milvus/tests/python_client/testcases/test_query.py
jingkl 84b3c7ea60
Add the string testcase (#19287)
Signed-off-by: jingkl <jingjing.jia@zilliz.com>

Signed-off-by: jingkl <jingjing.jia@zilliz.com>
2022-09-21 10:14:51 +08:00

1449 lines
66 KiB
Python

import pytest
import random
import numpy as np
import pandas as pd
from pymilvus import DefaultConfig
import threading
from base.client_base import TestcaseBase
from common.code_mapping import ConnectionErrorMessage as cem
from common.code_mapping import CollectionErrorMessage as clem
from common import common_func as cf
from common import common_type as ct
from common.common_type import CaseLabel, CheckTasks
from utils.util_log import test_log as log
import utils.util_pymilvus as ut
prefix = "query"
exp_res = "exp_res"
default_term_expr = f'{ct.default_int64_field_name} in [0, 1]'
default_mix_expr = "int64 >= 0 && varchar >= \"0\""
default_invaild_expr = "varchar >= 0"
default_string_term_expr = f'{ct.default_string_field_name} in [\"0\", \"1\"]'
default_index_params = {"index_type": "IVF_SQ8", "metric_type": "L2", "params": {"nlist": 64}}
binary_index_params = {"index_type": "BIN_IVF_FLAT", "metric_type": "JACCARD", "params": {"nlist": 64}}
default_entities = ut.gen_entities(ut.default_nb, is_normal=True)
default_pos = 5
default_int_field_name = "int64"
default_float_field_name = "float"
default_string_field_name = "varchar"
class TestQueryParams(TestcaseBase):
"""
test Query interface
query(collection_name, expr, output_fields=None, partition_names=None, timeout=None)
"""
@pytest.mark.tags(CaseLabel.L2)
def test_query_invalid(self):
"""
target: test query with invalid term expression
method: query with invalid term expr
expected: raise exception
"""
collection_w, entities = self.init_collection_general(prefix, insert_data=True)[0:2]
term_expr = f'{default_int_field_name} in {entities[:default_pos]}'
error = {ct.err_code: 1, ct.err_msg: "unexpected token Identifier"}
collection_w.query(term_expr, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L0)
def test_query(self):
"""
target: test query
method: query with term expr
expected: verify query result
"""
# create collection, insert default_nb, load collection
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
int_values = vectors[0][ct.default_int64_field_name].values.tolist()
pos = 5
term_expr = f'{ct.default_int64_field_name} in {int_values[:pos]}'
res = vectors[0].iloc[0:pos, :1].to_dict('records')
collection_w.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: res})
@pytest.mark.tags(CaseLabel.L1)
def test_query_no_collection(self):
"""
target: test the scenario which query the non-exist collection
method: 1. create collection
2. drop collection
3. query the dropped collection
expected: raise exception and report the error
"""
# 1. initialize without data
collection_w = self.init_collection_general(prefix)[0]
# 2. Drop collection
log.info("test_query_no_collection: drop collection %s" % collection_w.name)
collection_w.drop()
# 3. Search without collection
log.info("test_query_no_collection: query without collection ")
collection_w.query(default_term_expr,
check_task=CheckTasks.err_res,
check_items={"err_code": 1,
"err_msg": "DescribeCollection failed: "
"can't find collection: %s" % collection_w.name})
@pytest.mark.tags(CaseLabel.L2)
def test_query_empty_collection(self):
"""
target: test query empty collection
method: query on an empty collection
expected: empty result
"""
c_name = cf.gen_unique_str(prefix)
collection_w = self.init_collection_wrap(name=c_name)
collection_w.load()
res, _ = collection_w.query(default_term_expr)
assert len(res) == 0
@pytest.mark.tags(CaseLabel.L0)
def test_query_auto_id_collection(self):
"""
target: test query with auto_id=True collection
method: test query with auto id
expected: query result is correct
"""
self._connect()
df = cf.gen_default_dataframe_data()
df[ct.default_int64_field_name] = None
insert_res, _, = self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
primary_field=ct.default_int64_field_name,
auto_id=True)
assert self.collection_wrap.num_entities == ct.default_nb
ids = insert_res[1].primary_keys
pos = 5
res = df.iloc[:pos, :1].to_dict('records')
self.collection_wrap.load()
# query with all primary keys
term_expr_1 = f'{ct.default_int64_field_name} in {ids[:pos]}'
for i in range(5):
res[i][ct.default_int64_field_name] = ids[i]
self.collection_wrap.query(term_expr_1, check_task=CheckTasks.check_query_results, check_items={exp_res: res})
# query with part primary keys
term_expr_2 = f'{ct.default_int64_field_name} in {[ids[0], 0]}'
self.collection_wrap.query(term_expr_2, check_task=CheckTasks.check_query_results,
check_items={exp_res: res[:1]})
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("dup_times", [1, 2, 3])
@pytest.mark.parametrize("dim", [8, 128])
def test_query_with_dup_primary_key(self, dim, dup_times):
"""
target: test query with duplicate primary key
method: 1.insert same data twice
2.search
expected: query results are de-duplicated
"""
nb = ct.default_nb
collection_w, insert_data, _, _ = self.init_collection_general(prefix, True, nb, dim=dim)[0:4]
# insert dup data multi times
for i in range(dup_times):
collection_w.insert(insert_data[0])
# query
res, _ = collection_w.query(default_term_expr)
# assert that query results are de-duplicated
res = [m["int64"] for m in res]
assert sorted(list(set(res))) == sorted(res)
@pytest.mark.tags(CaseLabel.L2)
def test_query_auto_id_not_existed_primary_values(self):
"""
target: test query on auto_id true collection
method: 1.create auto_id true collection
2.query with not existed primary keys
expected: query result is empty
"""
schema = cf.gen_default_collection_schema(auto_id=True)
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), schema=schema)
df = cf.gen_default_dataframe_data(ct.default_nb)
df.drop(ct.default_int64_field_name, axis=1, inplace=True)
mutation_res, _ = collection_w.insert(data=df)
assert collection_w.num_entities == ct.default_nb
collection_w.load()
term_expr = f'{ct.default_int64_field_name} in [0, 1, 2]'
res, _ = collection_w.query(term_expr)
assert len(res) == 0
@pytest.mark.tags(CaseLabel.L2)
def test_query_expr_none(self):
"""
target: test query with none expr
method: query with expr None
expected: raise exception
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
error = {ct.err_code: 0, ct.err_msg: "The type of expr must be string"}
collection_w.query(None, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_query_non_string_expr(self):
"""
target: test query with non-string expr
method: query with non-string expr, eg 1, [] ..
expected: raise exception
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
exprs = [1, 2., [], {}, ()]
error = {ct.err_code: 0, ct.err_msg: "The type of expr must be string"}
for expr in exprs:
collection_w.query(expr, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_query_expr_invalid_string(self):
"""
target: test query with invalid expr
method: query with invalid string expr
expected: raise exception
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
error = {ct.err_code: 1, ct.err_msg: "Invalid expression!"}
exprs = ["12-s", "中文", "a", " "]
for expr in exprs:
collection_w.query(expr, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.skip(reason="repeat with test_query, waiting for other expr")
def test_query_expr_term(self):
"""
target: test query with TermExpr
method: query with TermExpr
expected: query result is correct
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
res = vectors[0].iloc[:2, :1].to_dict('records')
collection_w.query(default_term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: res})
@pytest.mark.tags(CaseLabel.L2)
def test_query_expr_not_existed_field(self):
"""
target: test query with not existed field
method: query by term expr with fake field
expected: raise exception
"""
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix))
term_expr = 'field in [1, 2]'
error = {ct.err_code: 1, ct.err_msg: "fieldName(field) not found"}
collection_w.query(term_expr, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_query_expr_non_primary_fields(self):
"""
target: test query on non-primary non-vector fields
method: query on non-primary non-vector fields
expected: verify query result
"""
self._connect()
# construct dataframe and inert data
df = pd.DataFrame({
ct.default_int64_field_name: pd.Series(data=[i for i in range(ct.default_nb)]),
ct.default_int32_field_name: pd.Series(data=[np.int32(i) for i in range(ct.default_nb)], dtype="int32"),
ct.default_int16_field_name: pd.Series(data=[np.int16(i) for i in range(ct.default_nb)], dtype="int16"),
ct.default_float_field_name: pd.Series(data=[np.float32(i) for i in range(ct.default_nb)], dtype="float32"),
ct.default_double_field_name: pd.Series(data=[np.double(i) for i in range(ct.default_nb)], dtype="double"),
ct.default_string_field_name: pd.Series(data=[str(i) for i in range(ct.default_nb)], dtype="string"),
ct.default_float_vec_field_name: cf.gen_vectors(ct.default_nb, ct.default_dim)
})
self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
primary_field=ct.default_int64_field_name)
assert self.collection_wrap.num_entities == ct.default_nb
self.collection_wrap.load()
# query by non_primary non_vector scalar field
non_primary_field = [ct.default_int32_field_name, ct.default_int16_field_name,
ct.default_float_field_name, ct.default_double_field_name, ct.default_string_field_name]
# exp res: first two rows and all fields expect last vec field
res = df.iloc[:2, :-1].to_dict('records')
for field in non_primary_field:
filter_values = df[field].tolist()[:2]
if field is not ct.default_string_field_name:
term_expr = f'{field} in {filter_values}'
else:
term_expr = f'{field} in {filter_values}'
term_expr = term_expr.replace("'", "\"")
self.collection_wrap.query(term_expr, output_fields=["*"],
check_task=CheckTasks.check_query_results, check_items={exp_res: res})
@pytest.mark.tags(CaseLabel.L2)
def test_query_expr_by_bool_field(self):
"""
target: test query by bool field and output bool field
method: 1.create and insert with [int64, float, bool, float_vec] fields
2.query by bool field, and output all int64, bool fields
expected: verify query result and output fields
"""
self._connect()
df = cf.gen_default_dataframe_data()
bool_values = pd.Series(data=[True if i % 2 == 0 else False for i in range(ct.default_nb)], dtype="bool")
df.insert(2, ct.default_bool_field_name, bool_values)
self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
primary_field=ct.default_int64_field_name)
assert self.collection_wrap.num_entities == ct.default_nb
self.collection_wrap.load()
# output bool field
res, _ = self.collection_wrap.query(default_term_expr, output_fields=[ct.default_bool_field_name])
assert set(res[0].keys()) == {ct.default_int64_field_name, ct.default_bool_field_name}
# not support filter bool field with expr 'bool in [0/ 1]'
not_support_expr = f'{ct.default_bool_field_name} in [0]'
error = {ct.err_code: 1, ct.err_msg: 'error: value \"0\" in list cannot be casted to Bool'}
self.collection_wrap.query(not_support_expr, output_fields=[ct.default_bool_field_name],
check_task=CheckTasks.err_res, check_items=error)
# filter bool field by bool term expr
for bool_value in [True, False]:
exprs = [f'{ct.default_bool_field_name} in [{bool_value}]', f'{ct.default_bool_field_name} == {bool_value}']
for expr in exprs:
res, _ = self.collection_wrap.query(expr, output_fields=[ct.default_bool_field_name])
assert len(res) == ct.default_nb / 2
for _r in res:
assert _r[ct.default_bool_field_name] == bool_value
@pytest.mark.tags(CaseLabel.L1)
def test_query_expr_by_int8_field(self):
"""
target: test query by int8 field
method: 1.create and insert with [int64, float, int8, float_vec] fields
2.query by int8 field, and output all scalar fields
expected: verify query result
"""
self._connect()
# construct collection from dataFrame according to [int64, float, int8, float_vec]
df = cf.gen_default_dataframe_data()
int8_values = pd.Series(data=[np.int8(i) for i in range(ct.default_nb)], dtype="int8")
df.insert(2, ct.default_int8_field_name, int8_values)
self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
primary_field=ct.default_int64_field_name)
assert self.collection_wrap.num_entities == ct.default_nb
# query expression
term_expr = f'{ct.default_int8_field_name} in {[0]}'
# expected query result
res = []
# int8 range [-128, 127] so when nb=1200, there are many repeated int8 values equal to 0
for i in range(0, ct.default_nb, 256):
res.extend(df.iloc[i:i + 1, :-1].to_dict('records'))
self.collection_wrap.load()
self.collection_wrap.query(term_expr, output_fields=["*"],
check_task=CheckTasks.check_query_results, check_items={exp_res: res})
@pytest.fixture(scope="function", params=cf.gen_normal_expressions())
def get_normal_expr(self, request):
if request.param == "":
pytest.skip("query with "" expr is invalid")
yield request.param
@pytest.mark.tags(CaseLabel.L1)
def test_query_with_expression(self, get_normal_expr):
"""
target: test query with different expr
method: query with different boolean expr
expected: verify query result
"""
# 1. initialize with data
nb = 1000
collection_w, _vectors, _, insert_ids = self.init_collection_general(prefix, True, nb)[0:4]
# filter result with expression in collection
_vectors = _vectors[0]
expr = get_normal_expr
expression = expr.replace("&&", "and").replace("||", "or")
filter_ids = []
for i, _id in enumerate(insert_ids):
int64 = _vectors.int64[i]
float = _vectors.float[i]
if not expression or eval(expression):
filter_ids.append(_id)
# query and verify result
res = collection_w.query(expr=expression)[0]
query_ids = set(map(lambda x: x[ct.default_int64_field_name], res))
assert query_ids == set(filter_ids)
@pytest.mark.tags(CaseLabel.L2)
def test_query_expr_wrong_term_keyword(self):
"""
target: test query with wrong term expr keyword
method: query with wrong keyword term expr
expected: raise exception
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
expr_1 = f'{ct.default_int64_field_name} inn [1, 2]'
error_1 = {ct.err_code: 1, ct.err_msg: f'unexpected token Identifier("inn")'}
collection_w.query(expr_1, check_task=CheckTasks.err_res, check_items=error_1)
expr_3 = f'{ct.default_int64_field_name} in not [1, 2]'
error_3 = {ct.err_code: 1, ct.err_msg: 'right operand of the InExpr must be array'}
collection_w.query(expr_3, check_task=CheckTasks.err_res, check_items=error_3)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("field", [ct.default_int64_field_name, ct.default_float_field_name])
def test_query_expr_not_in_term(self, field):
"""
target: test query with `not in` expr
method: query with not in expr
expected: verify query result
"""
self._connect()
df = cf.gen_default_dataframe_data()
self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
primary_field=ct.default_int64_field_name)
assert self.collection_wrap.num_entities == ct.default_nb
self.collection_wrap.load()
values = df[field].tolist()
pos = 100
term_expr = f'{field} not in {values[pos:]}'
res = df.iloc[:pos, :3].to_dict('records')
self.collection_wrap.query(term_expr, output_fields=["*"],
check_task=CheckTasks.check_query_results, check_items={exp_res: res})
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("pos", [0, ct.default_nb])
def test_query_expr_not_in_empty_and_all(self, pos):
"""
target: test query with `not in` expr
method: query with `not in` expr for (non)empty collection
expected: verify query result
"""
self._connect()
df = cf.gen_default_dataframe_data()
self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
primary_field=ct.default_int64_field_name)
assert self.collection_wrap.num_entities == ct.default_nb
self.collection_wrap.load()
int64_values = df[ct.default_int64_field_name].tolist()
term_expr = f'{ct.default_int64_field_name} not in {int64_values[pos:]}'
res = df.iloc[:pos, :1].to_dict('records')
self.collection_wrap.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: res})
@pytest.mark.tags(CaseLabel.L1)
def test_query_expr_random_values(self):
"""
target: test query with random filter values
method: query with random filter values, like [0, 2, 4, 3]
expected: correct query result
"""
self._connect()
df = cf.gen_default_dataframe_data(nb=100)
log.debug(df.head(5))
self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
primary_field=ct.default_int64_field_name)
assert self.collection_wrap.num_entities == 100
self.collection_wrap.load()
# random_values = [random.randint(0, ct.default_nb) for _ in range(4)]
random_values = [0, 2, 4, 3]
term_expr = f'{ct.default_int64_field_name} in {random_values}'
res = df.iloc[random_values, :1].to_dict('records')
self.collection_wrap.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: res})
@pytest.mark.tags(CaseLabel.L2)
def test_query_expr_not_in_random(self):
"""
target: test query with fixed filter values
method: query with fixed filter values
expected: correct query result
"""
self._connect()
df = cf.gen_default_dataframe_data(nb=50)
log.debug(df.head(5))
self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
primary_field=ct.default_int64_field_name)
assert self.collection_wrap.num_entities == 50
self.collection_wrap.load()
random_values = [i for i in range(10, 50)]
log.debug(f'random values: {random_values}')
random.shuffle(random_values)
term_expr = f'{ct.default_int64_field_name} not in {random_values}'
res = df.iloc[:10, :1].to_dict('records')
self.collection_wrap.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: res})
@pytest.mark.tags(CaseLabel.L2)
def test_query_expr_non_array_term(self):
"""
target: test query with non-array term expr
method: query with non-array term expr
expected: raise exception
"""
exprs = [f'{ct.default_int64_field_name} in 1',
f'{ct.default_int64_field_name} in "in"',
f'{ct.default_int64_field_name} in (mn)']
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
error = {ct.err_code: 1, ct.err_msg: "right operand of the InExpr must be array"}
for expr in exprs:
collection_w.query(expr, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_query_expr_empty_term_array(self):
"""
target: test query with empty array term expr
method: query with empty term expr
expected: empty result
"""
term_expr = f'{ct.default_int64_field_name} in []'
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
res, _ = collection_w.query(term_expr)
assert len(res) == 0
@pytest.mark.tags(CaseLabel.L2)
def test_query_expr_inconsistent_mix_term_array(self):
"""
target: test query with term expr that field and array are inconsistent or mix type
method: 1.query with int field and float values
2.query with term expr that has int and float type value
expected: raise exception
"""
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix))
int_values = [[1., 2.], [1, 2.]]
error = {ct.err_code: 1, ct.err_msg: "type mismatch"}
for values in int_values:
term_expr = f'{ct.default_int64_field_name} in {values}'
collection_w.query(term_expr, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
def test_query_expr_non_constant_array_term(self):
"""
target: test query with non-constant array term expr
method: query with non-constant array expr
expected: raise exception
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
constants = [[1], (), {}]
error = {ct.err_code: 1, ct.err_msg: "unsupported leaf node"}
for constant in constants:
term_expr = f'{ct.default_int64_field_name} in [{constant}]'
collection_w.query(term_expr, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_query_output_field_none_or_empty(self):
"""
target: test query with none and empty output field
method: query with output field=None, field=[]
expected: return primary field
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
for fields in [None, []]:
res, _ = collection_w.query(default_term_expr, output_fields=fields)
assert res[0].keys() == {ct.default_int64_field_name}
@pytest.mark.tags(CaseLabel.L0)
def test_query_output_one_field(self):
"""
target: test query with output one field
method: query with output one field
expected: return one field
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
res, _ = collection_w.query(default_term_expr, output_fields=[ct.default_float_field_name])
assert set(res[0].keys()) == {ct.default_int64_field_name, ct.default_float_field_name}
@pytest.mark.tags(CaseLabel.L1)
def test_query_output_all_fields(self):
"""
target: test query with none output field
method: query with output field=None
expected: return all fields
"""
# 1. initialize with data
collection_w, df, _, insert_ids = self.init_collection_general(prefix, True, nb=10,
is_all_data_type=True)[0:4]
all_fields = [ct.default_int64_field_name, ct.default_int32_field_name, ct.default_int16_field_name,
ct.default_int8_field_name, ct.default_bool_field_name, ct.default_float_field_name,
ct.default_double_field_name, ct.default_string_field_name, ct.default_float_vec_field_name]
res = df[0].iloc[:2].to_dict('records')
collection_w.load()
actual_res, _ = collection_w.query(default_term_expr, output_fields=all_fields,
check_task=CheckTasks.check_query_results,
check_items={exp_res: res, "with_vec": True})
assert set(actual_res[0].keys()) == set(all_fields)
@pytest.mark.tags(CaseLabel.L2)
def test_query_output_float_vec_field(self):
"""
target: test query with vec output field
method: specify vec field as output field
expected: return primary field and vec field
"""
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
df = cf.gen_default_dataframe_data()
collection_w.insert(df)
assert collection_w.num_entities == ct.default_nb
fields = [[ct.default_float_vec_field_name], [ct.default_int64_field_name, ct.default_float_vec_field_name]]
res = df.loc[:1, [ct.default_int64_field_name, ct.default_float_vec_field_name]].to_dict('records')
collection_w.load()
for output_fields in fields:
collection_w.query(default_term_expr, output_fields=output_fields,
check_task=CheckTasks.check_query_results,
check_items={exp_res: res, "with_vec": True})
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.skip(reason="https://github.com/milvus-io/milvus/issues/12680")
@pytest.mark.parametrize("vec_fields", [[cf.gen_float_vec_field(name="float_vector1")]])
def test_query_output_multi_float_vec_field(self, vec_fields):
"""
target: test query and output multi float vec fields
method: a.specify multi vec field as output
b.specify output_fields with wildcard %
expected: verify query result
"""
# init collection with two float vector fields
schema = cf.gen_schema_multi_vector_fields(vec_fields)
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), schema=schema)
df = cf.gen_dataframe_multi_vec_fields(vec_fields=vec_fields)
collection_w.insert(df)
assert collection_w.num_entities == ct.default_nb
# query with two vec output_fields
output_fields = [ct.default_int64_field_name, ct.default_float_vec_field_name]
for vec_field in vec_fields:
output_fields.append(vec_field.name)
res = df.loc[:1, output_fields].to_dict('records')
collection_w.load()
collection_w.query(default_term_expr, output_fields=output_fields,
check_task=CheckTasks.check_query_results,
check_items={exp_res: res, "with_vec": True})
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.skip(reason="https://github.com/milvus-io/milvus/issues/12680")
@pytest.mark.parametrize("vec_fields", [[cf.gen_binary_vec_field()],
[cf.gen_binary_vec_field(), cf.gen_binary_vec_field("binary_vec1")]])
def test_query_output_mix_float_binary_field(self, vec_fields):
"""
target: test query and output mix float and binary vec fields
method: a.specify mix vec field as output
b.specify output_fields with wildcard %
expected: output binary vector and float vec
"""
# init collection with two float vector fields
schema = cf.gen_schema_multi_vector_fields(vec_fields)
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), schema=schema)
df = cf.gen_dataframe_multi_vec_fields(vec_fields=vec_fields)
collection_w.insert(df)
assert collection_w.num_entities == ct.default_nb
# query with two vec output_fields
output_fields = [ct.default_int64_field_name, ct.default_float_vec_field_name]
for vec_field in vec_fields:
output_fields.append(vec_field.name)
res = df.loc[:1, output_fields].to_dict('records')
collection_w.load()
collection_w.query(default_term_expr, output_fields=output_fields,
check_task=CheckTasks.check_query_results,
check_items={exp_res: res, "with_vec": True})
# query with wildcard %
collection_w.query(default_term_expr, output_fields=["%"],
check_task=CheckTasks.check_query_results,
check_items={exp_res: res, "with_vec": True})
@pytest.mark.tags(CaseLabel.L2)
def test_query_output_binary_vec_field(self):
"""
target: test query with binary vec output field
method: specify binary vec field as output field
expected: return primary field and binary vec field
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True, is_binary=True)[0:2]
fields = [[ct.default_binary_vec_field_name], [ct.default_int64_field_name, ct.default_binary_vec_field_name]]
for output_fields in fields:
res, _ = collection_w.query(default_term_expr, output_fields=output_fields)
assert res[0].keys() == set(fields[-1])
@pytest.mark.tags(CaseLabel.L1)
def test_query_output_primary_field(self):
"""
target: test query with output field only primary field
method: specify int64 primary field as output field
expected: return int64 field
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
res, _ = collection_w.query(default_term_expr, output_fields=[ct.default_int64_field_name])
assert res[0].keys() == {ct.default_int64_field_name}
@pytest.mark.tags(CaseLabel.L2)
def test_query_output_not_existed_field(self):
"""
target: test query output not existed field
method: query with not existed output field
expected: raise exception
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
error = {ct.err_code: 1, ct.err_msg: 'Field int not exist'}
output_fields = [["int"], [ct.default_int64_field_name, "int"]]
for fields in output_fields:
collection_w.query(default_term_expr, output_fields=fields, check_task=CheckTasks.err_res,
check_items=error)
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.xfail(reason="exception not MilvusException")
def test_query_invalid_output_fields(self):
"""
target: test query with invalid output fields
method: query with invalid field fields
expected: raise exception
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
output_fields = ["12-s", 1, [1, "2", 3], (1,), {1: 1}]
error = {ct.err_code: 0, ct.err_msg: f'Invalid query format. \'output_fields\' must be a list'}
for fields in output_fields:
collection_w.query(default_term_expr, output_fields=fields, check_task=CheckTasks.err_res,
check_items=error)
@pytest.mark.tags(CaseLabel.L0)
def test_query_output_fields_simple_wildcard(self):
"""
target: test query output_fields with simple wildcard (* and %)
method: specify output_fields as "*" and "*", "%"
expected: output all scale field; output all fields
"""
# init collection with fields: int64, float, float_vec, float_vector1
# collection_w, df = self.init_multi_fields_collection_wrap(cf.gen_unique_str(prefix))
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
df = vectors[0]
# query with wildcard scale(*)
output_fields = [ct.default_int64_field_name, ct.default_float_field_name, ct.default_string_field_name]
res = df.loc[:1, output_fields].to_dict('records')
collection_w.query(default_term_expr, output_fields=["*"],
check_task=CheckTasks.check_query_results,
check_items={exp_res: res})
# query with wildcard % output_fields2 = [ct.default_int64_field_name, ct.default_float_vec_field_name,
# ct.another_float_vec_field_name]
output_fields2 = [ct.default_int64_field_name, ct.default_float_vec_field_name]
res2 = df.loc[:1, output_fields2].to_dict('records')
collection_w.query(default_term_expr, output_fields=["%"],
check_task=CheckTasks.check_query_results,
check_items={exp_res: res2, "with_vec": True})
# query with wildcard all fields: vector(%) and scale(*)
res3 = df.iloc[:2].to_dict('records')
collection_w.query(default_term_expr, output_fields=["*", "%"],
check_task=CheckTasks.check_query_results,
check_items={exp_res: res3, "with_vec": True})
@pytest.mark.tags(CaseLabel.L1)
def test_query_output_fields_part_scale_wildcard(self):
"""
target: test query output_fields with part wildcard
method: specify output_fields as wildcard and part field
expected: verify query result
"""
# init collection with fields: int64, float, float_vec
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
df = vectors[0]
# query with output_fields=["*", float_vector)
res = df.iloc[:2, :4].to_dict('records')
collection_w.load()
collection_w.query(default_term_expr, output_fields=["*", ct.default_float_vec_field_name],
check_task=CheckTasks.check_query_results,
check_items={exp_res: res, "with_vec": True})
# query with output_fields=["*", float)
res2 = df.iloc[:2, :3].to_dict('records')
collection_w.load()
collection_w.query(default_term_expr, output_fields=["*", ct.default_float_field_name],
check_task=CheckTasks.check_query_results,
check_items={exp_res: res2})
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.skip(reason="https://github.com/milvus-io/milvus/issues/12680")
def test_query_output_fields_part_vector_wildcard(self):
"""
target: test query output_fields with part wildcard
method: specify output_fields as wildcard and part field
expected: verify query result
"""
# init collection with fields: int64, float, float_vec, float_vector1
collection_w, df = self.init_multi_fields_collection_wrap(cf.gen_unique_str(prefix))
collection_w.load()
# query with output_fields=["%", float), expected: all fields
res = df.iloc[:2].to_dict('records')
collection_w.query(default_term_expr, output_fields=["%", ct.default_float_field_name],
check_task=CheckTasks.check_query_results,
check_items={exp_res: res, "with_vec": True})
# query with output_fields=["%", float_vector), expected: int64, float_vector, float_vector1
output_fields = [ct.default_int64_field_name, ct.default_float_vec_field_name, ct.another_float_vec_field_name]
res2 = df.loc[:1, output_fields].to_dict('records')
collection_w.query(default_term_expr, output_fields=["%", ct.default_float_vec_field_name],
check_task=CheckTasks.check_query_results,
check_items={exp_res: res2, "with_vec": True})
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.parametrize("output_fields", [["*%"], ["**"], ["*", "@"]])
def test_query_invalid_wildcard(self, output_fields):
"""
target: test query with invalid output wildcard
method: output_fields is invalid output wildcard
expected: raise exception
"""
# init collection with fields: int64, float, float_vec
collection_w = self.init_collection_general(prefix, insert_data=True, nb=100)[0]
collection_w.load()
# query with invalid output_fields
error = {ct.err_code: 1, ct.err_msg: f"Field {output_fields[-1]} not exist"}
collection_w.query(default_term_expr, output_fields=output_fields,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L0)
def test_query_partition(self):
"""
target: test query on partition
method: create a partition and query
expected: verify query result
"""
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
partition_w = self.init_partition_wrap(collection_wrap=collection_w)
df = cf.gen_default_dataframe_data()
partition_w.insert(df)
assert collection_w.num_entities == ct.default_nb
partition_w.load()
res = df.iloc[:2, :1].to_dict('records')
collection_w.query(default_term_expr, partition_names=[partition_w.name],
check_task=CheckTasks.check_query_results, check_items={exp_res: res})
@pytest.mark.tags(CaseLabel.L2)
def test_query_partition_without_loading(self):
"""
target: test query on partition without loading
method: query on partition and no loading
expected: raise exception
"""
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
partition_w = self.init_partition_wrap(collection_wrap=collection_w)
df = cf.gen_default_dataframe_data()
partition_w.insert(df)
assert partition_w.num_entities == ct.default_nb
error = {ct.err_code: 1, ct.err_msg: f'collection {collection_w.name} was not loaded into memory'}
collection_w.query(default_term_expr, partition_names=[partition_w.name],
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_query_default_partition(self):
"""
target: test query on default partition
method: query on default partition
expected: verify query result
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
res = vectors[0].iloc[:2, :1].to_dict('records')
collection_w.query(default_term_expr, partition_names=[ct.default_partition_name],
check_task=CheckTasks.check_query_results, check_items={exp_res: res})
@pytest.mark.tags(CaseLabel.L2)
def test_query_empty_partition(self):
"""
target: test query on empty partition
method: query on an empty collection
expected: empty query result
"""
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
partition_w = self.init_partition_wrap(collection_wrap=collection_w)
assert partition_w.is_empty
partition_w.load()
res, _ = collection_w.query(default_term_expr, partition_names=[partition_w.name])
assert len(res) == 0
@pytest.mark.tags(CaseLabel.L2)
def test_query_not_existed_partition(self):
"""
target: test query on a not existed partition
method: query on not existed partition
expected: raise exception
"""
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix))
collection_w.load()
partition_names = cf.gen_unique_str()
error = {ct.err_code: 1, ct.err_msg: f'PartitonName: {partition_names} not found'}
collection_w.query(default_term_expr, partition_names=[partition_names],
check_task=CheckTasks.err_res, check_items=error)
class TestQueryOperation(TestcaseBase):
"""
******************************************************************
The following cases are used to test query interface operations
******************************************************************
"""
@pytest.mark.tags(CaseLabel.L2)
def test_query_without_connection(self):
"""
target: test query without connection
method: close connect and query
expected: raise exception
"""
# init a collection with default connection
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
# remove default connection
self.connection_wrap.remove_connection(alias=DefaultConfig.DEFAULT_USING)
# list connection to check
self.connection_wrap.list_connections(check_task=ct.CheckTasks.ccr, check_items={ct.list_content: []})
# query after remove default connection
collection_w.query(default_term_expr, check_task=CheckTasks.err_res,
check_items={ct.err_code: 0, ct.err_msg: cem.ConnectFirst})
@pytest.mark.tags(CaseLabel.L2)
def test_query_without_loading(self):
"""
target: test query without loading
method: no loading before query
expected: raise exception
"""
# init a collection with default connection
collection_name = cf.gen_unique_str(prefix)
collection_w = self.init_collection_wrap(name=collection_name)
# insert data to collection
collection_w.insert(data=cf.gen_default_list_data())
# check number of entities and that method calls the flush interface
assert collection_w.num_entities == ct.default_nb
# query without load
collection_w.query(default_term_expr, check_task=CheckTasks.err_res,
check_items={ct.err_code: 1, ct.err_msg: clem.CollNotLoaded % collection_name})
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.parametrize("term_expr", [f'{ct.default_int64_field_name} in [0]'])
def test_query_expr_single_term_array(self, term_expr):
"""
target: test query with single array term expr
method: query with single array value
expected: query result is one entity
"""
# init a collection and insert data
collection_w, vectors, binary_raw_vectors = self.init_collection_general(prefix, insert_data=True)[0:3]
# query the first row of data
check_vec = vectors[0].iloc[:, [0]][0:1].to_dict('records')
collection_w.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: check_vec})
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("term_expr", [f'{ct.default_int64_field_name} in [0]'])
def test_query_binary_expr_single_term_array(self, term_expr, check_content):
"""
target: test query with single array term expr
method: query with single array value
expected: query result is one entity
"""
# init a collection and insert data
collection_w, vectors, binary_raw_vectors = self.init_collection_general(prefix, insert_data=True,
is_binary=True)[0:3]
# query the first row of data
check_vec = vectors[0].iloc[:, [0]][0:1].to_dict('records')
collection_w.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: check_vec})
@pytest.mark.tags(CaseLabel.L2)
def test_query_expr_all_term_array(self):
"""
target: test query with all array term expr
method: query with all array value
expected: verify query result
"""
# init a collection and insert data
collection_w, vectors, binary_raw_vectors = self.init_collection_general(prefix, insert_data=True)[0:3]
# data preparation
int_values = vectors[0][ct.default_int64_field_name].values.tolist()
term_expr = f'{ct.default_int64_field_name} in {int_values}'
check_vec = vectors[0].iloc[:, [0]][0:len(int_values)].to_dict('records')
# query all array value
collection_w.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: check_vec})
@pytest.mark.tags(CaseLabel.L1)
def test_query_expr_half_term_array(self):
"""
target: test query with half array term expr
method: query with half array value
expected: verify query result
"""
half = ct.default_nb // 2
collection_w, partition_w, df_partition, df_default = self.insert_entities_into_two_partitions_in_half(half)
int_values = df_default[ct.default_int64_field_name].values.tolist()
term_expr = f'{ct.default_int64_field_name} in {int_values}'
res, _ = collection_w.query(term_expr)
assert len(res) == len(int_values)
@pytest.mark.tags(CaseLabel.L1)
def test_query_expr_repeated_term_array(self):
"""
target: test query with repeated term array on primary field with unique value
method: query with repeated array value
expected: return hit entities, no repeated
"""
collection_w, vectors, binary_raw_vectors = self.init_collection_general(prefix, insert_data=True)[0:3]
int_values = [0, 0, 0, 0]
term_expr = f'{ct.default_int64_field_name} in {int_values}'
res, _ = collection_w.query(term_expr)
assert len(res) == 1
assert res[0][ct.default_int64_field_name] == int_values[0]
@pytest.mark.tags(CaseLabel.L1)
def test_query_dup_ids_dup_term_array(self):
"""
target: test query on duplicate primary keys with dup term array
method: 1.create collection and insert dup primary keys
2.query with dup term array
expected: todo
"""
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
df = cf.gen_default_dataframe_data(nb=100)
df[ct.default_int64_field_name] = 0
mutation_res, _ = collection_w.insert(df)
assert mutation_res.primary_keys == df[ct.default_int64_field_name].tolist()
collection_w.load()
term_expr = f'{ct.default_int64_field_name} in {[0, 0, 0]}'
res = df.iloc[:, :2].to_dict('records')
collection_w.query(term_expr, output_fields=["*"], check_items=CheckTasks.check_query_results,
check_task={exp_res: res})
@pytest.mark.tags(CaseLabel.L0)
def test_query_after_index(self):
"""
target: test query after creating index
method: 1. indexing
2. load
3. query
expected: query result is correct
"""
collection_w, vectors, binary_raw_vectors = self.init_collection_general(prefix, insert_data=True)[0:3]
default_field_name = ct.default_float_vec_field_name
collection_w.create_index(default_field_name, default_index_params)
collection_w.load()
int_values = [0]
term_expr = f'{ct.default_int64_field_name} in {int_values}'
check_vec = vectors[0].iloc[:, [0]][0:len(int_values)].to_dict('records')
collection_w.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: check_vec})
@pytest.mark.tags(CaseLabel.L1)
def test_query_after_search(self):
"""
target: test query after search
method: 1. search
2. query without load again
expected: query result is correct
"""
limit = 1000
nb_old = 500
collection_w, vectors, binary_raw_vectors, insert_ids = \
self.init_collection_general(prefix, True, nb_old)[0:4]
# 2. search for original data after load
vectors_s = [[random.random() for _ in range(ct.default_dim)] for _ in range(ct.default_nq)]
collection_w.search(vectors_s[:ct.default_nq], ct.default_float_vec_field_name,
ct.default_search_params, limit, "int64 >= 0",
check_task=CheckTasks.check_search_results,
check_items={"nq": ct.default_nq, "limit": nb_old, "ids": insert_ids})
# check number of entities and that method calls the flush interface
assert collection_w.num_entities == nb_old
term_expr = f'{ct.default_int64_field_name} in [0, 1]'
check_vec = vectors[0].iloc[:, [0]][0:2].to_dict('records')
collection_w.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: check_vec})
@pytest.mark.tags(CaseLabel.L1)
def test_query_output_vec_field_after_index(self):
"""
target: test query output vec field after index
method: create index and specify vec field as output field
expected: return primary field and vec field
"""
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
df = cf.gen_default_dataframe_data(nb=5000)
collection_w.insert(df)
assert collection_w.num_entities == 5000
fields = [ct.default_int64_field_name, ct.default_float_vec_field_name]
collection_w.create_index(ct.default_float_vec_field_name, default_index_params)
assert collection_w.has_index()[0]
res = df.loc[:1, [ct.default_int64_field_name, ct.default_float_vec_field_name]].to_dict('records')
collection_w.load()
collection_w.query(default_term_expr, output_fields=fields,
check_task=CheckTasks.check_query_results,
check_items={exp_res: res, "with_vec": True})
@pytest.mark.tags(CaseLabel.L1)
def test_query_output_binary_vec_field_after_index(self):
"""
target: test query output vec field after index
method: create index and specify vec field as output field
expected: return primary field and vec field
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True, is_binary=True)[0:2]
fields = [ct.default_int64_field_name, ct.default_binary_vec_field_name]
collection_w.create_index(ct.default_binary_vec_field_name, binary_index_params)
assert collection_w.has_index()[0]
res, _ = collection_w.query(default_term_expr, output_fields=[ct.default_binary_vec_field_name])
assert res[0].keys() == set(fields)
@pytest.mark.tags(CaseLabel.L2)
def test_query_partition_repeatedly(self):
"""
target: test query repeatedly on partition
method: query on partition twice
expected: verify query result
"""
# create connection
self._connect()
# init collection
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
# init partition
partition_w = self.init_partition_wrap(collection_wrap=collection_w)
# insert data to partition
df = cf.gen_default_dataframe_data()
partition_w.insert(df)
# check number of entities and that method calls the flush interface
assert collection_w.num_entities == ct.default_nb
# load partition
partition_w.load()
# query twice
res_one, _ = collection_w.query(default_term_expr, partition_names=[partition_w.name])
res_two, _ = collection_w.query(default_term_expr, partition_names=[partition_w.name])
assert res_one == res_two
@pytest.mark.tags(CaseLabel.L2)
def test_query_another_partition(self):
"""
target: test query another partition
method: 1. insert entities into two partitions
2.query on one partition and query result empty
expected: query result is empty
"""
half = ct.default_nb // 2
collection_w, partition_w, _, _ = self.insert_entities_into_two_partitions_in_half(half)
term_expr = f'{ct.default_int64_field_name} in [{half}]'
# half entity in _default partition rather than partition_w
collection_w.query(term_expr, partition_names=[partition_w.name], check_task=CheckTasks.check_query_results,
check_items={exp_res: []})
@pytest.mark.tags(CaseLabel.L1)
def test_query_multi_partitions_multi_results(self):
"""
target: test query on multi partitions and get multi results
method: 1.insert entities into two partitions
2.query on two partitions and query multi result
expected: query results from two partitions
"""
half = ct.default_nb // 2
collection_w, partition_w, _, _ = self.insert_entities_into_two_partitions_in_half(half)
term_expr = f'{ct.default_int64_field_name} in [{half - 1}, {half}]'
# half entity in _default, half-1 entity in partition_w
res, _ = collection_w.query(term_expr, partition_names=[ct.default_partition_name, partition_w.name])
assert len(res) == 2
@pytest.mark.tags(CaseLabel.L2)
def test_query_multi_partitions_single_result(self):
"""
target: test query on multi partitions and get single result
method: 1.insert into two partitions
2.query on two partitions and query single result
expected: query from two partitions and get single result
"""
half = ct.default_nb // 2
collection_w, partition_w, df_partition, df_default = self.insert_entities_into_two_partitions_in_half(half)
term_expr = f'{ct.default_int64_field_name} in [{half}]'
# half entity in _default
res, _ = collection_w.query(term_expr, partition_names=[ct.default_partition_name, partition_w.name])
assert len(res) == 1
assert res[0][ct.default_int64_field_name] == half
@pytest.mark.tags(CaseLabel.L1)
def test_query_growing_segment_data(self):
"""
target: test query data in the growing segment
method: 1. create collection
2.load collection
3.insert without flush
4.query
expected: Data can be queried
"""
import time
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
# load collection
collection_w.load()
tmp_nb = 100
df = cf.gen_default_dataframe_data(tmp_nb)
collection_w.insert(df)
res = df.iloc[1:2, :1].to_dict('records')
time.sleep(1)
collection_w.query(f'{ct.default_int64_field_name} in [1]',
check_task=CheckTasks.check_query_results, check_items={exp_res: res})
class TestqueryString(TestcaseBase):
"""
******************************************************************
The following cases are used to test query with string
******************************************************************
"""
@pytest.mark.tags(CaseLabel.L1)
def test_query_string_is_not_primary(self):
"""
target: test query data with string field is not primary
method: create collection and insert data
collection.load()
query with string expr in string field is not primary
expected: query successfully
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2]
res = vectors[0].iloc[:2, :3].to_dict('records')
output_fields = [default_float_field_name, default_string_field_name]
collection_w.query(default_string_term_expr, output_fields=output_fields,
check_task=CheckTasks.check_query_results, check_items={exp_res: res})
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("expression", cf.gen_normal_string_expressions(default_string_field_name))
def test_query_string_is_primary(self, expression):
"""
target: test query with output field only primary field
method: specify string primary field as output field
expected: return string primary field
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True, primary_field=ct.default_string_field_name)[0:2]
res, _ = collection_w.query(expression, output_fields=[ct.default_string_field_name])
assert res[0].keys() == {ct.default_string_field_name}
@pytest.mark.tags(CaseLabel.L1)
def test_query_string_with_mix_expr(self):
"""
target: test query data
method: create collection and insert data
query with mix expr in string field and int field
expected: query successfully
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True, primary_field=ct.default_string_field_name)[0:2]
res = vectors[0].iloc[:, 1:3].to_dict('records')
output_fields = [default_float_field_name, default_string_field_name]
collection_w.query(default_mix_expr, output_fields=output_fields,
check_task=CheckTasks.check_query_results, check_items={exp_res: res})
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("expression", cf.gen_invaild_string_expressions())
def test_query_with_invalid_string_expr(self, expression):
"""
target: test query data
method: create collection and insert data
query with invalid expr
expected: Raise exception
"""
collection_w = self.init_collection_general(prefix, insert_data=True)[0]
collection_w.query(expression, check_task=CheckTasks.err_res,
check_items={ct.err_code: 1, ct.err_msg: "type mismatch"})
@pytest.mark.tags(CaseLabel.L1)
def test_query_string_expr_with_binary(self):
"""
target: test query string expr with binary
method: query string expr with binary
expected: verify query successfully
"""
collection_w, vectors= self.init_collection_general(prefix, insert_data=True, is_binary=True, is_index=True)[0:2]
collection_w.create_index(ct.default_binary_vec_field_name, binary_index_params)
collection_w.load()
assert collection_w.has_index()[0]
res, _ = collection_w.query(default_string_term_expr, output_fields=[ct.default_binary_vec_field_name])
assert len(res) == 2
@pytest.mark.tags(CaseLabel.L1)
def test_query_string_expr_with_prefixes(self):
"""
target: test query with prefix string expression
method: specify string is primary field, use prefix string expr
expected: verify query successfully
"""
collection_w, vectors = self.init_collection_general(prefix, insert_data=True, primary_field=ct.default_string_field_name)[0:2]
res = vectors[0].iloc[:1, :3].to_dict('records')
expression = 'varchar like "0%"'
output_fields = [default_int_field_name, default_float_field_name, default_string_field_name]
collection_w.query(expression, output_fields=output_fields,
check_task=CheckTasks.check_query_results, check_items={exp_res: res})
@pytest.mark.tags(CaseLabel.L1)
def test_query_string_with_invaild_prefix_expr(self):
"""
target: test query with invalid prefix string expression
method: specify string primary field, use invaild prefix string expr
expected: raise error
"""
collection_w = self.init_collection_general(prefix, insert_data=True)[0]
expression = 'float like "0%"'
collection_w.query(expression, check_task=CheckTasks.err_res,
check_items={ct.err_code: 1, ct.err_msg: "like operation on non-string field is unsupported"}
)
@pytest.mark.tags(CaseLabel.L1)
def test_query_compare_two_fields(self):
"""
target: test query with bool expression comparing two fields
method: specify string primary field, compare two fields
expected: verify query successfully
"""
collection_w = self.init_collection_general(prefix, insert_data=True, primary_field=ct.default_string_field_name)[0]
res = []
expression = 'float > int64'
output_fields = [default_int_field_name, default_float_field_name, default_string_field_name]
collection_w.query(expression, output_fields=output_fields,
check_task=CheckTasks.check_query_results, check_items={exp_res: res})
@pytest.mark.tags(CaseLabel.L1)
def test_query_compare_invalid_fields(self):
"""
target: test query with
method: specify string primary field, compare string and int field
expected: raise error
"""
collection_w = self.init_collection_general(prefix, insert_data=True, primary_field=ct.default_string_field_name)[0]
expression = 'varchar == int64'
collection_w.query(expression, check_task=CheckTasks.err_res,
check_items={ct.err_code: 1, ct.err_msg: f' cannot parse expression:{expression}'})
@pytest.mark.tags(CaseLabel.L1)
def test_query_after_insert_multi_threading(self):
"""
target: test data consistency after multi threading insert
method: multi threads insert, and query, compare queried data with original
expected: verify data consistency
"""
collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix))
thread_num = 4
threads = []
primary_keys = []
df_list = []
#prepare original data for parallel insert
for i in range(thread_num):
df = cf.gen_default_dataframe_data(ct.default_nb, start=i*ct.default_nb)
df_list.append(df)
primary_key = df[ct.default_int64_field_name].values.tolist()
primary_keys.append(primary_key)
def insert(thread_i):
log.debug(f'In thread-{thread_i}')
mutation_res, _ = collection_w.insert(df_list[thread_i])
assert mutation_res.insert_count == ct.default_nb
assert mutation_res.primary_keys == primary_keys[thread_i]
for i in range(thread_num):
x = threading.Thread(target=insert, args=(i,))
threads.append(x)
x.start()
for t in threads:
t.join()
assert collection_w.num_entities == ct.default_nb * thread_num
#Check data consistency after parallel insert
collection_w.load()
df_dict_list = []
for df in df_list:
df_dict_list += df.to_dict('records')
output_fields = ["*", "%"]
expression = "int64 >= 0"
collection_w.query(expression, output_fields=output_fields,
check_task=CheckTasks.check_query_results,
check_items={exp_res: df_dict_list,
"primary_field": default_int_field_name,
"with_vec": True})
@pytest.mark.tags(CaseLabel.L2)
def test_query_string_field_pk_is_empty(self):
"""
target: test query with string expr and string field is primary
method: create collection , string field is primary
collection load and insert empty data with string field
collection query uses string expr in string field
expected: query successfully
"""
# 1. create a collection
schema = cf.gen_string_pk_default_collection_schema()
collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix), schema=schema)
collection_w.load()
nb = 3000
df = cf.gen_default_list_data(nb)
df[2] = [""for _ in range(nb)]
collection_w.insert(df)
assert collection_w.num_entities == nb
string_exp = "varchar >= \"\""
output_fields = [default_int_field_name, default_float_field_name, default_string_field_name]
res, _ = collection_w.query(string_exp, output_fields=output_fields)
assert len(res) == 1
@pytest.mark.tags(CaseLabel.L2)
def test_query_string_field_not_primary_is_empty(self):
"""
target: test query with string expr and string field is not primary
method: create collection , string field is primary
collection load and insert empty data with string field
collection query uses string expr in string field
expected: query successfully
"""
# 1. create a collection
collection_w, vectors = self.init_collection_general(prefix, insert_data=False)[0:2]
nb = 3000
df = cf.gen_default_list_data(nb)
df[2] = [""for _ in range(nb)]
collection_w.insert(df)
assert collection_w.num_entities == nb
collection_w.load()
collection_w.create_index(ct.default_float_vec_field_name, default_index_params)
assert collection_w.has_index()[0]
output_fields = [default_int_field_name, default_float_field_name, default_string_field_name]
expr = "varchar == \"\""
res, _ = collection_w.query(expr, output_fields=output_fields)
assert len(res) == nb