mirror of
https://gitee.com/milvus-io/milvus.git
synced 2024-12-05 05:18:52 +08:00
94612238e5
Former-commit-id: 69d1f1b661e6fc7779b4ae3abae60eeb28fa2b04
139 lines
3.9 KiB
C++
139 lines
3.9 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright 上海赜睿信息科技有限公司(Zilliz) - All Rights Reserved
|
|
// Unauthorized copying of this file, via any medium is strictly prohibited.
|
|
// Proprietary and confidential.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "wrapper/Operand.h"
|
|
#include "wrapper/Index.h"
|
|
#include "wrapper/IndexBuilder.h"
|
|
|
|
using namespace zilliz::milvus::engine;
|
|
|
|
|
|
TEST(operand_test, Wrapper_Test) {
|
|
using std::cout;
|
|
using std::endl;
|
|
|
|
auto opd = std::make_shared<Operand>();
|
|
opd->index_type = "IVF";
|
|
opd->preproc = "OPQ";
|
|
opd->postproc = "PQ";
|
|
opd->metric_type = "L2";
|
|
opd->d = 64;
|
|
|
|
auto opd_str = operand_to_str(opd);
|
|
auto new_opd = str_to_operand(opd_str);
|
|
|
|
// TODO: fix all place where using opd to build index.
|
|
assert(new_opd->get_index_type(10000) == opd->get_index_type(10000));
|
|
}
|
|
|
|
TEST(build_test, Wrapper_Test) {
|
|
// dimension of the vectors to index
|
|
int d = 3;
|
|
|
|
// make a set of nt training vectors in the unit cube
|
|
size_t nt = 10000;
|
|
|
|
// a reasonable number of cetroids to index nb vectors
|
|
int ncentroids = 16;
|
|
|
|
std::random_device rd;
|
|
std::mt19937 gen(rd());
|
|
|
|
std::vector<float> xb;
|
|
std::vector<long> ids;
|
|
|
|
//prepare train data
|
|
std::uniform_real_distribution<> dis_xt(-1.0, 1.0);
|
|
std::vector<float> xt(nt * d);
|
|
for (size_t i = 0; i < nt * d; i++) {
|
|
xt[i] = dis_xt(gen);
|
|
}
|
|
|
|
//train the index
|
|
auto opd = std::make_shared<Operand>();
|
|
opd->index_type = "IVF";
|
|
opd->d = d;
|
|
opd->ncent = ncentroids;
|
|
IndexBuilderPtr index_builder_1 = GetIndexBuilder(opd);
|
|
auto index_1 = index_builder_1->build_all(0, xb, ids, nt, xt);
|
|
ASSERT_TRUE(index_1 != nullptr);
|
|
|
|
// size of the database we plan to index
|
|
size_t nb = 100000;
|
|
|
|
//prepare raw data
|
|
xb.resize(nb);
|
|
ids.resize(nb);
|
|
for (size_t i = 0; i < nb; i++) {
|
|
xb[i] = dis_xt(gen);
|
|
ids[i] = i;
|
|
}
|
|
index_1->add_with_ids(nb, xb.data(), ids.data());
|
|
|
|
//search in first quadrant
|
|
int nq = 1, k = 10;
|
|
std::vector<float> xq = {0.5, 0.5, 0.5};
|
|
float *result_dists = new float[k];
|
|
long *result_ids = new long[k];
|
|
index_1->search(nq, xq.data(), k, result_dists, result_ids);
|
|
|
|
for (int i = 0; i < k; i++) {
|
|
if (result_ids[i] < 0) {
|
|
ASSERT_TRUE(false);
|
|
break;
|
|
}
|
|
|
|
long id = result_ids[i];
|
|
std::cout << "No." << id << " [" << xb[id * 3] << ", " << xb[id * 3 + 1] << ", "
|
|
<< xb[id * 3 + 2] << "] distance = " << result_dists[i] << std::endl;
|
|
|
|
//makesure result vector is in first quadrant
|
|
ASSERT_TRUE(xb[id * 3] > 0.0);
|
|
ASSERT_TRUE(xb[id * 3 + 1] > 0.0);
|
|
ASSERT_TRUE(xb[id * 3 + 2] > 0.0);
|
|
}
|
|
|
|
delete[] result_dists;
|
|
delete[] result_ids;
|
|
}
|
|
|
|
TEST(gpu_build_test, Wrapper_Test) {
|
|
using std::vector;
|
|
|
|
int d = 256;
|
|
int nb = 3 * 1000 * 100;
|
|
int nq = 100;
|
|
vector<float> xb(d * nb);
|
|
vector<float> xq(d * nq);
|
|
vector<long> ids(nb);
|
|
|
|
std::random_device rd;
|
|
std::mt19937 gen(rd());
|
|
std::uniform_real_distribution<> dis_xt(-1.0, 1.0);
|
|
for (auto &e : xb) { e = float(dis_xt(gen)); }
|
|
for (auto &e : xq) { e = float(dis_xt(gen)); }
|
|
for (int i = 0; i < nb; ++i) { ids[i] = i; }
|
|
|
|
auto opd = std::make_shared<Operand>();
|
|
opd->index_type = "IVF";
|
|
opd->d = d;
|
|
opd->ncent = 256;
|
|
|
|
IndexBuilderPtr index_builder_1 = GetIndexBuilder(opd);
|
|
auto index_1 = index_builder_1->build_all(nb, xb.data(), ids.data());
|
|
assert(index_1->ntotal == nb);
|
|
assert(index_1->dim == d);
|
|
|
|
// sanity check: search 5 first vectors of xb
|
|
int k = 1;
|
|
vector<long> I(5 * k);
|
|
vector<float> D(5 * k);
|
|
index_1->search(5, xb.data(), k, D.data(), I.data());
|
|
for (int i = 0; i < 5; ++i) { assert(i == I[i]); }
|
|
}
|