milvus/cpp/unittest/faiss_wrapper/wrapper_test.cpp
jinhai 94612238e5 MS-82 & MS-83 Update vecwise to Milvus
Former-commit-id: 69d1f1b661e6fc7779b4ae3abae60eeb28fa2b04
2019-06-13 16:02:25 +08:00

139 lines
3.9 KiB
C++

////////////////////////////////////////////////////////////////////////////////
// Copyright 上海赜睿信息科技有限公司(Zilliz) - All Rights Reserved
// Unauthorized copying of this file, via any medium is strictly prohibited.
// Proprietary and confidential.
////////////////////////////////////////////////////////////////////////////////
#include <gtest/gtest.h>
#include "wrapper/Operand.h"
#include "wrapper/Index.h"
#include "wrapper/IndexBuilder.h"
using namespace zilliz::milvus::engine;
TEST(operand_test, Wrapper_Test) {
using std::cout;
using std::endl;
auto opd = std::make_shared<Operand>();
opd->index_type = "IVF";
opd->preproc = "OPQ";
opd->postproc = "PQ";
opd->metric_type = "L2";
opd->d = 64;
auto opd_str = operand_to_str(opd);
auto new_opd = str_to_operand(opd_str);
// TODO: fix all place where using opd to build index.
assert(new_opd->get_index_type(10000) == opd->get_index_type(10000));
}
TEST(build_test, Wrapper_Test) {
// dimension of the vectors to index
int d = 3;
// make a set of nt training vectors in the unit cube
size_t nt = 10000;
// a reasonable number of cetroids to index nb vectors
int ncentroids = 16;
std::random_device rd;
std::mt19937 gen(rd());
std::vector<float> xb;
std::vector<long> ids;
//prepare train data
std::uniform_real_distribution<> dis_xt(-1.0, 1.0);
std::vector<float> xt(nt * d);
for (size_t i = 0; i < nt * d; i++) {
xt[i] = dis_xt(gen);
}
//train the index
auto opd = std::make_shared<Operand>();
opd->index_type = "IVF";
opd->d = d;
opd->ncent = ncentroids;
IndexBuilderPtr index_builder_1 = GetIndexBuilder(opd);
auto index_1 = index_builder_1->build_all(0, xb, ids, nt, xt);
ASSERT_TRUE(index_1 != nullptr);
// size of the database we plan to index
size_t nb = 100000;
//prepare raw data
xb.resize(nb);
ids.resize(nb);
for (size_t i = 0; i < nb; i++) {
xb[i] = dis_xt(gen);
ids[i] = i;
}
index_1->add_with_ids(nb, xb.data(), ids.data());
//search in first quadrant
int nq = 1, k = 10;
std::vector<float> xq = {0.5, 0.5, 0.5};
float *result_dists = new float[k];
long *result_ids = new long[k];
index_1->search(nq, xq.data(), k, result_dists, result_ids);
for (int i = 0; i < k; i++) {
if (result_ids[i] < 0) {
ASSERT_TRUE(false);
break;
}
long id = result_ids[i];
std::cout << "No." << id << " [" << xb[id * 3] << ", " << xb[id * 3 + 1] << ", "
<< xb[id * 3 + 2] << "] distance = " << result_dists[i] << std::endl;
//makesure result vector is in first quadrant
ASSERT_TRUE(xb[id * 3] > 0.0);
ASSERT_TRUE(xb[id * 3 + 1] > 0.0);
ASSERT_TRUE(xb[id * 3 + 2] > 0.0);
}
delete[] result_dists;
delete[] result_ids;
}
TEST(gpu_build_test, Wrapper_Test) {
using std::vector;
int d = 256;
int nb = 3 * 1000 * 100;
int nq = 100;
vector<float> xb(d * nb);
vector<float> xq(d * nq);
vector<long> ids(nb);
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<> dis_xt(-1.0, 1.0);
for (auto &e : xb) { e = float(dis_xt(gen)); }
for (auto &e : xq) { e = float(dis_xt(gen)); }
for (int i = 0; i < nb; ++i) { ids[i] = i; }
auto opd = std::make_shared<Operand>();
opd->index_type = "IVF";
opd->d = d;
opd->ncent = 256;
IndexBuilderPtr index_builder_1 = GetIndexBuilder(opd);
auto index_1 = index_builder_1->build_all(nb, xb.data(), ids.data());
assert(index_1->ntotal == nb);
assert(index_1->dim == d);
// sanity check: search 5 first vectors of xb
int k = 1;
vector<long> I(5 * k);
vector<float> D(5 * k);
index_1->search(5, xb.data(), k, D.data(), I.data());
for (int i = 0; i < 5; ++i) { assert(i == I[i]); }
}