mirror of
https://gitee.com/milvus-io/milvus.git
synced 2024-12-05 05:18:52 +08:00
a933f6731b
issue: https://github.com/milvus-io/milvus/issues/30633 Signed-off-by: chasingegg <chao.gao@zilliz.com>
342 lines
13 KiB
C++
342 lines
13 KiB
C++
// Copyright (C) 2019-2020 Zilliz. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software distributed under the License
|
|
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
|
// or implied. See the License for the specific language governing permissions and limitations under the License
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <functional>
|
|
#include <fstream>
|
|
#include <boost/filesystem.hpp>
|
|
#include <numeric>
|
|
#include <unordered_set>
|
|
|
|
#include "common/Tracer.h"
|
|
#include "common/EasyAssert.h"
|
|
#include "index/InvertedIndexTantivy.h"
|
|
#include "storage/Util.h"
|
|
#include "storage/InsertData.h"
|
|
#include "clustering/KmeansClustering.h"
|
|
#include "storage/LocalChunkManagerSingleton.h"
|
|
#include "test_utils/indexbuilder_test_utils.h"
|
|
#include "test_utils/storage_test_utils.h"
|
|
#include "index/Meta.h"
|
|
|
|
using namespace milvus;
|
|
|
|
void
|
|
ReadPBFile(std::string& file_path, google::protobuf::Message& message) {
|
|
std::ifstream infile;
|
|
infile.open(file_path.data(), std::ios_base::binary);
|
|
if (infile.fail()) {
|
|
std::stringstream err_msg;
|
|
err_msg << "Error: open local file '" << file_path << " failed, "
|
|
<< strerror(errno);
|
|
throw SegcoreError(FileOpenFailed, err_msg.str());
|
|
}
|
|
|
|
infile.seekg(0, std::ios::beg);
|
|
if (!message.ParseFromIstream(&infile)) {
|
|
std::stringstream err_msg;
|
|
err_msg << "Error: parse pb file '" << file_path << " failed, "
|
|
<< strerror(errno);
|
|
throw SegcoreError(FileReadFailed, err_msg.str());
|
|
}
|
|
infile.close();
|
|
}
|
|
|
|
milvus::proto::clustering::AnalyzeInfo
|
|
transforConfigToPB(const Config& config) {
|
|
milvus::proto::clustering::AnalyzeInfo analyze_info;
|
|
analyze_info.set_num_clusters(config["num_clusters"]);
|
|
analyze_info.set_max_cluster_ratio(config["max_cluster_ratio"]);
|
|
analyze_info.set_min_cluster_ratio(config["min_cluster_ratio"]);
|
|
analyze_info.set_max_cluster_size(config["max_cluster_size"]);
|
|
auto& num_rows = *analyze_info.mutable_num_rows();
|
|
for (const auto& [k, v] :
|
|
milvus::index::GetValueFromConfig<std::map<int64_t, int64_t>>(
|
|
config, "num_rows")
|
|
.value()) {
|
|
num_rows[k] = v;
|
|
}
|
|
auto& insert_files = *analyze_info.mutable_insert_files();
|
|
auto insert_files_map =
|
|
milvus::index::GetValueFromConfig<
|
|
std::map<int64_t, std::vector<std::string>>>(config, "insert_files")
|
|
.value();
|
|
for (const auto& [k, v] : insert_files_map) {
|
|
for (auto i = 0; i < v.size(); i++)
|
|
insert_files[k].add_insert_files(v[i]);
|
|
}
|
|
analyze_info.set_dim(config["dim"]);
|
|
analyze_info.set_train_size(config["train_size"]);
|
|
return analyze_info;
|
|
}
|
|
|
|
// when we skip clustering, nothing uploaded
|
|
template <typename T>
|
|
void
|
|
CheckResultEmpty(const milvus::clustering::KmeansClusteringPtr& clusteringJob,
|
|
const milvus::storage::ChunkManagerPtr cm,
|
|
int64_t segment_id,
|
|
int64_t segment_id2) {
|
|
std::string centroids_path_prefix =
|
|
clusteringJob->GetRemoteCentroidsObjectPrefix();
|
|
std::string centroid_path =
|
|
centroids_path_prefix + "/" + std::string(CENTROIDS_NAME);
|
|
ASSERT_FALSE(cm->Exist(centroid_path));
|
|
std::string offset_mapping_name = std::string(OFFSET_MAPPING_NAME);
|
|
std::string centroid_id_mapping_path =
|
|
clusteringJob->GetRemoteCentroidIdMappingObjectPrefix(segment_id) +
|
|
"/" + offset_mapping_name;
|
|
milvus::proto::clustering::ClusteringCentroidIdMappingStats mapping_stats;
|
|
std::string centroid_id_mapping_path2 =
|
|
clusteringJob->GetRemoteCentroidIdMappingObjectPrefix(segment_id2) +
|
|
"/" + offset_mapping_name;
|
|
ASSERT_FALSE(cm->Exist(centroid_id_mapping_path));
|
|
ASSERT_FALSE(cm->Exist(centroid_id_mapping_path2));
|
|
}
|
|
|
|
template <typename T>
|
|
void
|
|
CheckResultCorrectness(
|
|
const milvus::clustering::KmeansClusteringPtr& clusteringJob,
|
|
const milvus::storage::ChunkManagerPtr cm,
|
|
int64_t segment_id,
|
|
int64_t segment_id2,
|
|
int64_t dim,
|
|
int64_t nb,
|
|
int expected_num_clusters,
|
|
bool check_centroids) {
|
|
std::string centroids_path_prefix =
|
|
clusteringJob->GetRemoteCentroidsObjectPrefix();
|
|
std::string centroids_name = std::string(CENTROIDS_NAME);
|
|
std::string centroid_path = centroids_path_prefix + "/" + centroids_name;
|
|
milvus::proto::clustering::ClusteringCentroidsStats stats;
|
|
ReadPBFile(centroid_path, stats);
|
|
std::vector<T> centroids;
|
|
for (const auto& centroid : stats.centroids()) {
|
|
const auto& float_vector = centroid.float_vector();
|
|
for (float value : float_vector.data()) {
|
|
centroids.emplace_back(T(value));
|
|
}
|
|
}
|
|
ASSERT_EQ(centroids.size(), expected_num_clusters * dim);
|
|
std::string offset_mapping_name = std::string(OFFSET_MAPPING_NAME);
|
|
std::string centroid_id_mapping_path =
|
|
clusteringJob->GetRemoteCentroidIdMappingObjectPrefix(segment_id) +
|
|
"/" + offset_mapping_name;
|
|
milvus::proto::clustering::ClusteringCentroidIdMappingStats mapping_stats;
|
|
std::string centroid_id_mapping_path2 =
|
|
clusteringJob->GetRemoteCentroidIdMappingObjectPrefix(segment_id2) +
|
|
"/" + offset_mapping_name;
|
|
milvus::proto::clustering::ClusteringCentroidIdMappingStats mapping_stats2;
|
|
ReadPBFile(centroid_id_mapping_path, mapping_stats);
|
|
ReadPBFile(centroid_id_mapping_path2, mapping_stats2);
|
|
|
|
std::vector<uint32_t> centroid_id_mapping;
|
|
std::vector<int64_t> num_in_centroid;
|
|
for (const auto id : mapping_stats.centroid_id_mapping()) {
|
|
centroid_id_mapping.emplace_back(id);
|
|
ASSERT_TRUE(id < expected_num_clusters);
|
|
}
|
|
ASSERT_EQ(centroid_id_mapping.size(), nb);
|
|
for (const auto num : mapping_stats.num_in_centroid()) {
|
|
num_in_centroid.emplace_back(num);
|
|
}
|
|
ASSERT_EQ(
|
|
std::accumulate(num_in_centroid.begin(), num_in_centroid.end(), 0), nb);
|
|
// second id mapping should be the same with the first one since the segment data is the same
|
|
if (check_centroids) {
|
|
for (int64_t i = 0; i < mapping_stats2.centroid_id_mapping_size();
|
|
i++) {
|
|
ASSERT_EQ(mapping_stats2.centroid_id_mapping(i),
|
|
centroid_id_mapping[i]);
|
|
}
|
|
for (int64_t i = 0; i < mapping_stats2.num_in_centroid_size(); i++) {
|
|
ASSERT_EQ(mapping_stats2.num_in_centroid(i), num_in_centroid[i]);
|
|
}
|
|
}
|
|
// remove files
|
|
cm->Remove(centroid_path);
|
|
cm->Remove(centroid_id_mapping_path);
|
|
cm->Remove(centroid_id_mapping_path2);
|
|
}
|
|
|
|
template <typename T, DataType dtype>
|
|
void
|
|
test_run() {
|
|
int64_t collection_id = 1;
|
|
int64_t partition_id = 2;
|
|
int64_t segment_id = 3;
|
|
int64_t segment_id2 = 4;
|
|
int64_t field_id = 101;
|
|
int64_t index_build_id = 1000;
|
|
int64_t index_version = 10000;
|
|
int64_t dim = 100;
|
|
int64_t nb = 10000;
|
|
|
|
auto field_meta =
|
|
gen_field_meta(collection_id, partition_id, segment_id, field_id);
|
|
auto index_meta =
|
|
gen_index_meta(segment_id, field_id, index_build_id, index_version);
|
|
|
|
std::string root_path = "/tmp/test-kmeans-clustering/";
|
|
auto storage_config = gen_local_storage_config(root_path);
|
|
auto cm = storage::CreateChunkManager(storage_config);
|
|
|
|
std::vector<T> data_gen(nb * dim);
|
|
for (int64_t i = 0; i < nb * dim; ++i) {
|
|
data_gen[i] = rand();
|
|
}
|
|
auto field_data = storage::CreateFieldData(dtype, dim);
|
|
field_data->FillFieldData(data_gen.data(), data_gen.size() / dim);
|
|
storage::InsertData insert_data(field_data);
|
|
insert_data.SetFieldDataMeta(field_meta);
|
|
insert_data.SetTimestamps(0, 100);
|
|
auto serialized_bytes = insert_data.Serialize(storage::Remote);
|
|
|
|
auto get_binlog_path = [=](int64_t log_id) {
|
|
return fmt::format("{}/{}/{}/{}/{}",
|
|
collection_id,
|
|
partition_id,
|
|
segment_id,
|
|
field_id,
|
|
log_id);
|
|
};
|
|
|
|
auto log_path = get_binlog_path(0);
|
|
auto cm_w = ChunkManagerWrapper(cm);
|
|
cm_w.Write(log_path, serialized_bytes.data(), serialized_bytes.size());
|
|
storage::FileManagerContext ctx(field_meta, index_meta, cm);
|
|
|
|
std::map<int64_t, std::vector<std::string>> remote_files;
|
|
std::map<int64_t, int64_t> num_rows;
|
|
// two segments
|
|
remote_files[segment_id] = {log_path};
|
|
remote_files[segment_id2] = {log_path};
|
|
num_rows[segment_id] = nb;
|
|
num_rows[segment_id2] = nb;
|
|
Config config;
|
|
config["max_cluster_ratio"] = 10.0;
|
|
config["max_cluster_size"] = 5L * 1024 * 1024 * 1024;
|
|
auto clusteringJob = std::make_unique<clustering::KmeansClustering>(ctx);
|
|
// no need to sample train data
|
|
{
|
|
config["min_cluster_ratio"] = 0.01;
|
|
config["insert_files"] = remote_files;
|
|
config["num_clusters"] = 8;
|
|
config["train_size"] = 25L * 1024 * 1024 * 1024; // 25GB
|
|
config["dim"] = dim;
|
|
config["num_rows"] = num_rows;
|
|
clusteringJob->Run<T>(transforConfigToPB(config));
|
|
CheckResultCorrectness<T>(clusteringJob,
|
|
cm,
|
|
segment_id,
|
|
segment_id2,
|
|
dim,
|
|
nb,
|
|
config["num_clusters"],
|
|
true);
|
|
}
|
|
{
|
|
config["min_cluster_ratio"] = 0.01;
|
|
config["insert_files"] = remote_files;
|
|
config["num_clusters"] = 200;
|
|
config["train_size"] = 25L * 1024 * 1024 * 1024; // 25GB
|
|
config["dim"] = dim;
|
|
config["num_rows"] = num_rows;
|
|
clusteringJob->Run<T>(transforConfigToPB(config));
|
|
CheckResultCorrectness<T>(clusteringJob,
|
|
cm,
|
|
segment_id,
|
|
segment_id2,
|
|
dim,
|
|
nb,
|
|
config["num_clusters"],
|
|
true);
|
|
}
|
|
// num clusters larger than train num
|
|
{
|
|
EXPECT_THROW(
|
|
try {
|
|
config["min_cluster_ratio"] = 0.01;
|
|
config["insert_files"] = remote_files;
|
|
config["num_clusters"] = 100000;
|
|
config["train_size"] = 25L * 1024 * 1024 * 1024; // 25GB
|
|
config["dim"] = dim;
|
|
config["num_rows"] = num_rows;
|
|
clusteringJob->Run<T>(transforConfigToPB(config));
|
|
} catch (SegcoreError& e) {
|
|
ASSERT_EQ(e.get_error_code(), ErrorCode::ClusterSkip);
|
|
CheckResultEmpty<T>(clusteringJob, cm, segment_id, segment_id2);
|
|
throw e;
|
|
},
|
|
SegcoreError);
|
|
}
|
|
|
|
// data skew
|
|
{
|
|
EXPECT_THROW(
|
|
try {
|
|
config["min_cluster_ratio"] = 0.98;
|
|
config["insert_files"] = remote_files;
|
|
config["num_clusters"] = 8;
|
|
config["train_size"] = 25L * 1024 * 1024 * 1024; // 25GB
|
|
config["dim"] = dim;
|
|
config["num_rows"] = num_rows;
|
|
clusteringJob->Run<T>(transforConfigToPB(config));
|
|
} catch (SegcoreError& e) {
|
|
ASSERT_EQ(e.get_error_code(), ErrorCode::ClusterSkip);
|
|
CheckResultEmpty<T>(clusteringJob, cm, segment_id, segment_id2);
|
|
throw e;
|
|
},
|
|
SegcoreError);
|
|
}
|
|
|
|
// need to sample train data case1
|
|
{
|
|
config["min_cluster_ratio"] = 0.01;
|
|
config["insert_files"] = remote_files;
|
|
config["num_clusters"] = 8;
|
|
config["train_size"] = 1536L * 1024; // 1.5MB
|
|
config["dim"] = dim;
|
|
config["num_rows"] = num_rows;
|
|
clusteringJob->Run<T>(transforConfigToPB(config));
|
|
CheckResultCorrectness<T>(clusteringJob,
|
|
cm,
|
|
segment_id,
|
|
segment_id2,
|
|
dim,
|
|
nb,
|
|
config["num_clusters"],
|
|
true);
|
|
}
|
|
// need to sample train data case2
|
|
{
|
|
config["min_cluster_ratio"] = 0.01;
|
|
config["insert_files"] = remote_files;
|
|
config["num_clusters"] = 8;
|
|
config["train_size"] = 6L * 1024 * 1024; // 6MB
|
|
config["dim"] = dim;
|
|
config["num_rows"] = num_rows;
|
|
clusteringJob->Run<T>(transforConfigToPB(config));
|
|
CheckResultCorrectness<T>(clusteringJob,
|
|
cm,
|
|
segment_id,
|
|
segment_id2,
|
|
dim,
|
|
nb,
|
|
config["num_clusters"],
|
|
true);
|
|
}
|
|
}
|
|
|
|
TEST(MajorCompaction, Naive) {
|
|
test_run<float, DataType::VECTOR_FLOAT>();
|
|
} |