinlogs.GetSegmentID(), compacting)
}
}
// completeCompaction record the result of a compaction
func (c *compactionPlanHandler) completeCompaction(result *datapb.CompactionResult) error {
c.mu.Lock()
defer c.mu.Unlock()
planID := result.PlanID
if _, ok := c.plans[planID]; !ok {
return fmt.Errorf("plan %d is not found", planID)
}
if c.plans[planID].state != executing {
return fmt.Errorf("plan %d's state is %v", planID, c.plans[planID].state)
}
plan := c.plans[planID].plan
switch plan.GetType() {
case datapb.CompactionType_InnerCompaction:
if err := c.handleInnerCompactionResult(plan, result); err != nil {
return err
}
case datapb.CompactionType_MergeCompaction:
if err := c.handleMergeCompactionResult(plan, result); err != nil {
return err
}
default:
return errors.New("unknown compaction type")
}
c.plans[planID] = c.plans[planID].shadowClone(setState(completed), setResult(result))
c.executingTaskNum--
if c.plans[planID].plan.GetType() == datapb.CompactionType_MergeCompaction {
c.flushCh <- result.GetSegmentID()
}
// TODO: when to clean task list
return nil
}
func (c *compactionPlanHandler) handleInnerCompactionResult(plan *datapb.CompactionPlan, result *datapb.CompactionResult) error {
return c.meta.CompleteInnerCompaction(plan.GetSegmentBinlogs()[0], result)
}
func (c *compactionPlanHandler) handleMergeCompactionResult(plan *datapb.CompactionPlan, result *datapb.CompactionResult) error {
return c.meta.CompleteMergeCompaction(plan.GetSegmentBinlogs(), result)
}
// getCompaction return compaction task. If planId does not exist, return nil.
func (c *compactionPlanHandler) getCompaction(planID int64) *compactionTask {
c.mu.RLock()
defer c.mu.RUnlock()
return c.plans[planID]
}
// expireCompaction set the compaction state to expired
func (c *compactionPlanHandler) expireCompaction(ts Timestamp) error {
c.mu.Lock()
defer c.mu.Unlock()
tasks := c.getExecutingCompactions()
for _, task := range tasks {
if !c.isTimeout(ts, task.plan.GetStartTime(), task.plan.GetTimeoutInSeconds()) {
continue
}
c.setSegmentsCompacting(task.plan, false)
planID := task.plan.PlanID
c.plans[planID] = c.plans[planID].shadowClone(setState(timeout))
c.executingTaskNum--
}
return nil
}
func (c *compactionPlanHandler) isTimeout(now Timestamp, start Timestamp, timeout int32) bool {
starttime, _ := tsoutil.ParseTS(start)
ts, _ := tsoutil.ParseTS(now)
return int32(ts.Sub(starttime).Seconds()) >= timeout
}
// isFull return true if the task pool is full
func (c *compactionPlanHandler) isFull() bool {
c.mu.RLock()
defer c.mu.RUnlock()
return c.executingTaskNum >= maxParallelCompactionTaskNum
}
func (c *compactionPlanHandler) getExecutingCompactions() []*compactionTask {
tasks := make([]*compactionTask, 0, len(c.plans))
for _, plan := range c.plans {
if plan.state == executing {
tasks = append(tasks, plan)
}
}
return tasks
}
// get compaction tasks by signal id
func (c *compactionPlanHandler) getCompactionTasksBySignalID(signalID int64) []*compactionTask {
c.mu.RLock()
defer c.mu.RUnlock()
var tasks []*compactionTask
for _, t := range c.plans {
if t.triggerInfo.id != signalID {
continue
}
tasks = append(tasks, t)
}
return tasks
}
type compactionTaskOpt func(task *compactionTask)
func setState(state compactionTaskState) compactionTaskOpt {
return func(task *compactionTask) {
task.state = state
}
}
func setResult(result *datapb.CompactionResult) compactionTaskOpt {
return func(task *compactionTask) {
task.result = result
}
}