mirror of
https://gitee.com/milvus-io/milvus.git
synced 2024-12-05 05:18:52 +08:00
6d17300237
Signed-off-by: Binbin Lv <binbin.lv@zilliz.com>
3313 lines
144 KiB
Python
3313 lines
144 KiB
Python
import numpy
|
|
import pandas as pd
|
|
import pytest
|
|
from pymilvus import DataType
|
|
|
|
from base.client_base import TestcaseBase
|
|
from utils.util_log import test_log as log
|
|
from common import common_func as cf
|
|
from common import common_type as ct
|
|
from common.common_type import CaseLabel, CheckTasks
|
|
from utils.utils import *
|
|
from common import constants as cons
|
|
|
|
prefix = "collection"
|
|
exp_name = "name"
|
|
exp_schema = "schema"
|
|
exp_num = "num_entities"
|
|
exp_primary = "primary"
|
|
exp_shards_num = "shards_num"
|
|
default_schema = cf.gen_default_collection_schema()
|
|
default_binary_schema = cf.gen_default_binary_collection_schema()
|
|
default_shards_num = 2
|
|
uid_count = "collection_count"
|
|
tag = "collection_count_tag"
|
|
uid_stats = "get_collection_stats"
|
|
uid_create = "create_collection"
|
|
uid_describe = "describe_collection"
|
|
uid_drop = "drop_collection"
|
|
uid_has = "has_collection"
|
|
uid_list = "list_collections"
|
|
uid_load = "load_collection"
|
|
field_name = default_float_vec_field_name
|
|
default_single_query = {
|
|
"data": gen_vectors(1, default_dim),
|
|
"anns_field": default_float_vec_field_name,
|
|
"param": {"metric_type": "L2", "params": {"nprobe": 10}},
|
|
"limit": default_top_k,
|
|
}
|
|
|
|
|
|
class TestCollectionParams(TestcaseBase):
|
|
""" Test case of collection interface """
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
|
|
def get_none_removed_invalid_strings(self, request):
|
|
if request.param is None:
|
|
pytest.skip("None schema is valid")
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
|
|
def get_invalid_type_fields(self, request):
|
|
if isinstance(request.param, list):
|
|
pytest.skip("list is valid fields")
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=cf.gen_all_type_fields())
|
|
def get_unsupported_primary_field(self, request):
|
|
if request.param.dtype == DataType.INT64:
|
|
pytest.skip("int64 type is valid primary key")
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
|
|
def get_invalid_dim(self, request):
|
|
if request.param == 1:
|
|
pytest.skip("1 is valid dim")
|
|
yield request.param
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_collection(self):
|
|
"""
|
|
target: test collection with default schema
|
|
method: create collection with default schema
|
|
expected: assert collection property
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
self.collection_wrap.init_collection(c_name, schema=default_schema,
|
|
check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_schema, exp_num: 0,
|
|
exp_primary: ct.default_int64_field_name})
|
|
assert c_name in self.utility_wrap.list_collections()[0]
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
@pytest.mark.xfail(reason="exception not Milvus Exception")
|
|
def test_collection_empty_name(self):
|
|
"""
|
|
target: test collection with empty name
|
|
method: create collection with an empty name
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = ""
|
|
error = {ct.err_code: 1, ct.err_msg: f'`collection_name` value is illegal'}
|
|
self.collection_wrap.init_collection(c_name, schema=default_schema, check_task=CheckTasks.err_res,
|
|
check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.xfail(reason="exception not Milvus Exception")
|
|
@pytest.mark.parametrize("name", [[], 1, [1, "2", 3], (1,), {1: 1}, None])
|
|
def test_collection_illegal_name(self, name):
|
|
"""
|
|
target: test collection with illegal name
|
|
method: create collection with illegal name
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
error = {ct.err_code: 1, ct.err_msg: "`collection_name` value {} is illegal".format(name)}
|
|
self.collection_wrap.init_collection(name, schema=default_schema, check_task=CheckTasks.err_res,
|
|
check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("name", ["12-s", "12 s", "(mn)", "中文", "%$#", "a".join("a" for i in range(256))])
|
|
def test_collection_invalid_name(self, name):
|
|
"""
|
|
target: test collection with invalid name
|
|
method: create collection with invalid name
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
error = {ct.err_code: 1, ct.err_msg: "Invalid collection name: {}".format(name)}
|
|
self.collection_wrap.init_collection(name, schema=default_schema, check_task=CheckTasks.err_res,
|
|
check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_collection_dup_name(self):
|
|
"""
|
|
target: test collection with dup name
|
|
method: create collection with dup name and none schema and data
|
|
expected: collection properties consistent
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
collection_w = self.init_collection_wrap(name=c_name, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_schema})
|
|
self.collection_wrap.init_collection(collection_w.name)
|
|
assert collection_w.name == self.collection_wrap.name
|
|
assert collection_w.schema == self.collection_wrap.schema
|
|
assert collection_w.num_entities == self.collection_wrap.num_entities
|
|
assert collection_w.name in self.utility_wrap.list_collections()[0]
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_dup_name_with_desc(self):
|
|
"""
|
|
target: test collection with dup name
|
|
method: 1. default schema with desc 2. dup name collection
|
|
expected: desc consistent
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
schema = cf.gen_default_collection_schema(description=ct.collection_desc)
|
|
collection_w = self.init_collection_wrap(name=c_name, schema=schema,
|
|
check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: schema})
|
|
self.collection_wrap.init_collection(c_name,
|
|
check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: schema})
|
|
assert collection_w.description == self.collection_wrap.description
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_dup_name_new_schema(self):
|
|
"""
|
|
target: test collection with dup name and new schema
|
|
method: 1.create collection with default schema
|
|
2. collection with dup name and new schema
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
self.init_collection_wrap(name=c_name, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_schema})
|
|
fields = [cf.gen_int64_field(is_primary=True)]
|
|
schema = cf.gen_collection_schema(fields=fields)
|
|
error = {ct.err_code: 0, ct.err_msg: "The collection already exist, but the schema is not the same as the "
|
|
"schema passed in."}
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_dup_name_new_primary(self):
|
|
"""
|
|
target: test collection with dup name and new primary_field schema
|
|
method: 1.collection with default schema
|
|
2. collection with same fields and new primary_field schema
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
int_field_one = cf.gen_int64_field()
|
|
int_field_two = cf.gen_int64_field(name="int2")
|
|
fields = [int_field_one, int_field_two, cf.gen_float_vec_field()]
|
|
schema = cf.gen_collection_schema(fields, primary_field=int_field_one.name)
|
|
collection_w = self.init_collection_wrap(name=c_name, schema=schema,
|
|
check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: schema,
|
|
exp_primary: int_field_one.name})
|
|
new_schema = cf.gen_collection_schema(fields, primary_field=int_field_two.name)
|
|
error = {ct.err_code: 0, ct.err_msg: "The collection already exist, but the schema is not the same as the "
|
|
"schema passed in."}
|
|
self.collection_wrap.init_collection(c_name, schema=new_schema, check_task=CheckTasks.err_res,
|
|
check_items=error)
|
|
assert collection_w.primary_field.name == int_field_one.name
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_dup_name_new_dim(self):
|
|
"""
|
|
target: test collection with dup name and new dim schema
|
|
method: 1. default schema 2. schema with new dim
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
new_dim = 120
|
|
c_name = cf.gen_unique_str(prefix)
|
|
collection_w = self.init_collection_wrap(name=c_name, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_schema})
|
|
schema = cf.gen_default_collection_schema()
|
|
new_fields = cf.gen_float_vec_field(dim=new_dim)
|
|
schema.fields[-1] = new_fields
|
|
error = {ct.err_code: 0, ct.err_msg: "The collection already exist, but the schema is not the same as the "
|
|
"schema passed in."}
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
|
dim = collection_w.schema.fields[-1].params['dim']
|
|
assert dim == ct.default_dim
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_collection_dup_name_invalid_schema_type(self, get_none_removed_invalid_strings):
|
|
"""
|
|
target: test collection with dup name and invalid schema
|
|
method: 1. default schema 2. invalid schema
|
|
expected: raise exception and
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
collection_w = self.init_collection_wrap(name=c_name, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_schema})
|
|
error = {ct.err_code: 0, ct.err_msg: "Schema type must be schema.CollectionSchema"}
|
|
schema = get_none_removed_invalid_strings
|
|
self.collection_wrap.init_collection(collection_w.name, schema=schema,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
assert collection_w.name == c_name
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_dup_name_same_schema(self):
|
|
"""
|
|
target: test collection with dup name and same schema
|
|
method: dup name and same schema
|
|
expected: two collection object is available
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
collection_w = self.init_collection_wrap(name=c_name, schema=default_schema,
|
|
check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_schema})
|
|
self.collection_wrap.init_collection(name=c_name, schema=default_schema,
|
|
check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_schema})
|
|
assert collection_w.name == self.collection_wrap.name
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_collection_none_schema(self):
|
|
"""
|
|
target: test collection with none schema
|
|
method: create collection with none schema
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
error = {ct.err_code: 0, ct.err_msg: "Should be passed into the schema"}
|
|
self.collection_wrap.init_collection(c_name, schema=None, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_collection_invalid_type_schema(self, get_none_removed_invalid_strings):
|
|
"""
|
|
target: test collection with invalid schema
|
|
method: create collection with non-CollectionSchema type schema
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
error = {ct.err_code: 0, ct.err_msg: "Schema type must be schema.CollectionSchema"}
|
|
self.collection_wrap.init_collection(c_name, schema=get_none_removed_invalid_strings,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_invalid_type_fields(self, get_invalid_type_fields):
|
|
"""
|
|
target: test collection with invalid fields type, non-list
|
|
method: create collection schema with non-list invalid fields
|
|
expected: exception
|
|
"""
|
|
self._connect()
|
|
fields = get_invalid_type_fields
|
|
error = {ct.err_code: 0, ct.err_msg: "The fields of schema must be type list"}
|
|
self.collection_schema_wrap.init_collection_schema(fields=fields,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_with_unknown_type(self):
|
|
"""
|
|
target: test collection with unknown type
|
|
method: create with DataType.UNKNOWN
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
error = {ct.err_code: 0, ct.err_msg: "Field dtype must be of DataType"}
|
|
self.field_schema_wrap.init_field_schema(name="unknown", dtype=DataType.UNKNOWN,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.xfail(reason="exception not Milvus Exception")
|
|
@pytest.mark.parametrize("name", [[], 1, (1,), {1: 1}, "12-s"])
|
|
def test_collection_invalid_type_field(self, name):
|
|
"""
|
|
target: test collection with invalid field name
|
|
method: invalid string name
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
field, _ = self.field_schema_wrap.init_field_schema(name=name, dtype=5, is_primary=True)
|
|
vec_field = cf.gen_float_vec_field()
|
|
schema = cf.gen_collection_schema(fields=[field, vec_field])
|
|
error = {ct.err_code: 1, ct.err_msg: "expected one of: bytes, unicode"}
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("name", ["12-s", "12 s", "(mn)", "中文", "%$#", "a".join("a" for i in range(256))])
|
|
def test_collection_invalid_field_name(self, name):
|
|
"""
|
|
target: test collection with invalid field name
|
|
method: invalid string name
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
field, _ = self.field_schema_wrap.init_field_schema(name=name, dtype=DataType.INT64, is_primary=True)
|
|
vec_field = cf.gen_float_vec_field()
|
|
schema = cf.gen_collection_schema(fields=[field, vec_field])
|
|
error = {ct.err_code: 1, ct.err_msg: "Invalid field name"}
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.xfail(reason="exception not Milvus Exception")
|
|
def test_collection_none_field_name(self):
|
|
"""
|
|
target: test field schema with None name
|
|
method: None field name
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
field, _ = self.field_schema_wrap.init_field_schema(name=None, dtype=DataType.INT64, is_primary=True)
|
|
schema = cf.gen_collection_schema(fields=[field, cf.gen_float_vec_field()])
|
|
error = {ct.err_code: 1, ct.err_msg: "You should specify the name of field"}
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("dtype", [6, [[]], {}, (), "", "a"])
|
|
def test_collection_invalid_field_type(self, dtype):
|
|
"""
|
|
target: test collection with invalid field type
|
|
method: invalid DataType
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
error = {ct.err_code: 0, ct.err_msg: "Field dtype must be of DataType"}
|
|
self.field_schema_wrap.init_field_schema(name="test", dtype=dtype, is_primary=True,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.xfail(reason="exception not Milvus Exception")
|
|
def test_collection_field_dtype_float_value(self):
|
|
"""
|
|
target: test collection with float type
|
|
method: create field with float type
|
|
expected:
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
field, _ = self.field_schema_wrap.init_field_schema(name=ct.default_int64_field_name, dtype=5.0,
|
|
is_primary=True)
|
|
schema = cf.gen_collection_schema(fields=[field, cf.gen_float_vec_field()])
|
|
error = {ct.err_code: 0, ct.err_msg: "Field type must be of DataType!"}
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_collection_empty_fields(self):
|
|
"""
|
|
target: test collection with empty fields
|
|
method: create collection with fields = []
|
|
expected: exception
|
|
"""
|
|
self._connect()
|
|
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
|
|
self.collection_schema_wrap.init_collection_schema(fields=[], primary_field=ct.default_int64_field_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_dup_field(self):
|
|
"""
|
|
target: test collection with dup field name
|
|
method: Two FieldSchema have same name
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
field_one = cf.gen_int64_field(is_primary=True)
|
|
field_two = cf.gen_int64_field()
|
|
schema = cf.gen_collection_schema(fields=[field_one, field_two, cf.gen_float_vec_field()])
|
|
error = {ct.err_code: 1, ct.err_msg: "duplicated field name"}
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
|
assert not self.utility_wrap.has_collection(c_name)[0]
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
@pytest.mark.parametrize("field", [cf.gen_float_vec_field(), cf.gen_binary_vec_field()])
|
|
def test_collection_only_vector_field(self, field):
|
|
"""
|
|
target: test collection just with vec field
|
|
method: create with float-vec fields
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe"}
|
|
self.collection_schema_wrap.init_collection_schema([field], check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_multi_float_vectors(self):
|
|
"""
|
|
target: test collection with multi float vectors
|
|
method: create collection with two float-vec fields
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
fields = [cf.gen_int64_field(is_primary=True), cf.gen_float_vec_field(), cf.gen_float_vec_field(name="tmp")]
|
|
schema = cf.gen_collection_schema(fields=fields, auto_id=True)
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: schema})
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_mix_vectors(self):
|
|
"""
|
|
target: test collection with mix vectors
|
|
method: create with float and binary vec
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
fields = [cf.gen_int64_field(is_primary=True), cf.gen_float_vec_field(), cf.gen_binary_vec_field()]
|
|
schema = cf.gen_collection_schema(fields=fields, auto_id=True)
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: schema})
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_collection_without_vectors(self):
|
|
"""
|
|
target: test collection without vectors
|
|
method: create collection only with int field
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
schema = cf.gen_collection_schema([cf.gen_int64_field(is_primary=True)])
|
|
error = {ct.err_code: 0, ct.err_msg: "No vector field is found."}
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_without_primary_field(self):
|
|
"""
|
|
target: test collection without primary field
|
|
method: no primary field specified in collection schema and fields
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
int_fields, _ = self.field_schema_wrap.init_field_schema(name=ct.default_int64_field_name, dtype=DataType.INT64)
|
|
vec_fields, _ = self.field_schema_wrap.init_field_schema(name=ct.default_float_vec_field_name,
|
|
dtype=DataType.FLOAT_VECTOR, dim=ct.default_dim)
|
|
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
|
|
self.collection_schema_wrap.init_collection_schema([int_fields, vec_fields],
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_is_primary_false(self):
|
|
"""
|
|
target: test collection with all is_primary false
|
|
method: set all fields if_primary false
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
fields = [cf.gen_int64_field(is_primary=False), cf.gen_float_field(is_primary=False),
|
|
cf.gen_float_vec_field(is_primary=False)]
|
|
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
|
|
self.collection_schema_wrap.init_collection_schema(fields, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("is_primary", ct.get_invalid_strs)
|
|
def test_collection_invalid_is_primary(self, is_primary):
|
|
"""
|
|
target: test collection with invalid primary
|
|
method: define field with is_primary=non-bool
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
name = cf.gen_unique_str(prefix)
|
|
error = {ct.err_code: 0, ct.err_msg: "Param is_primary must be bool type"}
|
|
self.field_schema_wrap.init_field_schema(name=name, dtype=DataType.INT64, is_primary=is_primary,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("primary_field", ["12-s", "12 s", "(mn)", "中文", "%$#", "a".join("a" for i in range(256))])
|
|
def test_collection_invalid_primary_field(self, primary_field):
|
|
"""
|
|
target: test collection with invalid primary_field
|
|
method: specify invalid string primary_field in collection schema
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
fields = [cf.gen_int64_field(), cf.gen_float_vec_field()]
|
|
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
|
|
self.collection_schema_wrap.init_collection_schema(fields=fields, primary_field=primary_field,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("primary_field", [[], 1, [1, "2", 3], (1,), {1: 1}, None])
|
|
def test_collection_non_string_primary_field(self, primary_field):
|
|
"""
|
|
target: test collection with non-string primary_field
|
|
method: primary_field type is not string
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
fields = [cf.gen_int64_field(), cf.gen_float_vec_field()]
|
|
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
|
|
self.collection_schema_wrap.init_collection_schema(fields, primary_field=primary_field,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_not_existed_primary_field(self):
|
|
"""
|
|
target: test collection with not exist primary field
|
|
method: specify not existed field as primary_field
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
fake_field = cf.gen_unique_str()
|
|
fields = [cf.gen_int64_field(), cf.gen_float_vec_field()]
|
|
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
|
|
|
|
self.collection_schema_wrap.init_collection_schema(fields, primary_field=fake_field,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_collection_primary_in_schema(self):
|
|
"""
|
|
target: test collection with primary field
|
|
method: specify primary field in CollectionSchema
|
|
expected: collection.primary_field
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
schema = cf.gen_default_collection_schema(primary_field=ct.default_int64_field_name)
|
|
self.collection_wrap.init_collection(c_name, schema=schema)
|
|
assert self.collection_wrap.primary_field.name == ct.default_int64_field_name
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_collection_primary_in_field(self):
|
|
"""
|
|
target: test collection with primary field
|
|
method: specify primary field in FieldSchema
|
|
expected: collection.primary_field
|
|
"""
|
|
self._connect()
|
|
fields = [cf.gen_int64_field(is_primary=True), cf.gen_float_field(), cf.gen_float_vec_field()]
|
|
schema, _ = self.collection_schema_wrap.init_collection_schema(fields)
|
|
self.collection_wrap.init_collection(cf.gen_unique_str(prefix), schema=schema)
|
|
assert self.collection_wrap.primary_field.name == ct.default_int64_field_name
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.xfail(reason="exception not Milvus Exception")
|
|
def test_collection_unsupported_primary_field(self, get_unsupported_primary_field):
|
|
"""
|
|
target: test collection with unsupported primary field type
|
|
method: specify non-int64 as primary field
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
field = get_unsupported_primary_field
|
|
vec_field = cf.gen_float_vec_field(name="vec")
|
|
error = {ct.err_code: 1, ct.err_msg: "Primary key type must be DataType.INT64."}
|
|
self.collection_schema_wrap.init_collection_schema(fields=[field, vec_field], primary_field=field.name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_multi_primary_fields(self):
|
|
"""
|
|
target: test collection with multi primary
|
|
method: collection with two primary fields
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
int_field_one = cf.gen_int64_field(is_primary=True)
|
|
int_field_two = cf.gen_int64_field(name="int2", is_primary=True)
|
|
error = {ct.err_code: 0, ct.err_msg: "Primary key field can only be one."}
|
|
self.collection_schema_wrap.init_collection_schema(
|
|
fields=[int_field_one, int_field_two, cf.gen_float_vec_field()],
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_primary_inconsistent(self):
|
|
"""
|
|
target: test collection with different primary field setting
|
|
method: 1. set A field is_primary 2. set primary_field is B
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
int_field_one = cf.gen_int64_field(is_primary=True)
|
|
int_field_two = cf.gen_int64_field(name="int2")
|
|
fields = [int_field_one, int_field_two, cf.gen_float_vec_field()]
|
|
error = {ct.err_code: 0, ct.err_msg: "Primary key field can only be one"}
|
|
self.collection_schema_wrap.init_collection_schema(fields, primary_field=int_field_two.name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_primary_consistent(self):
|
|
"""
|
|
target: test collection with both collection schema and field schema
|
|
method: 1. set A field is_primary 2.set primary_field is A
|
|
expected: verify primary field
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
int_field_one = cf.gen_int64_field(is_primary=True)
|
|
schema = cf.gen_collection_schema(fields=[int_field_one, cf.gen_float_vec_field()],
|
|
primary_field=int_field_one.name)
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: schema})
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
@pytest.mark.parametrize("auto_id", [True, False])
|
|
def test_collection_auto_id_in_field_schema(self, auto_id):
|
|
"""
|
|
target: test collection with auto_id in field schema
|
|
method: specify auto_id True in field schema
|
|
expected: verify schema's auto_id
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
int_field = cf.gen_int64_field(is_primary=True, auto_id=auto_id)
|
|
vec_field = cf.gen_float_vec_field(name='vec')
|
|
schema, _ = self.collection_schema_wrap.init_collection_schema([int_field, vec_field])
|
|
assert schema.auto_id == auto_id
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: schema})
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
@pytest.mark.parametrize("auto_id", [True, False])
|
|
def test_collection_auto_id_in_collection_schema(self, auto_id):
|
|
"""
|
|
target: test collection with auto_id in collection schema
|
|
method: specify auto_id True in collection schema
|
|
expected: verify schema auto_id and collection schema
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
int_field = cf.gen_int64_field(is_primary=True)
|
|
vec_field = cf.gen_float_vec_field(name='vec')
|
|
schema, _ = self.collection_schema_wrap.init_collection_schema([int_field, vec_field], auto_id=auto_id)
|
|
assert schema.auto_id == auto_id
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: schema})
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_collection_auto_id_non_primary_field(self):
|
|
"""
|
|
target: test collection set auto_id in non-primary field
|
|
method: set auto_id=True in non-primary field
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
error = {ct.err_code: 0, ct.err_msg: "auto_id can only be specified on the primary key field"}
|
|
self.field_schema_wrap.init_field_schema(name=ct.default_int64_field_name, dtype=DataType.INT64, auto_id=True,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_auto_id_false_non_primary(self):
|
|
"""
|
|
target: test collection set auto_id in non-primary field
|
|
method: set auto_id=True in non-primary field
|
|
expected: verify schema auto_id is False
|
|
"""
|
|
self._connect()
|
|
int_field_one = cf.gen_int64_field(is_primary=True)
|
|
int_field_two = cf.gen_int64_field(name='int2', auto_id=False)
|
|
fields = [int_field_one, int_field_two, cf.gen_float_vec_field()]
|
|
schema, _ = self.collection_schema_wrap.init_collection_schema(fields)
|
|
assert not schema.auto_id
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_auto_id_inconsistent(self):
|
|
"""
|
|
target: test collection auto_id with both collection schema and field schema
|
|
method: 1.set primary field auto_id=True in field schema 2.set auto_id=False in collection schema
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
int_field = cf.gen_int64_field(is_primary=True, auto_id=True)
|
|
vec_field = cf.gen_float_vec_field(name='vec')
|
|
error = {ct.err_code: 0, ct.err_msg: "The auto_id of the collection is inconsistent with "
|
|
"the auto_id of the primary key field"}
|
|
self.collection_schema_wrap.init_collection_schema([int_field, vec_field], auto_id=False,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("auto_id", [True, False])
|
|
def test_collection_auto_id_consistent(self, auto_id):
|
|
"""
|
|
target: test collection auto_id with both collection schema and field schema
|
|
method: set auto_id=True/False both field and schema
|
|
expected: verify auto_id
|
|
"""
|
|
self._connect()
|
|
int_field = cf.gen_int64_field(is_primary=True, auto_id=auto_id)
|
|
vec_field = cf.gen_float_vec_field(name='vec')
|
|
schema, _ = self.collection_schema_wrap.init_collection_schema([int_field, vec_field], auto_id=auto_id)
|
|
assert schema.auto_id == auto_id
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_auto_id_none_in_field(self):
|
|
"""
|
|
target: test collection with auto_id is None
|
|
method: set auto_id=None
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
error = {ct.err_code: 0, ct.err_msg: "Param auto_id must be bool type"}
|
|
self.field_schema_wrap.init_field_schema(name=ct.default_int64_field_name, dtype=DataType.INT64,
|
|
is_primary=True,
|
|
auto_id=None, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("auto_id", ct.get_invalid_strs)
|
|
def test_collection_invalid_auto_id(self, auto_id):
|
|
"""
|
|
target: test collection with invalid auto_id
|
|
method: define field with auto_id=non-bool
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
int_field = cf.gen_int64_field(is_primary=True)
|
|
vec_field = cf.gen_float_vec_field(name='vec')
|
|
error = {ct.err_code: 0, ct.err_msg: "Param auto_id must be bool type"}
|
|
self.collection_schema_wrap.init_collection_schema([int_field, vec_field], auto_id=auto_id,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_multi_fields_auto_id(self):
|
|
"""
|
|
target: test collection auto_id with multi fields
|
|
method: specify auto_id=True for multi int64 fields
|
|
expected: todo raise exception
|
|
"""
|
|
self._connect()
|
|
error = {ct.err_code: 0, ct.err_msg: "auto_id can only be specified on the primary key field"}
|
|
cf.gen_int64_field(is_primary=True, auto_id=True)
|
|
self.field_schema_wrap.init_field_schema(name="int", dtype=DataType.INT64, auto_id=True,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("dtype", [DataType.FLOAT_VECTOR, DataType.BINARY_VECTOR])
|
|
def test_collection_vector_without_dim(self, dtype):
|
|
"""
|
|
target: test collection without dimension
|
|
method: define vector field without dim
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
float_vec_field, _ = self.field_schema_wrap.init_field_schema(name="vec", dtype=dtype)
|
|
schema = cf.gen_collection_schema(fields=[cf.gen_int64_field(is_primary=True), float_vec_field])
|
|
error = {ct.err_code: 1, ct.err_msg: "dimension is not defined in field type params"}
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.xfail(reason="exception not Milvus Exception")
|
|
def test_collection_vector_invalid_dim(self, get_invalid_dim):
|
|
"""
|
|
target: test collection with invalid dimension
|
|
method: define float-vec field with invalid dimension
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
float_vec_field = cf.gen_float_vec_field(dim=get_invalid_dim)
|
|
schema = cf.gen_collection_schema(fields=[cf.gen_int64_field(is_primary=True), float_vec_field])
|
|
error = {ct.err_code: 1, ct.err_msg: f'invalid dim: {get_invalid_dim}'}
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("dim", [-1, 0, 32769])
|
|
def test_collection_vector_out_bounds_dim(self, dim):
|
|
"""
|
|
target: test collection with out of bounds dim
|
|
method: invalid dim -1 and 32759
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
float_vec_field = cf.gen_float_vec_field(dim=dim)
|
|
schema = cf.gen_collection_schema(fields=[cf.gen_int64_field(is_primary=True), float_vec_field])
|
|
error = {ct.err_code: 1, ct.err_msg: "invalid dimension: {}. should be in range 1 ~ 32768".format(dim)}
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_non_vector_field_dim(self):
|
|
"""
|
|
target: test collection with dim for non-vector field
|
|
method: define int64 field with dim
|
|
expected: no exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
int_field, _ = self.field_schema_wrap.init_field_schema(name=ct.default_int64_field_name, dtype=DataType.INT64,
|
|
dim=ct.default_dim)
|
|
float_vec_field = cf.gen_float_vec_field()
|
|
schema = cf.gen_collection_schema(fields=[int_field, float_vec_field],
|
|
primary_field=ct.default_int64_field_name)
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: schema})
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_desc(self):
|
|
"""
|
|
target: test collection with description
|
|
method: create with description
|
|
expected: assert default description
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
schema = cf.gen_default_collection_schema(description=ct.collection_desc)
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: schema})
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.xfail(reason="exception not Milvus Exception")
|
|
def test_collection_none_desc(self):
|
|
"""
|
|
target: test collection with none description
|
|
method: create with none description
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
schema = cf.gen_default_collection_schema(description=None)
|
|
error = {ct.err_code: 1, ct.err_msg: "None has type NoneType, but expected one of: bytes, unicode"}
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_long_desc(self):
|
|
"""
|
|
target: test collection with long desc
|
|
method: create with long desc
|
|
expected:
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
desc = "a".join("a" for _ in range(256))
|
|
schema = cf.gen_default_collection_schema(description=desc)
|
|
self.collection_wrap.init_collection(c_name, schema=schema,
|
|
check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: schema})
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_collection_binary(self):
|
|
"""
|
|
target: test collection with binary-vec
|
|
method: create collection with binary field
|
|
expected: assert binary field
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
self.collection_wrap.init_collection(c_name, schema=default_binary_schema,
|
|
check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_binary_schema})
|
|
assert c_name in self.utility_wrap.list_collections()[0]
|
|
|
|
@pytest.mark.tag(CaseLabel.L0)
|
|
def test_collection_shards_num_with_default_value(self):
|
|
"""
|
|
target:test collection with shards_num
|
|
method:create collection with shards_num
|
|
expected: no exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
self.collection_wrap.init_collection(c_name, schema=default_schema, shards_num=default_shards_num,
|
|
check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_shards_num: default_shards_num})
|
|
assert c_name in self.utility_wrap.list_collections()[0]
|
|
|
|
@pytest.mark.tag(CaseLabel.L0)
|
|
@pytest.mark.parametrize("shards_num", [-256, 0, 10, 256])
|
|
def test_collection_shards_num_with_not_default_value(self, shards_num):
|
|
"""
|
|
target:test collection with shards_num
|
|
method:create collection with not default shards_num
|
|
expected: no exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
self.collection_wrap.init_collection(c_name, schema=default_schema, shards_num=shards_num,
|
|
check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_shards_num: shards_num})
|
|
assert c_name in self.utility_wrap.list_collections()[0]
|
|
|
|
@pytest.mark.tag(CaseLabel.L0)
|
|
def test_collection_shards_num_with_error_type(self):
|
|
"""
|
|
target:test collection with error type shards_num
|
|
method:create collection with error type shards_num
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
error_type_shards_num = "2" # suppose to be int rather than str
|
|
error = {ct.err_code: -1, ct.err_msg: f"expected one of: int, long"}
|
|
self.collection_wrap.init_collection(c_name, schema=default_schema, shards_num=error_type_shards_num,
|
|
check_task=CheckTasks.err_res,
|
|
check_items=error)
|
|
|
|
|
|
class TestCollectionOperation(TestcaseBase):
|
|
"""
|
|
******************************************************************
|
|
The following cases are used to test collection interface operations
|
|
******************************************************************
|
|
"""
|
|
|
|
# def teardown_method(self):
|
|
# if self.self.collection_wrap is not None and self.self.collection_wrap.collection is not None:
|
|
# self.self.collection_wrap.drop()
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_without_connection(self):
|
|
"""
|
|
target: test collection without connection
|
|
method: 1.create collection after connection removed
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
self.connection_wrap.remove_connection(ct.default_alias)
|
|
res_list, _ = self.connection_wrap.list_connections()
|
|
assert ct.default_alias not in res_list
|
|
error = {ct.err_code: 0, ct.err_msg: 'should create connect first'}
|
|
self.collection_wrap.init_collection(c_name, schema=default_schema,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
assert self.collection_wrap.collection is None
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_collection_multi_create_drop(self):
|
|
"""
|
|
target: test cycle creation and deletion of multiple collections
|
|
method: in a loop, collections are created and deleted sequentially
|
|
expected: no exception
|
|
"""
|
|
self._connect()
|
|
c_num = 20
|
|
for _ in range(c_num):
|
|
c_name = cf.gen_unique_str(prefix)
|
|
self.collection_wrap.init_collection(c_name, schema=default_schema,
|
|
check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_schema})
|
|
self.collection_wrap.drop()
|
|
assert c_name not in self.utility_wrap.list_collections()[0]
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_dup_name_drop(self):
|
|
"""
|
|
target: test collection with dup name, and drop
|
|
method: 1. two dup name collection object
|
|
2. one object drop collection
|
|
expected: collection dropped
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
collection_w = self.init_collection_wrap(name=c_name, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_schema})
|
|
self.collection_wrap.init_collection(c_name, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_schema})
|
|
self.collection_wrap.drop()
|
|
assert not self.utility_wrap.has_collection(c_name)[0]
|
|
error = {ct.err_code: 1, ct.err_msg: f'HasPartition failed: can\'t find collection: {c_name}'}
|
|
collection_w.has_partition("p", check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_collection_after_drop(self):
|
|
"""
|
|
target: test create collection after create and drop
|
|
method: 1. create a 2. drop a 3, re-create a
|
|
expected: no exception
|
|
"""
|
|
c_name = cf.gen_unique_str(prefix)
|
|
collection_w = self.init_collection_wrap(name=c_name, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_schema})
|
|
collection_w.drop()
|
|
assert not self.utility_wrap.has_collection(collection_w.name)[0]
|
|
self.init_collection_wrap(name=c_name, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_schema})
|
|
assert self.utility_wrap.has_collection(c_name)[0]
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_collection_all_datatype_fields(self):
|
|
"""
|
|
target: test create collection with all dataType fields
|
|
method: create collection with all dataType schema
|
|
expected: create successfully
|
|
"""
|
|
self._connect()
|
|
fields = []
|
|
for k, v in DataType.__members__.items():
|
|
if v and v != DataType.UNKNOWN and v != DataType.FLOAT_VECTOR and v != DataType.BINARY_VECTOR:
|
|
field, _ = self.field_schema_wrap.init_field_schema(name=k.lower(), dtype=v)
|
|
fields.append(field)
|
|
fields.append(cf.gen_float_vec_field())
|
|
schema, _ = self.collection_schema_wrap.init_collection_schema(fields,
|
|
primary_field=ct.default_int64_field_name)
|
|
c_name = cf.gen_unique_str(prefix)
|
|
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: schema})
|
|
|
|
|
|
class TestCollectionDataframe(TestcaseBase):
|
|
"""
|
|
******************************************************************
|
|
The following cases are used to test construct_from_dataframe
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
|
|
def get_non_df(self, request):
|
|
if request.param is None:
|
|
pytest.skip("skip None")
|
|
yield request.param
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_construct_from_dataframe(self):
|
|
"""
|
|
target: test collection with dataframe data
|
|
method: create collection and insert with dataframe
|
|
expected: collection num entities equal to nb
|
|
"""
|
|
conn = self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
df = cf.gen_default_dataframe_data(ct.default_nb)
|
|
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
|
|
check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_schema})
|
|
conn.flush([c_name])
|
|
assert self.collection_wrap.num_entities == ct.default_nb
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_construct_from_binary_dataframe(self):
|
|
"""
|
|
target: test binary collection with dataframe
|
|
method: create binary collection with dataframe
|
|
expected: collection num entities equal to nb
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
df, _ = cf.gen_default_binary_dataframe_data(nb=ct.default_nb)
|
|
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
|
|
check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_binary_schema})
|
|
assert self.collection_wrap.num_entities == ct.default_nb
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_from_none_dataframe(self):
|
|
"""
|
|
target: test create collection by empty dataframe
|
|
method: invalid dataframe type create collection
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
error = {ct.err_code: 0, ct.err_msg: "Dataframe can not be None."}
|
|
self.collection_wrap.construct_from_dataframe(c_name, None, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_from_dataframe_only_column(self):
|
|
"""
|
|
target: test collection with dataframe only columns
|
|
method: dataframe only has columns
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
df = pd.DataFrame(columns=[ct.default_int64_field_name, ct.default_float_vec_field_name])
|
|
error = {ct.err_code: 0, ct.err_msg: "Cannot infer schema from empty dataframe"}
|
|
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_from_inconsistent_dataframe(self):
|
|
"""
|
|
target: test collection with data inconsistent
|
|
method: create and insert with inconsistent data
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
# one field different type df
|
|
mix_data = [(1, 2., [0.1, 0.2]), (2, 3., 4)]
|
|
df = pd.DataFrame(data=mix_data, columns=list("ABC"))
|
|
error = {ct.err_code: 0, ct.err_msg: "The data in the same column must be of the same type"}
|
|
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field='A', check_task=CheckTasks.err_res,
|
|
check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_from_non_dataframe(self, get_non_df):
|
|
"""
|
|
target: test create collection by invalid dataframe
|
|
method: non-dataframe type create collection
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
error = {ct.err_code: 0, ct.err_msg: "Data type must be pandas.DataFrame."}
|
|
df = get_non_df
|
|
self.collection_wrap.construct_from_dataframe(c_name, df, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_from_data_type_dataframe(self):
|
|
"""
|
|
target: test collection with invalid dataframe
|
|
method: create with invalid dataframe
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
df = pd.DataFrame({"date": pd.date_range('20210101', periods=3), ct.default_int64_field_name: [1, 2, 3]})
|
|
error = {ct.err_code: 0, ct.err_msg: "Cannot infer schema from empty dataframe."}
|
|
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_from_invalid_field_name(self):
|
|
"""
|
|
target: test collection with invalid field name
|
|
method: create with invalid field name dataframe
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
df = pd.DataFrame({'%$#': cf.gen_vectors(3, 2), ct.default_int64_field_name: [1, 2, 3]})
|
|
error = {ct.err_code: 1, ct.err_msg: "Invalid field name"}
|
|
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_none_primary_field(self):
|
|
"""
|
|
target: test collection with none primary field
|
|
method: primary_field is none
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
df = cf.gen_default_dataframe_data(ct.default_nb)
|
|
error = {ct.err_code: 0, ct.err_msg: "Schema must have a primary key field."}
|
|
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=None,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_not_existed_primary_field(self):
|
|
"""
|
|
target: test collection with not existed primary field
|
|
method: primary field not existed
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
df = cf.gen_default_dataframe_data(ct.default_nb)
|
|
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
|
|
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=c_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_with_none_auto_id(self):
|
|
"""
|
|
target: test construct with non-int64 as primary field
|
|
method: non-int64 as primary field
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
df = cf.gen_default_dataframe_data(ct.default_nb)
|
|
error = {ct.err_code: 0, ct.err_msg: "Param auto_id must be bool type"}
|
|
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
|
|
auto_id=None, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_auto_id_true_insert(self):
|
|
"""
|
|
target: test construct with true auto_id
|
|
method: auto_id=True and insert values
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
df = cf.gen_default_dataframe_data(nb=100)
|
|
error = {ct.err_code: 0, ct.err_msg: "Auto_id is True, primary field should not have data."}
|
|
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
|
|
auto_id=True, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_auto_id_true_no_insert(self):
|
|
"""
|
|
target: test construct with true auto_id
|
|
method: auto_id=True and not insert ids(primary fields all values are None)
|
|
expected: verify num entities
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
df = cf.gen_default_dataframe_data(ct.default_nb)
|
|
# df.drop(ct.default_int64_field_name, axis=1, inplace=True)
|
|
df[ct.default_int64_field_name] = None
|
|
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
|
|
auto_id=True)
|
|
assert self.collection_wrap.num_entities == ct.default_nb
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_construct_none_value_auto_id_true(self):
|
|
"""
|
|
target: test construct with none value, auto_id
|
|
method: df primary field with none value, auto_id=true
|
|
expected: todo
|
|
"""
|
|
self._connect()
|
|
nb = 100
|
|
df = cf.gen_default_dataframe_data(nb)
|
|
df.iloc[:, 0] = numpy.NaN
|
|
res, _ = self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
|
|
primary_field=ct.default_int64_field_name, auto_id=True)
|
|
mutation_res = res[1]
|
|
assert cf._check_primary_keys(mutation_res.primary_keys, 100)
|
|
assert self.collection_wrap.num_entities == nb
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_auto_id_false(self):
|
|
"""
|
|
target: test construct with false auto_id
|
|
method: auto_id=False, primary_field correct
|
|
expected: verify auto_id
|
|
"""
|
|
self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
df = cf.gen_default_dataframe_data(ct.default_nb)
|
|
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
|
|
auto_id=False)
|
|
assert not self.collection_wrap.schema.auto_id
|
|
assert self.collection_wrap.num_entities == ct.default_nb
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_none_value_auto_id_false(self):
|
|
"""
|
|
target: test construct with none value, auto_id
|
|
method: df primary field with none value, auto_id=false
|
|
expected: raise exception
|
|
"""
|
|
self._connect()
|
|
nb = 100
|
|
df = cf.gen_default_dataframe_data(nb)
|
|
df.iloc[:, 0] = numpy.NaN
|
|
error = {ct.err_code: 0, ct.err_msg: "Primary key type must be DataType.INT64"}
|
|
self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
|
|
primary_field=ct.default_int64_field_name, auto_id=False,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_auto_id_false_same_values(self):
|
|
"""
|
|
target: test construct with false auto_id and same value
|
|
method: auto_id=False, primary field same values
|
|
expected: verify num entities
|
|
"""
|
|
self._connect()
|
|
nb = 100
|
|
df = cf.gen_default_dataframe_data(nb)
|
|
df.iloc[1:, 0] = 1
|
|
res, _ = self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
|
|
primary_field=ct.default_int64_field_name, auto_id=False)
|
|
collection_w = res[0]
|
|
assert collection_w.num_entities == nb
|
|
mutation_res = res[1]
|
|
assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist()
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_auto_id_false_negative_values(self):
|
|
"""
|
|
target: test construct with negative values
|
|
method: auto_id=False, primary field values is negative
|
|
expected: verify num entities
|
|
"""
|
|
self._connect()
|
|
nb = 100
|
|
df = cf.gen_default_dataframe_data(nb)
|
|
new_values = pd.Series(data=[i for i in range(0, -nb, -1)])
|
|
df[ct.default_int64_field_name] = new_values
|
|
self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
|
|
primary_field=ct.default_int64_field_name, auto_id=False)
|
|
assert self.collection_wrap.num_entities == nb
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_construct_from_dataframe_dup_name(self):
|
|
"""
|
|
target: test collection with dup name and insert dataframe
|
|
method: create collection with dup name, none schema, dataframe
|
|
expected: two collection object is correct
|
|
"""
|
|
conn = self._connect()
|
|
c_name = cf.gen_unique_str(prefix)
|
|
collection_w = self.init_collection_wrap(name=c_name, primary_field=ct.default_int64_field_name,
|
|
check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_schema})
|
|
df = cf.gen_default_dataframe_data(ct.default_nb)
|
|
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
|
|
check_task=CheckTasks.check_collection_property,
|
|
check_items={exp_name: c_name, exp_schema: default_schema})
|
|
conn.flush([collection_w.name])
|
|
assert collection_w.num_entities == ct.default_nb
|
|
assert collection_w.num_entities == self.collection_wrap.num_entities
|
|
|
|
|
|
class TestCollectionCount:
|
|
"""
|
|
params means different nb, the nb value may trigger merge, or not
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=[
|
|
1,
|
|
1000,
|
|
2001
|
|
],
|
|
)
|
|
def insert_count(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
generate valid create_index params
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_simple_index()
|
|
)
|
|
def get_simple_index(self, request, connect):
|
|
return request.param
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_count_without_connection(self, collection, dis_connect):
|
|
"""
|
|
target: test count_entities, without connection
|
|
method: calling count_entities with correct params, with a disconnected instance
|
|
expected: count_entities raise exception
|
|
"""
|
|
with pytest.raises(Exception) as e:
|
|
dis_connect.count_entities(collection)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_collection_count_no_vectors(self, connect, collection):
|
|
"""
|
|
target: test collection rows_count is correct or not, if collection is empty
|
|
method: create collection and no vectors in it,
|
|
assert the value returned by count_entities method is equal to 0
|
|
expected: the count is equal to 0
|
|
"""
|
|
stats = connect.get_collection_stats(collection)
|
|
assert stats[row_count] == 0
|
|
|
|
|
|
class TestCollectionCountIP:
|
|
"""
|
|
params means different nb, the nb value may trigger merge, or not
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=[
|
|
1,
|
|
1000,
|
|
2001
|
|
],
|
|
)
|
|
def insert_count(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
generate valid create_index params
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_simple_index()
|
|
)
|
|
def get_simple_index(self, request, connect):
|
|
request.param.update({"metric_type": "IP"})
|
|
return request.param
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_collection_count_after_index_created(self, connect, collection, get_simple_index, insert_count):
|
|
"""
|
|
target: test count_entities, after index have been created
|
|
method: add vectors in db, and create index, then calling count_entities with correct params
|
|
expected: count_entities raise exception
|
|
"""
|
|
entities = gen_entities(insert_count)
|
|
connect.insert(collection, entities)
|
|
connect.flush([collection])
|
|
connect.create_index(collection, default_float_vec_field_name, get_simple_index)
|
|
stats = connect.get_collection_stats(collection)
|
|
assert stats[row_count] == insert_count
|
|
|
|
|
|
class TestCollectionCountBinary:
|
|
"""
|
|
params means different nb, the nb value may trigger merge, or not
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=[
|
|
1,
|
|
1000,
|
|
2001
|
|
],
|
|
)
|
|
def insert_count(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_binary_index()
|
|
)
|
|
def get_jaccard_index(self, request, connect):
|
|
request.param["metric_type"] = "JACCARD"
|
|
return request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_binary_index()
|
|
)
|
|
def get_hamming_index(self, request, connect):
|
|
request.param["metric_type"] = "HAMMING"
|
|
return request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_simple_index()
|
|
)
|
|
def get_substructure_index(self, request, connect):
|
|
request.param["metric_type"] = "SUBSTRUCTURE"
|
|
return request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_simple_index()
|
|
)
|
|
def get_superstructure_index(self, request, connect):
|
|
request.param["metric_type"] = "SUPERSTRUCTURE"
|
|
return request.param
|
|
|
|
# TODO: need to update and enable
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_collection_count_after_index_created_A(self, connect, binary_collection, get_hamming_index, insert_count):
|
|
"""
|
|
target: test count_entities, after index have been created
|
|
method: add vectors in db, and create index, then calling count_entities with correct params
|
|
expected: count_entities raise exception
|
|
"""
|
|
raw_vectors, entities = gen_binary_entities(insert_count)
|
|
connect.insert(binary_collection, entities)
|
|
connect.flush([binary_collection])
|
|
# connect.load_collection(binary_collection)
|
|
connect.create_index(binary_collection, default_binary_vec_field_name, get_hamming_index)
|
|
stats = connect.get_collection_stats(binary_collection)
|
|
assert stats[row_count] == insert_count
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_collection_count_no_entities(self, connect, binary_collection):
|
|
"""
|
|
target: test collection rows_count is correct or not, if collection is empty
|
|
method: create collection and no vectors in it,
|
|
assert the value returned by count_entities method is equal to 0
|
|
expected: the count is equal to 0
|
|
"""
|
|
stats = connect.get_collection_stats(binary_collection)
|
|
assert stats[row_count] == 0
|
|
|
|
|
|
class TestCollectionMultiCollections:
|
|
"""
|
|
params means different nb, the nb value may trigger merge, or not
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=[
|
|
1,
|
|
1000,
|
|
2001
|
|
],
|
|
)
|
|
def insert_count(self, request):
|
|
yield request.param
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_collection_count_multi_collections_l2(self, connect, insert_count):
|
|
"""
|
|
target: test collection rows_count is correct or not with multiple collections of L2
|
|
method: create collection and add entities in it,
|
|
assert the value returned by count_entities method is equal to length of entities
|
|
expected: the count is equal to the length of entities
|
|
"""
|
|
entities = gen_entities(insert_count)
|
|
collection_list = []
|
|
collection_num = 20
|
|
for i in range(collection_num):
|
|
collection_name = gen_unique_str(uid_count)
|
|
collection_list.append(collection_name)
|
|
connect.create_collection(collection_name, cons.default_fields)
|
|
connect.insert(collection_name, entities)
|
|
connect.flush(collection_list)
|
|
for i in range(collection_num):
|
|
stats = connect.get_collection_stats(collection_list[i])
|
|
assert stats[row_count] == insert_count
|
|
connect.drop_collection(collection_list[i])
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_collection_count_multi_collections_binary(self, connect, binary_collection, insert_count):
|
|
"""
|
|
target: test collection rows_count is correct or not with multiple collections of JACCARD
|
|
method: create collection and add entities in it,
|
|
assert the value returned by count_entities method is equal to length of entities
|
|
expected: the count is equal to the length of entities
|
|
"""
|
|
raw_vectors, entities = gen_binary_entities(insert_count)
|
|
connect.insert(binary_collection, entities)
|
|
collection_list = []
|
|
collection_num = 20
|
|
for i in range(collection_num):
|
|
collection_name = gen_unique_str(uid_count)
|
|
collection_list.append(collection_name)
|
|
connect.create_collection(collection_name, cons.default_binary_fields)
|
|
connect.insert(collection_name, entities)
|
|
connect.flush(collection_list)
|
|
for i in range(collection_num):
|
|
stats = connect.get_collection_stats(collection_list[i])
|
|
assert stats[row_count] == insert_count
|
|
connect.drop_collection(collection_list[i])
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_collection_count_multi_collections_mix(self, connect):
|
|
"""
|
|
target: test collection rows_count is correct or not with multiple collections of JACCARD
|
|
method: create collection and add entities in it,
|
|
assert the value returned by count_entities method is equal to length of entities
|
|
expected: the count is equal to the length of entities
|
|
"""
|
|
collection_list = []
|
|
collection_num = 20
|
|
for i in range(0, int(collection_num / 2)):
|
|
collection_name = gen_unique_str(uid_count)
|
|
collection_list.append(collection_name)
|
|
connect.create_collection(collection_name, cons.default_fields)
|
|
connect.insert(collection_name, cons.default_entities)
|
|
for i in range(int(collection_num / 2), collection_num):
|
|
collection_name = gen_unique_str(uid_count)
|
|
collection_list.append(collection_name)
|
|
connect.create_collection(collection_name, cons.default_binary_fields)
|
|
res = connect.insert(collection_name, cons.default_binary_entities)
|
|
connect.flush(collection_list)
|
|
for i in range(collection_num):
|
|
stats = connect.get_collection_stats(collection_list[i])
|
|
assert stats[row_count] == default_nb
|
|
connect.drop_collection(collection_list[i])
|
|
|
|
|
|
class TestGetCollectionStats:
|
|
"""
|
|
******************************************************************
|
|
The following cases are used to test `collection_stats` function
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_invalid_strs()
|
|
)
|
|
def get_invalid_collection_name(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_simple_index()
|
|
)
|
|
def get_simple_index(self, request, connect):
|
|
# if str(connect._cmd("mode")) == "CPU":
|
|
# if request.param["index_type"] in index_cpu_not_support():
|
|
# pytest.skip("CPU not support index_type: ivf_sq8h")
|
|
return request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_binary_index()
|
|
)
|
|
def get_jaccard_index(self, request, connect):
|
|
logging.getLogger().info(request.param)
|
|
if request.param["index_type"] in binary_support():
|
|
request.param["metric_type"] = "JACCARD"
|
|
return request.param
|
|
else:
|
|
pytest.skip("Skip index Temporary")
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=[
|
|
1,
|
|
1000,
|
|
2001
|
|
],
|
|
)
|
|
def insert_count(self, request):
|
|
yield request.param
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_get_collection_stats_name_not_existed(self, connect, collection):
|
|
"""
|
|
target: get collection stats where collection name does not exist
|
|
method: call collection_stats with a random collection_name, which is not in db
|
|
expected: status not ok
|
|
"""
|
|
collection_name = gen_unique_str(uid_stats)
|
|
with pytest.raises(Exception) as e:
|
|
connect.get_collection_stats(collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_get_collection_stats_name_invalid(self, connect, get_invalid_collection_name):
|
|
"""
|
|
target: get collection stats where collection name is invalid
|
|
method: call collection_stats with invalid collection_name
|
|
expected: status not ok
|
|
"""
|
|
collection_name = get_invalid_collection_name
|
|
with pytest.raises(Exception) as e:
|
|
connect.get_collection_stats(collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_get_collection_stats_empty(self, connect, collection):
|
|
"""
|
|
target: get collection stats where no entity in collection
|
|
method: call collection_stats in empty collection
|
|
expected: segment = []
|
|
"""
|
|
stats = connect.get_collection_stats(collection)
|
|
connect.flush([collection])
|
|
assert stats[row_count] == 0
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_get_collection_stats_without_connection(self, collection, dis_connect):
|
|
"""
|
|
target: test count_entities, without connection
|
|
method: calling count_entities with correct params, with a disconnected instance
|
|
expected: count_entities raise exception
|
|
"""
|
|
with pytest.raises(Exception) as e:
|
|
dis_connect.get_collection_stats(collection)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_get_collection_stats_batch(self, connect, collection):
|
|
"""
|
|
target: get row count with collection_stats
|
|
method: add entities, check count in collection info
|
|
expected: count as expected
|
|
"""
|
|
result = connect.insert(collection, cons.default_entities)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([collection])
|
|
stats = connect.get_collection_stats(collection)
|
|
assert int(stats[row_count]) == default_nb
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_get_collection_stats_single(self, connect, collection):
|
|
"""
|
|
target: get row count with collection_stats
|
|
method: add entity one by one, check count in collection info
|
|
expected: count as expected
|
|
"""
|
|
nb = 10
|
|
for i in range(nb):
|
|
connect.insert(collection, cons.default_entity)
|
|
connect.flush([collection])
|
|
stats = connect.get_collection_stats(collection)
|
|
assert stats[row_count] == nb
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def _test_get_collection_stats_after_delete(self, connect, collection):
|
|
"""
|
|
target: get row count with collection_stats
|
|
method: add and delete entities, check count in collection info
|
|
expected: status ok, count as expected
|
|
"""
|
|
ids = connect.insert(collection, cons.default_entities)
|
|
status = connect.flush([collection])
|
|
delete_ids = [ids[0], ids[-1]]
|
|
connect.delete_entity_by_id(collection, delete_ids)
|
|
connect.flush([collection])
|
|
stats = connect.get_collection_stats(collection)
|
|
assert stats["row_count"] == default_nb - 2
|
|
assert stats["partitions"][0]["row_count"] == default_nb - 2
|
|
assert stats["partitions"][0]["segments"][0]["data_size"] > 0
|
|
|
|
# TODO: enable
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def _test_get_collection_stats_after_compact_parts(self, connect, collection):
|
|
"""
|
|
target: get row count with collection_stats
|
|
method: add and delete entities, and compact collection, check count in collection info
|
|
expected: status ok, count as expected
|
|
"""
|
|
delete_length = 1000
|
|
ids = connect.insert(collection, cons.default_entities)
|
|
status = connect.flush([collection])
|
|
delete_ids = ids[:delete_length]
|
|
connect.delete_entity_by_id(collection, delete_ids)
|
|
connect.flush([collection])
|
|
stats = connect.get_collection_stats(collection)
|
|
logging.getLogger().info(stats)
|
|
assert stats["row_count"] == default_nb - delete_length
|
|
compact_before = stats["partitions"][0]["segments"][0]["data_size"]
|
|
connect.compact(collection)
|
|
stats = connect.get_collection_stats(collection)
|
|
logging.getLogger().info(stats)
|
|
compact_after = stats["partitions"][0]["segments"][0]["data_size"]
|
|
assert compact_before == compact_after
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def _test_get_collection_stats_after_compact_delete_one(self, connect, collection):
|
|
"""
|
|
target: get row count with collection_stats
|
|
method: add and delete one entity, and compact collection, check count in collection info
|
|
expected: status ok, count as expected
|
|
"""
|
|
ids = connect.insert(collection, cons.default_entities)
|
|
status = connect.flush([collection])
|
|
delete_ids = ids[:1]
|
|
connect.delete_entity_by_id(collection, delete_ids)
|
|
connect.flush([collection])
|
|
stats = connect.get_collection_stats(collection)
|
|
logging.getLogger().info(stats)
|
|
compact_before = stats["partitions"][0]["row_count"]
|
|
connect.compact(collection)
|
|
stats = connect.get_collection_stats(collection)
|
|
logging.getLogger().info(stats)
|
|
compact_after = stats["partitions"][0]["row_count"]
|
|
# pdb.set_trace()
|
|
assert compact_before == compact_after
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_get_collection_stats_partition(self, connect, collection):
|
|
"""
|
|
target: get partition info in a collection
|
|
method: call collection_stats after partition created and check partition_stats
|
|
expected: status ok, vectors added to partition
|
|
"""
|
|
connect.create_partition(collection, default_tag)
|
|
result = connect.insert(collection, cons.default_entities, partition_name=default_tag)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([collection])
|
|
stats = connect.get_collection_stats(collection)
|
|
assert stats[row_count] == default_nb
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_get_collection_stats_partitions(self, connect, collection):
|
|
"""
|
|
target: get partition info in a collection
|
|
method: create two partitions, add vectors in one of the partitions, call collection_stats and check
|
|
expected: status ok, vectors added to one partition but not the other
|
|
"""
|
|
new_tag = "new_tag"
|
|
connect.create_partition(collection, default_tag)
|
|
connect.create_partition(collection, new_tag)
|
|
connect.insert(collection, cons.default_entities, partition_name=default_tag)
|
|
connect.flush([collection])
|
|
stats = connect.get_collection_stats(collection)
|
|
assert stats[row_count] == default_nb
|
|
connect.insert(collection, cons.default_entities, partition_name=new_tag)
|
|
connect.flush([collection])
|
|
stats = connect.get_collection_stats(collection)
|
|
assert stats[row_count] == default_nb * 2
|
|
connect.insert(collection, cons.default_entities)
|
|
connect.flush([collection])
|
|
stats = connect.get_collection_stats(collection)
|
|
assert stats[row_count] == default_nb * 3
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_get_collection_stats_partitions_A(self, connect, collection, insert_count):
|
|
"""
|
|
target: test collection rows_count is correct or not
|
|
method: create collection, create partitions and add entities in it,
|
|
assert the value returned by count_entities method is equal to length of entities
|
|
expected: the count is equal to the length of entities
|
|
"""
|
|
new_tag = "new_tag"
|
|
entities = gen_entities(insert_count)
|
|
connect.create_partition(collection, default_tag)
|
|
connect.create_partition(collection, new_tag)
|
|
connect.insert(collection, entities)
|
|
connect.flush([collection])
|
|
stats = connect.get_collection_stats(collection)
|
|
assert stats[row_count] == insert_count
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_get_collection_stats_partitions_B(self, connect, collection, insert_count):
|
|
"""
|
|
target: test collection rows_count is correct or not
|
|
method: create collection, create partitions and add entities in one of the partitions,
|
|
assert the value returned by count_entities method is equal to length of entities
|
|
expected: the count is equal to the length of entities
|
|
"""
|
|
new_tag = "new_tag"
|
|
entities = gen_entities(insert_count)
|
|
connect.create_partition(collection, default_tag)
|
|
connect.create_partition(collection, new_tag)
|
|
connect.insert(collection, entities, partition_name=default_tag)
|
|
connect.flush([collection])
|
|
stats = connect.get_collection_stats(collection)
|
|
assert stats[row_count] == insert_count
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_get_collection_stats_partitions_C(self, connect, collection, insert_count):
|
|
"""
|
|
target: test collection rows_count is correct or not
|
|
method: create collection, create partitions and add entities in one of the partitions,
|
|
assert the value returned by count_entities method is equal to length of entities
|
|
expected: the count is equal to the length of vectors
|
|
"""
|
|
new_tag = "new_tag"
|
|
entities = gen_entities(insert_count)
|
|
connect.create_partition(collection, default_tag)
|
|
connect.create_partition(collection, new_tag)
|
|
connect.insert(collection, entities)
|
|
connect.insert(collection, entities, partition_name=default_tag)
|
|
connect.flush([collection])
|
|
stats = connect.get_collection_stats(collection)
|
|
assert stats[row_count] == insert_count * 2
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_get_collection_stats_partitions_D(self, connect, collection, insert_count):
|
|
"""
|
|
target: test collection rows_count is correct or not
|
|
method: create collection, create partitions and add entities in one of the partitions,
|
|
assert the value returned by count_entities method is equal to length of entities
|
|
expected: the collection count is equal to the length of entities
|
|
"""
|
|
new_tag = "new_tag"
|
|
entities = gen_entities(insert_count)
|
|
connect.create_partition(collection, default_tag)
|
|
connect.create_partition(collection, new_tag)
|
|
connect.insert(collection, entities, partition_name=default_tag)
|
|
connect.insert(collection, entities, partition_name=new_tag)
|
|
connect.flush([collection])
|
|
stats = connect.get_collection_stats(collection)
|
|
assert stats[row_count] == insert_count * 2
|
|
|
|
# TODO: assert metric type in stats response
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_get_collection_stats_after_index_created(self, connect, collection, get_simple_index):
|
|
"""
|
|
target: test collection info after index created
|
|
method: create collection, add vectors, create index and call collection_stats
|
|
expected: status ok, index created and shown in segments
|
|
"""
|
|
connect.insert(collection, cons.default_entities)
|
|
connect.flush([collection])
|
|
connect.create_index(collection, default_float_vec_field_name, get_simple_index)
|
|
stats = connect.get_collection_stats(collection)
|
|
assert stats[row_count] == default_nb
|
|
|
|
# TODO: assert metric type in stats response
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_get_collection_stats_after_index_created_ip(self, connect, collection, get_simple_index):
|
|
"""
|
|
target: test collection info after index created
|
|
method: create collection, add vectors, create index and call collection_stats
|
|
expected: status ok, index created and shown in segments
|
|
"""
|
|
get_simple_index["metric_type"] = "IP"
|
|
result = connect.insert(collection, cons.default_entities)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([collection])
|
|
get_simple_index.update({"metric_type": "IP"})
|
|
connect.create_index(collection, default_float_vec_field_name, get_simple_index)
|
|
stats = connect.get_collection_stats(collection)
|
|
assert stats[row_count] == default_nb
|
|
|
|
# TODO: assert metric type in stats response
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_get_collection_stats_after_index_created_jac(self, connect, binary_collection, get_jaccard_index):
|
|
"""
|
|
target: test collection info after index created
|
|
method: create collection, add binary entities, create index and call collection_stats
|
|
expected: status ok, index created and shown in segments
|
|
"""
|
|
ids = connect.insert(binary_collection, cons.default_binary_entities)
|
|
connect.flush([binary_collection])
|
|
connect.create_index(binary_collection, default_binary_vec_field_name, get_jaccard_index)
|
|
stats = connect.get_collection_stats(binary_collection)
|
|
assert stats[row_count] == default_nb
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_get_collection_stats_after_create_different_index(self, connect, collection):
|
|
"""
|
|
target: test collection info after index created repeatedly
|
|
method: create collection, add vectors, create index and call collection_stats multiple times
|
|
expected: status ok, index info shown in segments
|
|
"""
|
|
result = connect.insert(collection, cons.default_entities)
|
|
connect.flush([collection])
|
|
for index_type in ["IVF_FLAT", "IVF_SQ8"]:
|
|
connect.create_index(collection, default_float_vec_field_name,
|
|
{"index_type": index_type, "params": {"nlist": 1024}, "metric_type": "L2"})
|
|
stats = connect.get_collection_stats(collection)
|
|
assert stats[row_count] == default_nb
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_collection_count_multi_collections_indexed(self, connect):
|
|
"""
|
|
target: test collection rows_count is correct or not with multiple collections of L2
|
|
method: create collection and add entities in it,
|
|
assert the value returned by count_entities method is equal to length of entities
|
|
expected: row count in segments
|
|
"""
|
|
collection_list = []
|
|
collection_num = 10
|
|
for i in range(collection_num):
|
|
collection_name = gen_unique_str(uid_stats)
|
|
collection_list.append(collection_name)
|
|
connect.create_collection(collection_name, cons.default_fields)
|
|
res = connect.insert(collection_name, cons.default_entities)
|
|
connect.flush(collection_list)
|
|
index_1 = {"index_type": "IVF_SQ8", "params": {"nlist": 1024}, "metric_type": "L2"}
|
|
index_2 = {"index_type": "IVF_FLAT", "params": {"nlist": 1024}, "metric_type": "L2"}
|
|
if i % 2:
|
|
connect.create_index(collection_name, default_float_vec_field_name, index_1)
|
|
else:
|
|
connect.create_index(collection_name, default_float_vec_field_name, index_2)
|
|
for i in range(collection_num):
|
|
stats = connect.get_collection_stats(collection_list[i])
|
|
assert stats[row_count] == default_nb
|
|
index = connect.describe_index(collection_list[i], "")
|
|
if i % 2:
|
|
create_target_index(index_1, default_float_vec_field_name)
|
|
assert index == index_1
|
|
else:
|
|
create_target_index(index_2, default_float_vec_field_name)
|
|
assert index == index_2
|
|
# break
|
|
connect.drop_collection(collection_list[i])
|
|
|
|
|
|
class TestCreateCollection:
|
|
"""
|
|
******************************************************************
|
|
The following cases are used to test `create_collection` function
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_single_filter_fields()
|
|
)
|
|
def get_filter_field(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_single_vector_fields()
|
|
)
|
|
def get_vector_field(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_segment_row_limits()
|
|
)
|
|
def get_segment_row_limit(self, request):
|
|
yield request.param
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def _test_create_collection_segment_row_limit(self, connect, get_segment_row_limit):
|
|
"""
|
|
target: test create normal collection with different fields
|
|
method: create collection with diff segment_row_limit
|
|
expected: no exception raised
|
|
"""
|
|
collection_name = gen_unique_str(uid_create)
|
|
fields = copy.deepcopy(cons.default_fields)
|
|
# fields["segment_row_limit"] = get_segment_row_limit
|
|
connect.create_collection(collection_name, fields)
|
|
assert connect.has_collection(collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_create_collection_after_insert(self, connect, collection):
|
|
"""
|
|
target: test insert vector, then create collection again
|
|
method: insert vector and create collection
|
|
expected: error raised
|
|
"""
|
|
# pdb.set_trace()
|
|
connect.insert(collection, cons.default_entity)
|
|
|
|
try:
|
|
connect.create_collection(collection, cons.default_fields)
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "Create collection failed: meta table add collection failed," \
|
|
"error = collection %s exist" % collection
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_create_collection_after_insert_flush(self, connect, collection):
|
|
"""
|
|
target: test insert vector, then create collection again
|
|
method: insert vector and create collection
|
|
expected: error raised
|
|
"""
|
|
connect.insert(collection, cons.default_entity)
|
|
connect.flush([collection])
|
|
try:
|
|
connect.create_collection(collection, cons.default_fields)
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "Create collection failed: meta table add collection failed," \
|
|
"error = collection %s exist" % collection
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_create_collection_multithread(self, connect):
|
|
"""
|
|
target: test create collection with multi-thread
|
|
method: create collection using multi-thread,
|
|
expected: collections are created
|
|
"""
|
|
threads_num = 8
|
|
threads = []
|
|
collection_names = []
|
|
|
|
def create():
|
|
collection_name = gen_unique_str(uid_create)
|
|
collection_names.append(collection_name)
|
|
connect.create_collection(collection_name, cons.default_fields)
|
|
|
|
for i in range(threads_num):
|
|
t = MyThread(target=create, args=())
|
|
threads.append(t)
|
|
t.start()
|
|
time.sleep(0.2)
|
|
for t in threads:
|
|
t.join()
|
|
|
|
for item in collection_names:
|
|
assert item in connect.list_collections()
|
|
connect.drop_collection(item)
|
|
|
|
|
|
class TestCreateCollectionInvalid(object):
|
|
"""
|
|
Test creating collections with invalid params
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_invalid_metric_types()
|
|
)
|
|
def get_metric_type(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_invalid_ints()
|
|
)
|
|
def get_segment_row_limit(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_invalid_ints()
|
|
)
|
|
def get_dim(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_invalid_strs()
|
|
)
|
|
def get_invalid_string(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_invalid_field_types()
|
|
)
|
|
def get_field_type(self, request):
|
|
yield request.param
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def _test_create_collection_with_invalid_segment_row_limit(self, connect, get_segment_row_limit):
|
|
collection_name = gen_unique_str()
|
|
fields = copy.deepcopy(cons.default_fields)
|
|
fields["segment_row_limit"] = get_segment_row_limit
|
|
with pytest.raises(Exception) as e:
|
|
connect.create_collection(collection_name, fields)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def _test_create_collection_no_segment_row_limit(self, connect):
|
|
"""
|
|
target: test create collection with no segment_row_limit params
|
|
method: create collection with correct params
|
|
expected: use default default_segment_row_limit
|
|
"""
|
|
collection_name = gen_unique_str(uid_create)
|
|
fields = copy.deepcopy(cons.default_fields)
|
|
fields.pop("segment_row_limit")
|
|
connect.create_collection(collection_name, fields)
|
|
res = connect.get_collection_info(collection_name)
|
|
logging.getLogger().info(res)
|
|
assert res["segment_row_limit"] == default_server_segment_row_limit
|
|
|
|
# TODO: assert exception
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_create_collection_limit_fields(self, connect):
|
|
"""
|
|
target: test create collection with maximum fields
|
|
method: create collection with maximum field number
|
|
expected: raise exception
|
|
"""
|
|
collection_name = gen_unique_str(uid_create)
|
|
limit_num = 64
|
|
fields = copy.deepcopy(cons.default_fields)
|
|
for i in range(limit_num):
|
|
field_name = gen_unique_str("field_name")
|
|
field = {"name": field_name, "type": DataType.INT64}
|
|
fields["fields"].append(field)
|
|
|
|
try:
|
|
connect.create_collection(collection_name, fields)
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "maximum field's number should be limited to 64"
|
|
|
|
|
|
class TestDescribeCollection:
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_single_filter_fields()
|
|
)
|
|
def get_filter_field(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_single_vector_fields()
|
|
)
|
|
def get_vector_field(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_simple_index()
|
|
)
|
|
def get_simple_index(self, request, connect):
|
|
logging.getLogger().info(request.param)
|
|
# if str(connect._cmd("mode")) == "CPU":
|
|
# if request.param["index_type"] in index_cpu_not_support():
|
|
# pytest.skip("sq8h not support in CPU mode")
|
|
return request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
The following cases are used to test `describe_collection` function, no data in collection
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_collection_fields(self, connect, get_filter_field, get_vector_field):
|
|
"""
|
|
target: test create normal collection with different fields, check info returned
|
|
method: create collection with diff fields: metric/field_type/..., calling `describe_collection`
|
|
expected: no exception raised, and value returned correct
|
|
"""
|
|
filter_field = get_filter_field
|
|
vector_field = get_vector_field
|
|
collection_name = gen_unique_str(uid_describe)
|
|
fields = {
|
|
"fields": [gen_primary_field(), filter_field, vector_field],
|
|
# "segment_row_limit": default_segment_row_limit
|
|
}
|
|
connect.create_collection(collection_name, fields)
|
|
res = connect.describe_collection(collection_name)
|
|
# assert res['segment_row_limit'] == default_segment_row_limit
|
|
assert len(res["fields"]) == len(fields.get("fields"))
|
|
for field in res["fields"]:
|
|
if field["type"] == filter_field:
|
|
assert field["name"] == filter_field["name"]
|
|
elif field["type"] == vector_field:
|
|
assert field["name"] == vector_field["name"]
|
|
assert field["params"] == vector_field["params"]
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_describe_collection_after_index_created(self, connect, collection, get_simple_index):
|
|
connect.create_index(collection, default_float_vec_field_name, get_simple_index)
|
|
if get_simple_index["index_type"] != "FLAT":
|
|
index = connect.describe_index(collection, "")
|
|
assert index["index_type"] == get_simple_index["index_type"]
|
|
assert index["metric_type"] == get_simple_index["metric_type"]
|
|
assert index["params"] == get_simple_index["params"]
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_describe_collection_without_connection(self, collection, dis_connect):
|
|
"""
|
|
target: test get collection info, without connection
|
|
method: calling get collection info with correct params, with a disconnected instance
|
|
expected: get collection info raise exception
|
|
"""
|
|
with pytest.raises(Exception) as e:
|
|
dis_connect.describe_collection(collection)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_describe_collection_not_existed(self, connect):
|
|
"""
|
|
target: test if collection not created
|
|
method: random a collection name, create this collection then drop it,
|
|
assert the value returned by describe_collection method
|
|
expected: False
|
|
"""
|
|
collection_name = gen_unique_str(uid_describe)
|
|
connect.create_collection(collection_name, cons.default_fields)
|
|
connect.describe_collection(collection_name)
|
|
connect.drop_collection(collection_name)
|
|
try:
|
|
connect.describe_collection(collection_name)
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "describe collection failed: can't find collection: %s" % collection_name
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_describe_collection_multithread(self, connect):
|
|
"""
|
|
target: test create collection with multi-thread
|
|
method: create collection using multi-thread,
|
|
expected: collections are created
|
|
"""
|
|
threads_num = 4
|
|
threads = []
|
|
collection_name = gen_unique_str(uid_describe)
|
|
connect.create_collection(collection_name, cons.default_fields)
|
|
|
|
def get_info():
|
|
connect.describe_collection(collection_name)
|
|
|
|
for i in range(threads_num):
|
|
t = MyThread(target=get_info)
|
|
threads.append(t)
|
|
t.start()
|
|
time.sleep(0.2)
|
|
for t in threads:
|
|
t.join()
|
|
|
|
"""
|
|
******************************************************************
|
|
The following cases are used to test `describe_collection` function, and insert data in collection
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_describe_collection_fields_after_insert(self, connect, get_filter_field, get_vector_field):
|
|
"""
|
|
target: test create normal collection with different fields, check info returned
|
|
method: create collection with diff fields: metric/field_type/..., calling `describe_collection`
|
|
expected: no exception raised, and value returned correct
|
|
"""
|
|
filter_field = get_filter_field
|
|
vector_field = get_vector_field
|
|
collection_name = gen_unique_str(uid_describe)
|
|
fields = {
|
|
"fields": [gen_primary_field(), filter_field, vector_field],
|
|
# "segment_row_limit": default_segment_row_limit
|
|
}
|
|
connect.create_collection(collection_name, fields)
|
|
entities = gen_entities_by_fields(fields["fields"], default_nb, vector_field["params"]["dim"])
|
|
res_ids = connect.insert(collection_name, entities)
|
|
connect.flush([collection_name])
|
|
res = connect.describe_collection(collection_name)
|
|
# assert res['segment_row_limit'] == default_segment_row_limit
|
|
assert len(res["fields"]) == len(fields.get("fields"))
|
|
for field in res["fields"]:
|
|
if field["type"] == filter_field:
|
|
assert field["name"] == filter_field["name"]
|
|
elif field["type"] == vector_field:
|
|
assert field["name"] == vector_field["name"]
|
|
assert field["params"] == vector_field["params"]
|
|
|
|
|
|
class TestDescribeCollectionInvalid(object):
|
|
"""
|
|
Test describe collection with invalid params
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_invalid_strs()
|
|
)
|
|
def get_collection_name(self, request):
|
|
yield request.param
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_describe_collection_with_invalid_collection_name(self, connect, get_collection_name):
|
|
"""
|
|
target: test describe collection which name invalid
|
|
method: call describe_collection with invalid names
|
|
expected: raise exception
|
|
"""
|
|
collection_name = get_collection_name
|
|
with pytest.raises(Exception) as e:
|
|
connect.describe_collection(collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.parametrize("collection_name", ('', None))
|
|
def test_describe_collection_with_empty_or_None_collection_name(self, connect, collection_name):
|
|
"""
|
|
target: test describe collection which name is empty or None
|
|
method: call describe_collection with '' or None name
|
|
expected: raise exception
|
|
"""
|
|
with pytest.raises(Exception) as e:
|
|
connect.describe_collection(collection_name)
|
|
|
|
|
|
class TestDropCollection:
|
|
"""
|
|
******************************************************************
|
|
The following cases are used to test `drop_collection` function
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_drop_collection_A(self, connect, collection):
|
|
"""
|
|
target: test delete collection created with correct params
|
|
method: create collection and then delete,
|
|
assert the value returned by delete method
|
|
expected: status ok, and no collection in collections
|
|
"""
|
|
connect.drop_collection(collection)
|
|
time.sleep(2)
|
|
assert not connect.has_collection(collection)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_drop_collection_without_connection(self, collection, dis_connect):
|
|
"""
|
|
target: test describe collection, without connection
|
|
method: drop collection with correct params, with a disconnected instance
|
|
expected: drop raise exception
|
|
"""
|
|
with pytest.raises(Exception) as e:
|
|
dis_connect.drop_collection(collection)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_drop_collection_not_existed(self, connect):
|
|
"""
|
|
target: test if collection not created
|
|
method: random a collection name, which not existed in db,
|
|
assert the exception raised returned by drp_collection method
|
|
expected: False
|
|
"""
|
|
collection_name = gen_unique_str(uid_drop)
|
|
try:
|
|
connect.drop_collection(collection_name)
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "describe collection failed: can't find collection: %s" % collection_name
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_create_drop_collection_multithread(self, connect):
|
|
"""
|
|
target: test create and drop collection with multi-thread
|
|
method: create and drop collection using multi-thread,
|
|
expected: collections are created, and dropped
|
|
"""
|
|
threads_num = 8
|
|
threads = []
|
|
collection_names = []
|
|
|
|
def create():
|
|
collection_name = gen_unique_str(uid_drop)
|
|
collection_names.append(collection_name)
|
|
connect.create_collection(collection_name, cons.default_fields)
|
|
connect.drop_collection(collection_name)
|
|
|
|
for i in range(threads_num):
|
|
t = MyThread(target=create, args=())
|
|
threads.append(t)
|
|
t.start()
|
|
time.sleep(0.2)
|
|
for t in threads:
|
|
t.join()
|
|
|
|
for item in collection_names:
|
|
assert not connect.has_collection(item)
|
|
|
|
|
|
class TestDropCollectionInvalid(object):
|
|
"""
|
|
Test has collection with invalid params
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_invalid_strs()
|
|
)
|
|
def get_collection_name(self, request):
|
|
yield request.param
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_drop_collection_with_invalid_collection_name(self, connect, get_collection_name):
|
|
"""
|
|
target: test drop invalid collection
|
|
method: drop collection with invalid collection name
|
|
expected: raise exception
|
|
"""
|
|
collection_name = get_collection_name
|
|
with pytest.raises(Exception) as e:
|
|
connect.has_collection(collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.parametrize("collection_name", ('', None))
|
|
def test_drop_collection_with_empty_or_None_collection_name(self, connect, collection_name):
|
|
"""
|
|
target: test drop invalid collection
|
|
method: drop collection with empty or None collection name
|
|
expected: raise exception
|
|
"""
|
|
with pytest.raises(Exception) as e:
|
|
connect.has_collection(collection_name)
|
|
|
|
|
|
class TestHasCollection:
|
|
"""
|
|
******************************************************************
|
|
The following cases are used to test `has_collection` function
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_has_collection_without_connection(self, collection, dis_connect):
|
|
"""
|
|
target: test has collection, without connection
|
|
method: calling has collection with correct params, with a disconnected instance
|
|
expected: has collection raise exception
|
|
"""
|
|
with pytest.raises(Exception) as e:
|
|
assert dis_connect.has_collection(collection)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_has_collection_not_existed(self, connect):
|
|
"""
|
|
target: test if collection not created
|
|
method: random a collection name, create this collection then drop it,
|
|
assert the value returned by has_collection method
|
|
expected: False
|
|
"""
|
|
collection_name = gen_unique_str(uid_has)
|
|
connect.create_collection(collection_name, cons.default_fields)
|
|
assert connect.has_collection(collection_name)
|
|
connect.drop_collection(collection_name)
|
|
assert not connect.has_collection(collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_has_collection_multithread(self, connect):
|
|
"""
|
|
target: test create collection with multi-thread
|
|
method: create collection using multi-thread,
|
|
expected: collections are created
|
|
"""
|
|
threads_num = 4
|
|
threads = []
|
|
collection_name = gen_unique_str(uid_has)
|
|
connect.create_collection(collection_name, cons.default_fields)
|
|
|
|
def has():
|
|
assert connect.has_collection(collection_name)
|
|
# assert not assert_collection(connect, collection_name)
|
|
|
|
for i in range(threads_num):
|
|
t = MyThread(target=has, args=())
|
|
threads.append(t)
|
|
t.start()
|
|
time.sleep(0.2)
|
|
for t in threads:
|
|
t.join()
|
|
|
|
|
|
class TestHasCollectionInvalid(object):
|
|
"""
|
|
Test has collection with invalid params
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_invalid_strs()
|
|
)
|
|
def get_collection_name(self, request):
|
|
yield request.param
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_has_collection_with_invalid_collection_name(self, connect, get_collection_name):
|
|
"""
|
|
target: test list collections with invalid scenario
|
|
method: show collection with invalid collection name
|
|
expected: raise exception
|
|
"""
|
|
collection_name = get_collection_name
|
|
with pytest.raises(Exception) as e:
|
|
connect.has_collection(collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_has_collection_with_empty_collection_name(self, connect):
|
|
"""
|
|
target: test list collections with invalid scenario
|
|
method: show collection with empty collection name
|
|
expected: raise exception
|
|
"""
|
|
collection_name = ''
|
|
with pytest.raises(Exception) as e:
|
|
connect.has_collection(collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_has_collection_with_none_collection_name(self, connect):
|
|
"""
|
|
target: test list collections with invalid scenario
|
|
method: show collection with no collection name
|
|
expected: raise exception
|
|
"""
|
|
collection_name = None
|
|
with pytest.raises(Exception) as e:
|
|
connect.has_collection(collection_name)
|
|
|
|
|
|
class TestListCollections:
|
|
"""
|
|
******************************************************************
|
|
The following cases are used to test `list_collections` function
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_list_collections_multi_collections(self, connect):
|
|
"""
|
|
target: test list collections
|
|
method: create collection, assert the value returned by list_collections method
|
|
expected: True
|
|
"""
|
|
collection_num = 50
|
|
collection_names = []
|
|
for i in range(collection_num):
|
|
collection_name = gen_unique_str(uid_list)
|
|
collection_names.append(collection_name)
|
|
connect.create_collection(collection_name, cons.default_fields)
|
|
assert collection_name in connect.list_collections()
|
|
for i in range(collection_num):
|
|
connect.drop_collection(collection_names[i])
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_list_collections_without_connection(self, dis_connect):
|
|
"""
|
|
target: test list collections, without connection
|
|
method: calling list collections with correct params, with a disconnected instance
|
|
expected: list collections raise exception
|
|
"""
|
|
with pytest.raises(Exception) as e:
|
|
dis_connect.list_collections()
|
|
|
|
# TODO: make sure to run this case in the end
|
|
@pytest.mark.skip("r0.3-test")
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_list_collections_no_collection(self, connect):
|
|
"""
|
|
target: test show collections is correct or not, if no collection in db
|
|
method: delete all collections,
|
|
assert the value returned by list_collections method is equal to []
|
|
expected: the status is ok, and the result is equal to []
|
|
"""
|
|
result = connect.list_collections()
|
|
if result:
|
|
for collection_name in result:
|
|
assert connect.has_collection(collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_list_collections_multithread(self, connect):
|
|
"""
|
|
target: test list collection with multi-threads
|
|
method: list collection using multi-threads
|
|
expected: list collections correctly
|
|
"""
|
|
threads_num = 10
|
|
threads = []
|
|
collection_name = gen_unique_str(uid_list)
|
|
connect.create_collection(collection_name, cons.default_fields)
|
|
|
|
def _list():
|
|
assert collection_name in connect.list_collections()
|
|
|
|
for i in range(threads_num):
|
|
t = MyThread(target=_list)
|
|
threads.append(t)
|
|
t.start()
|
|
time.sleep(0.2)
|
|
for t in threads:
|
|
t.join()
|
|
|
|
|
|
class TestLoadCollection:
|
|
"""
|
|
******************************************************************
|
|
The following cases are used to test `load_collection` function
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_simple_index()
|
|
)
|
|
def get_simple_index(self, request, connect):
|
|
return request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_binary_index()
|
|
)
|
|
def get_binary_index(self, request, connect):
|
|
return request.param
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_load_collection_after_index(self, connect, collection, get_simple_index):
|
|
"""
|
|
target: test load collection, after index created
|
|
method: insert and create index, load collection with correct params
|
|
expected: no error raised
|
|
"""
|
|
connect.insert(collection, cons.default_entities)
|
|
connect.flush([collection])
|
|
connect.create_index(collection, default_float_vec_field_name, get_simple_index)
|
|
connect.load_collection(collection)
|
|
connect.release_collection(collection)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_load_collection_after_index_binary(self, connect, binary_collection, get_binary_index):
|
|
"""
|
|
target: test load binary_collection, after index created
|
|
method: insert and create index, load binary_collection with correct params
|
|
expected: no error raised
|
|
"""
|
|
result = connect.insert(binary_collection, cons.default_binary_entities)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([binary_collection])
|
|
for metric_type in binary_metrics():
|
|
get_binary_index["metric_type"] = metric_type
|
|
connect.drop_index(binary_collection, default_binary_vec_field_name)
|
|
if get_binary_index["index_type"] == "BIN_IVF_FLAT" and metric_type in structure_metrics():
|
|
with pytest.raises(Exception) as e:
|
|
connect.create_index(binary_collection, default_binary_vec_field_name, get_binary_index)
|
|
else:
|
|
connect.create_index(binary_collection, default_binary_vec_field_name, get_binary_index)
|
|
index = connect.describe_index(binary_collection, "")
|
|
create_target_index(get_binary_index, default_binary_vec_field_name)
|
|
assert index == get_binary_index
|
|
connect.load_collection(binary_collection)
|
|
connect.release_collection(binary_collection)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_load_empty_collection(self, connect, collection):
|
|
"""
|
|
target: test load an empty collection with no data inserted
|
|
method: no entities in collection, load and release the collection
|
|
expected: load and release successfully
|
|
"""
|
|
connect.load_collection(collection)
|
|
connect.release_collection(collection)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_load_collection_dis_connect(self, dis_connect, collection):
|
|
"""
|
|
target: test load collection, without connection
|
|
method: load collection with correct params, with a disconnected instance
|
|
expected: load raise exception
|
|
"""
|
|
with pytest.raises(Exception) as e:
|
|
dis_connect.load_collection(collection)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_release_collection_dis_connect(self, dis_connect, collection):
|
|
"""
|
|
target: test release collection, without connection
|
|
method: release collection with correct params, with a disconnected instance
|
|
expected: release raise exception
|
|
"""
|
|
with pytest.raises(Exception) as e:
|
|
dis_connect.release_collection(collection)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_load_collection_not_existed(self, connect, collection):
|
|
"""
|
|
target: test load invalid collection
|
|
method: load not existed collection
|
|
expected: raise exception
|
|
"""
|
|
collection_name = gen_unique_str(uid_load)
|
|
try:
|
|
connect.load_collection(collection_name)
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "describe collection failed: can't find collection: %s" % collection_name
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_release_collection_not_existed(self, connect, collection):
|
|
"""
|
|
target: test release a not existed collection
|
|
method: release with a not existed collection name
|
|
expected: raise exception
|
|
"""
|
|
collection_name = gen_unique_str(uid_load)
|
|
try:
|
|
connect.release_collection(collection_name)
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "describe collection failed: can't find collection: %s" % collection_name
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_release_collection_not_load(self, connect, collection):
|
|
"""
|
|
target: test release collection without load
|
|
method: release collection without load
|
|
expected: release successfully
|
|
"""
|
|
result = connect.insert(collection, cons.default_entities)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([collection])
|
|
connect.release_collection(collection)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_load_collection_after_load_release(self, connect, collection):
|
|
"""
|
|
target: test load collection after load and release
|
|
method: 1.load and release collection after entities flushed
|
|
2.re-load collection
|
|
expected: No exception
|
|
"""
|
|
result = connect.insert(collection, cons.default_entities)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([collection])
|
|
connect.load_collection(collection)
|
|
connect.release_collection(collection)
|
|
connect.load_collection(collection)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_load_collection_repeatedly(self, connect, collection):
|
|
"""
|
|
target: test load collection repeatedly
|
|
method: load collection twice
|
|
expected: No exception
|
|
"""
|
|
result = connect.insert(collection, cons.default_entities)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([collection])
|
|
connect.load_collection(collection)
|
|
connect.load_collection(collection)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_load_release_collection(self, connect, collection):
|
|
"""
|
|
target: test load, release non-exist collection
|
|
method: 1. load, release and drop collection
|
|
2. load and release dropped collection
|
|
expected: raise exception
|
|
"""
|
|
collection_name = gen_unique_str(uid_load)
|
|
connect.create_collection(collection_name, cons.default_fields)
|
|
connect.insert(collection_name, cons.default_entities)
|
|
connect.flush([collection_name])
|
|
connect.load_collection(collection_name)
|
|
connect.release_collection(collection_name)
|
|
connect.drop_collection(collection_name)
|
|
try:
|
|
connect.load_collection(collection_name)
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "describe collection failed: can't find collection: %s" % collection_name
|
|
|
|
try:
|
|
connect.release_collection(collection_name)
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "describe collection failed: can't find collection: %s" % collection_name
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_release_collection_after_drop(self, connect, collection):
|
|
"""
|
|
target: test release collection after drop
|
|
method: insert and flush, then release collection after load and drop
|
|
expected: raise exception
|
|
"""
|
|
result = connect.insert(collection, cons.default_entities)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([collection])
|
|
connect.load_collection(collection)
|
|
connect.drop_collection(collection)
|
|
try:
|
|
connect.release_collection(collection)
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "describe collection failed: can't find collection: %s" % collection
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_load_collection_without_flush(self, connect, collection):
|
|
"""
|
|
target: test load collection without flush
|
|
method: insert entities without flush, then load collection
|
|
expected: No exception and data can be queried
|
|
"""
|
|
result = connect.insert(collection, gen_entities(100))
|
|
assert len(result.primary_keys) == 100
|
|
connect.load_collection(collection)
|
|
int_field_name = "int64"
|
|
term_expr = f'{int_field_name} in {result.primary_keys[:1]}'
|
|
res = connect.query(collection, term_expr)
|
|
assert res == [{int_field_name: result.primary_keys[0]}]
|
|
|
|
# TODO
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def _test_load_collection_larger_than_memory(self):
|
|
"""
|
|
target: test load collection when memory less than collection size
|
|
method: i don't know
|
|
expected: raise exception
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_load_collection_release_part_partitions(self, connect, collection):
|
|
"""
|
|
target: test release part partitions after load collection
|
|
method: load collection and release part partitions
|
|
expected: released partitions search empty
|
|
"""
|
|
result = connect.insert(collection, cons.default_entities)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.create_partition(collection, default_tag)
|
|
result = connect.insert(collection, cons.default_entities, partition_name=default_tag)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([collection])
|
|
connect.load_collection(collection)
|
|
connect.release_partitions(collection, [default_tag])
|
|
with pytest.raises(Exception) as e:
|
|
connect.search(collection, **default_single_query, partition_names=[default_tag])
|
|
res = connect.search(collection, **default_single_query, partition_names=[default_partition_name])
|
|
assert len(res[0]) == default_top_k
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_load_collection_release_all_partitions(self, connect, collection):
|
|
"""
|
|
target: test release all partitions after load collection
|
|
method: load collection and release all partitions
|
|
expected: search empty
|
|
"""
|
|
result = connect.insert(collection, cons.default_entities)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.create_partition(collection, default_tag)
|
|
result = connect.insert(collection, cons.default_entities, partition_name=default_tag)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([collection])
|
|
connect.load_collection(collection)
|
|
connect.release_partitions(collection, [default_partition_name, default_tag])
|
|
res = connect.search(collection, **default_single_query)
|
|
assert len(res[0]) == 0
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_load_partitions_release_collection(self, connect, collection):
|
|
"""
|
|
target: test release collection after load partitions
|
|
method: insert entities into partitions, search empty after load partitions and release collection
|
|
expected: search result empty
|
|
"""
|
|
connect.create_partition(collection, default_tag)
|
|
result = connect.insert(collection, cons.default_entities, partition_name=default_tag)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([collection])
|
|
connect.load_partitions(collection, [default_tag])
|
|
connect.release_collection(collection)
|
|
with pytest.raises(Exception):
|
|
connect.search(collection, **default_single_query)
|
|
|
|
|
|
class TestReleaseAdvanced:
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_release_collection_during_searching(self, connect, collection):
|
|
"""
|
|
target: test release collection during searching
|
|
method: insert entities into collection, flush and load collection, release collection during searching
|
|
expected: raise exception
|
|
"""
|
|
nq = 1000
|
|
top_k = 1
|
|
connect.insert(collection, cons.default_entities)
|
|
connect.flush([collection])
|
|
connect.load_collection(collection)
|
|
params, _ = gen_search_vectors_params(field_name, cons.default_entities, top_k, nq)
|
|
future = connect.search(collection, **params, _async=True)
|
|
connect.release_collection(collection)
|
|
with pytest.raises(Exception):
|
|
connect.search(collection, **default_single_query)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_release_partition_during_searching(self, connect, collection):
|
|
"""
|
|
target: test release partition during searching
|
|
method: insert entities into partition, flush and load partition, release partition during searching
|
|
expected: raise exception
|
|
"""
|
|
nq = 1000
|
|
top_k = 1
|
|
connect.create_partition(collection, default_tag)
|
|
query, _ = gen_search_vectors_params(field_name, cons.default_entities, top_k, nq)
|
|
connect.insert(collection, cons.default_entities, partition_name=default_tag)
|
|
connect.flush([collection])
|
|
connect.load_partitions(collection, [default_tag])
|
|
res = connect.search(collection, **query, _async=True)
|
|
connect.release_partitions(collection, [default_tag])
|
|
with pytest.raises(Exception) as e:
|
|
res = connect.search(collection, **default_single_query)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_release_collection_during_searching_A(self, connect, collection):
|
|
"""
|
|
target: test release collection during searching
|
|
method: insert entities into partition, flush and load partition, release collection during searching
|
|
expected: raise exception
|
|
"""
|
|
nq = 1000
|
|
top_k = 1
|
|
connect.create_partition(collection, default_tag)
|
|
query, _ = gen_search_vectors_params(field_name, cons.default_entities, top_k, nq)
|
|
connect.insert(collection, cons.default_entities, partition_name=default_tag)
|
|
connect.flush([collection])
|
|
connect.load_partitions(collection, [default_tag])
|
|
res = connect.search(collection, **query, _async=True)
|
|
connect.release_collection(collection)
|
|
with pytest.raises(Exception):
|
|
connect.search(collection, **default_single_query)
|
|
|
|
def _test_release_collection_during_loading(self, connect, collection):
|
|
"""
|
|
target: test release collection during loading
|
|
method: insert entities into collection, flush, release collection during loading
|
|
expected: raise exception
|
|
"""
|
|
connect.insert(collection, cons.default_entities)
|
|
connect.flush([collection])
|
|
|
|
def load():
|
|
connect.load_collection(collection)
|
|
|
|
t = threading.Thread(target=load, args=())
|
|
t.start()
|
|
connect.release_collection(collection)
|
|
with pytest.raises(Exception):
|
|
connect.search(collection, **default_single_query)
|
|
|
|
def _test_release_partition_during_loading(self, connect, collection):
|
|
"""
|
|
target: test release partition during loading
|
|
method: insert entities into partition, flush, release partition during loading
|
|
expected:
|
|
"""
|
|
connect.create_partition(collection, default_tag)
|
|
connect.insert(collection, cons.default_entities, partition_name=default_tag)
|
|
connect.flush([collection])
|
|
|
|
def load():
|
|
connect.load_collection(collection)
|
|
|
|
t = threading.Thread(target=load, args=())
|
|
t.start()
|
|
connect.release_partitions(collection, [default_tag])
|
|
res = connect.search(collection, **default_single_query)
|
|
assert len(res[0]) == 0
|
|
|
|
def _test_release_collection_during_inserting(self, connect, collection):
|
|
"""
|
|
target: test release collection during inserting
|
|
method: load collection, do release collection during inserting
|
|
expected:
|
|
"""
|
|
connect.insert(collection, cons.default_entities)
|
|
connect.flush([collection])
|
|
connect.load_collection(collection)
|
|
|
|
def insert():
|
|
connect.insert(collection, cons.default_entities)
|
|
|
|
t = threading.Thread(target=insert, args=())
|
|
t.start()
|
|
connect.release_collection(collection)
|
|
with pytest.raises(Exception):
|
|
res = connect.search(collection, **default_single_query)
|
|
|
|
def _test_release_collection_during_indexing(self, connect, collection):
|
|
"""
|
|
target: test release collection during building index
|
|
method: insert and flush, load collection, do release collection during creating index
|
|
expected:
|
|
"""
|
|
pass
|
|
|
|
def _test_release_collection_during_droping_index(self, connect, collection):
|
|
"""
|
|
target: test release collection during droping index
|
|
method: insert, create index and flush, load collection, do release collection during droping index
|
|
expected:
|
|
"""
|
|
pass
|
|
|
|
|
|
class TestLoadCollectionInvalid(object):
|
|
"""
|
|
Test load collection with invalid params
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_invalid_strs()
|
|
)
|
|
def get_collection_name(self, request):
|
|
yield request.param
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_load_collection_with_invalid_collection_name(self, connect, get_collection_name):
|
|
"""
|
|
target: test load invalid collection
|
|
method: load collection with invalid name
|
|
expected: raise exception
|
|
"""
|
|
collection_name = get_collection_name
|
|
with pytest.raises(Exception) as e:
|
|
connect.load_collection(collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_release_collection_with_invalid_collection_name(self, connect, get_collection_name):
|
|
"""
|
|
target: test release invalid collection
|
|
method: release collection with invalid name
|
|
expected: raise exception
|
|
"""
|
|
collection_name = get_collection_name
|
|
with pytest.raises(Exception) as e:
|
|
connect.release_collection(collection_name)
|
|
|
|
|
|
class TestLoadPartition:
|
|
"""
|
|
******************************************************************
|
|
The following cases are used to test `load_collection` function
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_simple_index()
|
|
)
|
|
def get_simple_index(self, request, connect):
|
|
# if str(connect._cmd("mode")) == "CPU":
|
|
# if request.param["index_type"] in index_cpu_not_support():
|
|
# pytest.skip("sq8h not support in cpu mode")
|
|
return request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_binary_index()
|
|
)
|
|
def get_binary_index(self, request, connect):
|
|
logging.getLogger().info(request.param)
|
|
if request.param["index_type"] in binary_support():
|
|
return request.param
|
|
else:
|
|
pytest.skip("Skip index Temporary")
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_load_partition_after_index_binary(self, connect, binary_collection, get_binary_index):
|
|
"""
|
|
target: test load binary_collection, after index created
|
|
method: insert and create index, load binary_collection with correct params
|
|
expected: no error raised
|
|
"""
|
|
connect.create_partition(binary_collection, default_tag)
|
|
result = connect.insert(binary_collection, cons.default_binary_entities, partition_name=default_tag)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([binary_collection])
|
|
for metric_type in binary_metrics():
|
|
logging.getLogger().info(metric_type)
|
|
get_binary_index["metric_type"] = metric_type
|
|
if get_binary_index["index_type"] == "BIN_IVF_FLAT" and metric_type in structure_metrics():
|
|
with pytest.raises(Exception) as e:
|
|
connect.create_index(binary_collection, default_binary_vec_field_name, get_binary_index)
|
|
else:
|
|
connect.create_index(binary_collection, default_binary_vec_field_name, get_binary_index)
|
|
connect.load_partitions(binary_collection, [default_tag])
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_load_collection_dis_connect(self, connect, dis_connect, collection):
|
|
"""
|
|
target: test load collection, without connection
|
|
method: load collection with correct params, with a disconnected instance
|
|
expected: load raise exception
|
|
"""
|
|
connect.create_partition(collection, default_tag)
|
|
with pytest.raises(Exception) as e:
|
|
dis_connect.load_partitions(collection, [default_tag])
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_release_partition_dis_connect(self, connect, dis_connect, collection):
|
|
"""
|
|
target: test release collection, without connection
|
|
method: release collection with correct params, with a disconnected instance
|
|
expected: release raise exception
|
|
"""
|
|
connect.create_partition(collection, default_tag)
|
|
connect.load_partitions(collection, [default_tag])
|
|
with pytest.raises(Exception) as e:
|
|
dis_connect.release_partitions(collection, [default_tag])
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_load_partition_not_existed(self, connect, collection):
|
|
"""
|
|
target: test load partition for invalid scenario
|
|
method: load not existed partition
|
|
expected: raise exception and report the error
|
|
"""
|
|
partition_name = gen_unique_str(uid_load)
|
|
try:
|
|
connect.load_partitions(collection, [partition_name])
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "partitionID of partitionName:%s can not be find" % partition_name
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_release_partition_not_load(self, connect, collection):
|
|
"""
|
|
target: test release partition without load
|
|
method: release partition without load
|
|
expected: raise exception
|
|
"""
|
|
connect.create_partition(collection, default_tag)
|
|
result = connect.insert(collection, cons.default_entities, partition_name=default_tag)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([collection])
|
|
connect.release_partitions(collection, [default_tag])
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_load_release_after_drop(self, connect, collection):
|
|
"""
|
|
target: test load and release partition after drop
|
|
method: drop partition and then load and release it
|
|
expected: raise exception
|
|
"""
|
|
connect.create_partition(collection, default_tag)
|
|
result = connect.insert(collection, cons.default_entities, partition_name=default_tag)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([collection])
|
|
connect.load_partitions(collection, [default_tag])
|
|
connect.release_partitions(collection, [default_tag])
|
|
connect.drop_partition(collection, default_tag)
|
|
try:
|
|
connect.load_partitions(collection, [default_tag])
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "partitionID of partitionName:%s can not be find" % default_tag
|
|
|
|
try:
|
|
connect.release_partitions(collection, [default_tag])
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "partitionID of partitionName:%s can not be find" % default_tag
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_release_partition_after_drop(self, connect, collection):
|
|
"""
|
|
target: test release collection after drop
|
|
method: insert and flush, then release collection after load and drop
|
|
expected: raise exception
|
|
"""
|
|
connect.create_partition(collection, default_tag)
|
|
result = connect.insert(collection, cons.default_entities, partition_name=default_tag)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([collection])
|
|
connect.load_partitions(collection, [default_tag])
|
|
connect.drop_partition(collection, default_tag)
|
|
try:
|
|
connect.load_partitions(collection, [default_tag])
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "partitionID of partitionName:%s can not be find" % default_tag
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_load_release_after_collection_drop(self, connect, collection):
|
|
"""
|
|
target: test release collection after drop
|
|
method: insert and flush, then release collection after load and drop
|
|
expected: raise exception
|
|
"""
|
|
connect.create_partition(collection, default_tag)
|
|
result = connect.insert(collection, cons.default_entities, partition_name=default_tag)
|
|
assert len(result.primary_keys) == default_nb
|
|
connect.flush([collection])
|
|
connect.load_partitions(collection, [default_tag])
|
|
connect.release_partitions(collection, [default_tag])
|
|
connect.drop_collection(collection)
|
|
try:
|
|
connect.load_partitions(collection, [default_tag])
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "describe collection failed: can't find collection: %s" % collection
|
|
|
|
try:
|
|
connect.release_partitions(collection, [default_tag])
|
|
except Exception as e:
|
|
code = getattr(e, 'code', "The exception does not contain the field of code.")
|
|
assert code == 1
|
|
message = getattr(e, 'message', "The exception does not contain the field of message.")
|
|
assert message == "describe collection failed: can't find collection: %s" % collection
|
|
|
|
|
|
class TestLoadPartitionInvalid(object):
|
|
"""
|
|
Test load collection with invalid params
|
|
"""
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_invalid_strs()
|
|
)
|
|
def get_partition_name(self, request):
|
|
yield request.param
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_load_partition_with_invalid_partition_name(self, connect, collection, get_partition_name):
|
|
"""
|
|
target: test load invalid partition
|
|
method: load partition with invalid partition name
|
|
expected: raise exception
|
|
"""
|
|
partition_name = get_partition_name
|
|
with pytest.raises(Exception) as e:
|
|
connect.load_partitions(collection, [partition_name])
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_release_partition_with_invalid_partition_name(self, connect, collection, get_partition_name):
|
|
"""
|
|
target: test release invalid partition
|
|
method: release partition with invalid partition name
|
|
expected: raise exception
|
|
"""
|
|
partition_name = get_partition_name
|
|
with pytest.raises(Exception) as e:
|
|
connect.load_partitions(collection, [partition_name])
|