mirror of
https://gitee.com/milvus-io/milvus.git
synced 2024-12-05 21:39:19 +08:00
74c0e3542c
Signed-off-by: FluorineDog <guilin.gou@zilliz.com>
226 lines
6.9 KiB
C++
226 lines
6.9 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <vector>
|
|
|
|
#include <faiss/utils/distances.h>
|
|
#include "dog_segment/ConcurrentVector.h"
|
|
#include "dog_segment/SegmentBase.h"
|
|
// #include "knowhere/index/vector_index/helpers/IndexParameter.h"
|
|
|
|
#include "dog_segment/SegmentBase.h"
|
|
#include "dog_segment/AckResponder.h"
|
|
#include <knowhere/index/vector_index/VecIndex.h>
|
|
#include <knowhere/index/vector_index/adapter/VectorAdapter.h>
|
|
#include <knowhere/index/vector_index/VecIndexFactory.h>
|
|
#include <algorithm>
|
|
|
|
|
|
using std::cin;
|
|
using std::cout;
|
|
using std::endl;
|
|
using namespace milvus::engine;
|
|
using namespace milvus::dog_segment;
|
|
using std::vector;
|
|
using namespace milvus;
|
|
|
|
namespace {
|
|
template<int DIM>
|
|
auto generate_data(int N) {
|
|
std::vector<char> raw_data;
|
|
std::vector<uint64_t> timestamps;
|
|
std::vector<int64_t> uids;
|
|
std::default_random_engine er(42);
|
|
std::uniform_real_distribution<> distribution(0.0, 1.0);
|
|
std::default_random_engine ei(42);
|
|
for (int i = 0; i < N; ++i) {
|
|
uids.push_back(10 * N + i);
|
|
timestamps.push_back(0);
|
|
// append vec
|
|
float vec[DIM];
|
|
for (auto &x: vec) {
|
|
x = distribution(er);
|
|
}
|
|
raw_data.insert(raw_data.end(), (const char *) std::begin(vec), (const char *) std::end(vec));
|
|
// int age = ei() % 100;
|
|
// raw_data.insert(raw_data.end(), (const char *) &age, ((const char *) &age) + sizeof(age));
|
|
}
|
|
return std::make_tuple(raw_data, timestamps, uids);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void
|
|
merge_into(int64_t queries, int64_t topk, float *distances, int64_t *uids, const float *new_distances, const int64_t *new_uids) {
|
|
for(int64_t qn = 0; qn < queries; ++qn) {
|
|
auto base = qn * topk;
|
|
auto src2_dis = distances + base;
|
|
auto src2_uids = uids + base;
|
|
|
|
auto src1_dis = new_distances + base;
|
|
auto src1_uids = new_uids + base;
|
|
|
|
std::vector<float> buf_dis(topk);
|
|
std::vector<int64_t> buf_uids(topk);
|
|
|
|
auto it1 = 0;
|
|
auto it2 = 0;
|
|
|
|
for(auto buf = 0; buf < topk; ++buf){
|
|
if(src1_dis[it1] <= src2_dis[it2]) {
|
|
buf_dis[buf] = src1_dis[it1];
|
|
buf_uids[buf] = src1_uids[it1];
|
|
++it1;
|
|
} else {
|
|
buf_dis[buf] = src2_dis[it2];
|
|
buf_uids[buf] = src2_uids[it2];
|
|
++it2;
|
|
}
|
|
}
|
|
std::copy_n(buf_dis.data(), topk, src2_dis);
|
|
std::copy_n(buf_uids.data(), topk, src2_uids);
|
|
}
|
|
}
|
|
|
|
|
|
TEST(TestIndex, SmartBruteForce) {
|
|
// how to ?
|
|
// I'd know
|
|
constexpr int N = 100000;
|
|
constexpr int DIM = 16;
|
|
constexpr int TOPK = 10;
|
|
|
|
auto bitmap = std::make_shared<faiss::ConcurrentBitset>(N);
|
|
// exclude the first
|
|
for (int i = 0; i < N / 2; ++i) {
|
|
bitmap->set(i);
|
|
}
|
|
|
|
auto[raw_data, timestamps, uids] = generate_data<DIM>(N);
|
|
auto total_count = DIM * TOPK;
|
|
auto raw = (const float *) raw_data.data();
|
|
|
|
|
|
constexpr int64_t queries = 3;
|
|
auto heap = faiss::float_maxheap_array_t{};
|
|
|
|
auto query_data = raw;
|
|
|
|
vector<int64_t> final_uids(total_count);
|
|
vector<float> final_dis(total_count, std::numeric_limits<float>::max());
|
|
|
|
|
|
|
|
for (int beg = 0; beg < N; beg += DefaultElementPerChunk) {
|
|
vector<int64_t> buf_uids(total_count, -1);
|
|
vector<float> buf_dis(total_count, std::numeric_limits<float>::max());
|
|
|
|
faiss::float_maxheap_array_t buf = {
|
|
queries, TOPK, buf_uids.data(), buf_dis.data()};
|
|
|
|
auto end = beg + DefaultElementPerChunk;
|
|
if (end > N) {
|
|
end = N;
|
|
}
|
|
auto nsize = end - beg;
|
|
auto src_data = raw + beg * DIM;
|
|
|
|
faiss::knn_L2sqr(query_data, src_data, DIM, queries, nsize, &buf, nullptr);
|
|
if(beg == 0) {
|
|
final_uids = buf_uids;
|
|
final_dis = buf_dis;
|
|
} else {
|
|
merge_into(queries, TOPK, final_dis.data(), final_uids.data(), buf_dis.data(), buf_uids.data());
|
|
}
|
|
}
|
|
|
|
for (int qn = 0; qn < queries; ++qn) {
|
|
for (int kn = 0; kn < TOPK; ++kn) {
|
|
auto index = qn * TOPK + kn;
|
|
cout << final_uids[index] << "->" << final_dis[index] << endl;
|
|
}
|
|
cout << endl;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(TestIndex, Naive) {
|
|
constexpr int N = 100000;
|
|
constexpr int DIM = 16;
|
|
constexpr int TOPK = 10;
|
|
|
|
auto[raw_data, timestamps, uids] = generate_data<DIM>(N);
|
|
auto index = knowhere::VecIndexFactory::GetInstance().CreateVecIndex(knowhere::IndexEnum::INDEX_FAISS_IVFPQ,
|
|
knowhere::IndexMode::MODE_CPU);
|
|
auto conf = milvus::knowhere::Config{
|
|
{milvus::knowhere::meta::DIM, DIM},
|
|
{milvus::knowhere::meta::TOPK, TOPK},
|
|
{milvus::knowhere::IndexParams::nlist, 100},
|
|
{milvus::knowhere::IndexParams::nprobe, 4},
|
|
{milvus::knowhere::IndexParams::m, 4},
|
|
{milvus::knowhere::IndexParams::nbits, 8},
|
|
{milvus::knowhere::Metric::TYPE, milvus::knowhere::Metric::L2},
|
|
{milvus::knowhere::meta::DEVICEID, 0},
|
|
};
|
|
|
|
// auto ds = knowhere::GenDataset(N, DIM, raw_data.data());
|
|
// auto ds2 = knowhere::GenDatasetWithIds(N / 2, DIM, raw_data.data() + sizeof(float[DIM]) * N / 2, uids.data() + N / 2);
|
|
// NOTE: you must train first and then add
|
|
// index->Train(ds, conf);
|
|
// index->Train(ds2, conf);
|
|
// index->AddWithoutIds(ds, conf);
|
|
// index->Add(ds2, conf);
|
|
|
|
|
|
|
|
std::vector<knowhere::DatasetPtr> datasets;
|
|
std::vector<std::vector<float>> ftrashs;
|
|
auto raw = (const float *) raw_data.data();
|
|
for (int beg = 0; beg < N; beg += DefaultElementPerChunk) {
|
|
auto end = beg + DefaultElementPerChunk;
|
|
if (end > N) {
|
|
end = N;
|
|
}
|
|
std::vector<float> ft(raw + DIM * beg, raw + DIM * end);
|
|
|
|
auto ds = knowhere::GenDataset(end - beg, DIM, ft.data());
|
|
datasets.push_back(ds);
|
|
ftrashs.push_back(std::move(ft));
|
|
|
|
// // NOTE: you must train first and then add
|
|
// index->Train(ds, conf);
|
|
// index->Add(ds, conf);
|
|
}
|
|
|
|
for (auto &ds: datasets) {
|
|
index->Train(ds, conf);
|
|
}
|
|
for (auto &ds: datasets) {
|
|
index->AddWithoutIds(ds, conf);
|
|
}
|
|
|
|
auto bitmap = std::make_shared<faiss::ConcurrentBitset>(N);
|
|
// exclude the first
|
|
for (int i = 0; i < N / 2; ++i) {
|
|
bitmap->set(i);
|
|
}
|
|
|
|
// index->SetBlacklist(bitmap);
|
|
auto query_ds = knowhere::GenDataset(1, DIM, raw_data.data());
|
|
|
|
auto final = index->Query(query_ds, conf);
|
|
auto ids = final->Get<idx_t *>(knowhere::meta::IDS);
|
|
auto distances = final->Get<float *>(knowhere::meta::DISTANCE);
|
|
for (int i = 0; i < TOPK; ++i) {
|
|
if (ids[i] < N / 2) {
|
|
cout << "WRONG: ";
|
|
}
|
|
cout << ids[i] << "->" << distances[i] << endl;
|
|
}
|
|
int i = 1 + 1;
|
|
}
|