mirror of
https://gitee.com/milvus-io/milvus.git
synced 2024-12-04 21:09:06 +08:00
666f06e91a
Signed-off-by: wangting0128 <ting.wang@zilliz.com>
296 lines
14 KiB
Python
296 lines
14 KiB
Python
import time
|
|
import pdb
|
|
import copy
|
|
import json
|
|
import logging
|
|
from milvus_benchmark import parser
|
|
from milvus_benchmark.runners import utils
|
|
from milvus_benchmark.runners.base import BaseRunner
|
|
|
|
logger = logging.getLogger("milvus_benchmark.runners.search")
|
|
|
|
|
|
class SearchRunner(BaseRunner):
|
|
"""run search"""
|
|
name = "search_performance"
|
|
|
|
def __init__(self, env, metric):
|
|
super(SearchRunner, self).__init__(env, metric)
|
|
|
|
def extract_cases(self, collection):
|
|
collection_name = collection["collection_name"] if "collection_name" in collection else None
|
|
(data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
|
|
run_count = collection["run_count"]
|
|
top_ks = collection["top_ks"]
|
|
nqs = collection["nqs"]
|
|
filters = collection["filters"] if "filters" in collection else []
|
|
|
|
search_params = collection["search_params"]
|
|
# TODO: get fields by describe_index
|
|
# fields = self.get_fields(self.milvus, collection_name)
|
|
fields = None
|
|
collection_info = {
|
|
"dimension": dimension,
|
|
"metric_type": metric_type,
|
|
"dataset_name": collection_name,
|
|
"collection_size": collection_size,
|
|
"fields": fields
|
|
}
|
|
# TODO: need to get index_info
|
|
index_info = None
|
|
vector_type = utils.get_vector_type(data_type)
|
|
index_field_name = utils.get_default_field_name(vector_type)
|
|
base_query_vectors = utils.get_vectors_from_binary(utils.MAX_NQ, dimension, data_type)
|
|
cases = list()
|
|
case_metrics = list()
|
|
self.init_metric(self.name, collection_info, index_info, None)
|
|
for search_param in search_params:
|
|
logger.info("Search param: %s" % json.dumps(search_param))
|
|
for filter in filters:
|
|
filter_query = []
|
|
filter_param = []
|
|
if filter and isinstance(filter, dict):
|
|
if "range" in filter:
|
|
filter_query.append(eval(filter["range"]))
|
|
filter_param.append(filter["range"])
|
|
elif "term" in filter:
|
|
filter_query.append(eval(filter["term"]))
|
|
filter_param.append(filter["term"])
|
|
else:
|
|
raise Exception("%s not supported" % filter)
|
|
logger.info("filter param: %s" % json.dumps(filter_param))
|
|
for nq in nqs:
|
|
query_vectors = base_query_vectors[0:nq]
|
|
for top_k in top_ks:
|
|
search_info = {
|
|
"topk": top_k,
|
|
"query": query_vectors,
|
|
"metric_type": utils.metric_type_trans(metric_type),
|
|
"params": search_param}
|
|
# TODO: only update search_info
|
|
case_metric = copy.deepcopy(self.metric)
|
|
case_metric.set_case_metric_type()
|
|
case_metric.search = {
|
|
"nq": nq,
|
|
"topk": top_k,
|
|
"search_param": search_param,
|
|
"filter": filter_param
|
|
}
|
|
vector_query = {"vector": {index_field_name: search_info}}
|
|
case = {
|
|
"collection_name": collection_name,
|
|
"index_field_name": index_field_name,
|
|
"run_count": run_count,
|
|
"filter_query": filter_query,
|
|
"vector_query": vector_query,
|
|
}
|
|
cases.append(case)
|
|
case_metrics.append(case_metric)
|
|
return cases, case_metrics
|
|
|
|
def prepare(self, **case_param):
|
|
collection_name = case_param["collection_name"]
|
|
self.milvus.set_collection(collection_name)
|
|
if not self.milvus.exists_collection():
|
|
logger.error("collection name: {} not existed".format(collection_name))
|
|
return False
|
|
logger.debug(self.milvus.count())
|
|
logger.info("Start load collection")
|
|
self.milvus.load_collection(timeout=1200)
|
|
# TODO: enable warm query
|
|
# self.milvus.warm_query(index_field_name, search_params[0], times=2)
|
|
|
|
def run_case(self, case_metric, **case_param):
|
|
# index_field_name = case_param["index_field_name"]
|
|
run_count = case_param["run_count"]
|
|
avg_query_time = 0.0
|
|
min_query_time = 0.0
|
|
total_query_time = 0.0
|
|
for i in range(run_count):
|
|
logger.debug("Start run query, run %d of %s" % (i+1, run_count))
|
|
start_time = time.time()
|
|
_query_res = self.milvus.query(case_param["vector_query"], filter_query=case_param["filter_query"])
|
|
interval_time = time.time() - start_time
|
|
total_query_time += interval_time
|
|
if (i == 0) or (min_query_time > interval_time):
|
|
min_query_time = round(interval_time, 2)
|
|
avg_query_time = round(total_query_time/run_count, 2)
|
|
tmp_result = {"search_time": min_query_time, "avc_search_time": avg_query_time}
|
|
return tmp_result
|
|
|
|
|
|
class InsertSearchRunner(BaseRunner):
|
|
"""run insert and search"""
|
|
name = "insert_search_performance"
|
|
|
|
def __init__(self, env, metric):
|
|
super(InsertSearchRunner, self).__init__(env, metric)
|
|
self.build_time = None
|
|
self.insert_result = None
|
|
|
|
def extract_cases(self, collection):
|
|
collection_name = collection["collection_name"] if "collection_name" in collection else None
|
|
(data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
|
|
build_index = collection["build_index"] if "build_index" in collection else False
|
|
index_type = collection["index_type"] if "index_type" in collection else None
|
|
index_param = collection["index_param"] if "index_param" in collection else None
|
|
run_count = collection["run_count"]
|
|
top_ks = collection["top_ks"]
|
|
nqs = collection["nqs"]
|
|
other_fields = collection["other_fields"] if "other_fields" in collection else None
|
|
filters = collection["filters"] if "filters" in collection else []
|
|
filter_query = []
|
|
search_params = collection["search_params"]
|
|
ni_per = collection["ni_per"]
|
|
|
|
# TODO: get fields by describe_index
|
|
# fields = self.get_fields(self.milvus, collection_name)
|
|
fields = None
|
|
collection_info = {
|
|
"dimension": dimension,
|
|
"metric_type": metric_type,
|
|
"dataset_name": collection_name,
|
|
"fields": fields
|
|
}
|
|
index_info = {
|
|
"index_type": index_type,
|
|
"index_param": index_param
|
|
}
|
|
vector_type = utils.get_vector_type(data_type)
|
|
index_field_name = utils.get_default_field_name(vector_type)
|
|
# Get the path of the query.npy file stored on the NAS and get its data
|
|
base_query_vectors = utils.get_vectors_from_binary(utils.MAX_NQ, dimension, data_type)
|
|
cases = list()
|
|
case_metrics = list()
|
|
self.init_metric(self.name, collection_info, index_info, None)
|
|
|
|
for search_param in search_params:
|
|
if not filters:
|
|
filters.append(None)
|
|
for filter in filters:
|
|
# filter_param = []
|
|
filter_query = []
|
|
if isinstance(filter, dict) and "range" in filter:
|
|
filter_query.append(eval(filter["range"]))
|
|
# filter_param.append(filter["range"])
|
|
if isinstance(filter, dict) and "term" in filter:
|
|
filter_query.append(eval(filter["term"]))
|
|
# filter_param.append(filter["term"])
|
|
# logger.info("filter param: %s" % json.dumps(filter_param))
|
|
for nq in nqs:
|
|
# Take nq groups of data for query
|
|
query_vectors = base_query_vectors[0:nq]
|
|
for top_k in top_ks:
|
|
search_info = {
|
|
"topk": top_k,
|
|
"query": query_vectors,
|
|
"metric_type": utils.metric_type_trans(metric_type),
|
|
"params": search_param}
|
|
# TODO: only update search_info
|
|
case_metric = copy.deepcopy(self.metric)
|
|
# set metric type as case
|
|
case_metric.set_case_metric_type()
|
|
case_metric.search = {
|
|
"nq": nq,
|
|
"topk": top_k,
|
|
"search_param": search_param,
|
|
"filter": filter_query
|
|
}
|
|
vector_query = {"vector": {index_field_name: search_info}}
|
|
case = {
|
|
"collection_name": collection_name,
|
|
"index_field_name": index_field_name,
|
|
"other_fields": other_fields,
|
|
"dimension": dimension,
|
|
"data_type": data_type,
|
|
"vector_type": vector_type,
|
|
"collection_size": collection_size,
|
|
"ni_per": ni_per,
|
|
"build_index": build_index,
|
|
"index_type": index_type,
|
|
"index_param": index_param,
|
|
"metric_type": metric_type,
|
|
"run_count": run_count,
|
|
"filter_query": filter_query,
|
|
"vector_query": vector_query,
|
|
}
|
|
cases.append(case)
|
|
case_metrics.append(case_metric)
|
|
return cases, case_metrics
|
|
|
|
def prepare(self, **case_param):
|
|
collection_name = case_param["collection_name"]
|
|
dimension = case_param["dimension"]
|
|
vector_type = case_param["vector_type"]
|
|
other_fields = case_param["other_fields"]
|
|
index_field_name = case_param["index_field_name"]
|
|
build_index = case_param["build_index"]
|
|
|
|
self.milvus.set_collection(collection_name)
|
|
if self.milvus.exists_collection():
|
|
logger.debug("Start drop collection")
|
|
self.milvus.drop()
|
|
time.sleep(utils.DELETE_INTERVAL_TIME)
|
|
self.milvus.create_collection(dimension, data_type=vector_type,
|
|
other_fields=other_fields)
|
|
# TODO: update fields in collection_info
|
|
# fields = self.get_fields(self.milvus, collection_name)
|
|
# collection_info = {
|
|
# "dimension": dimension,
|
|
# "metric_type": metric_type,
|
|
# "dataset_name": collection_name,
|
|
# "fields": fields
|
|
# }
|
|
if build_index is True:
|
|
if case_param["index_type"]:
|
|
self.milvus.create_index(index_field_name, case_param["index_type"], case_param["metric_type"], index_param=case_param["index_param"])
|
|
logger.debug(self.milvus.describe_index(index_field_name))
|
|
else:
|
|
build_index = False
|
|
logger.warning("Please specify the index_type")
|
|
insert_result = self.insert(self.milvus, collection_name, case_param["data_type"], dimension, case_param["collection_size"], case_param["ni_per"])
|
|
self.insert_result = insert_result
|
|
build_time = 0.0
|
|
start_time = time.time()
|
|
self.milvus.flush()
|
|
flush_time = round(time.time()-start_time, 2)
|
|
logger.debug(self.milvus.count())
|
|
if build_index is True:
|
|
logger.debug("Start build index for last file")
|
|
start_time = time.time()
|
|
self.milvus.create_index(index_field_name, case_param["index_type"], case_param["metric_type"], index_param=case_param["index_param"])
|
|
build_time = round(time.time()-start_time, 2)
|
|
# build_time includes flush and index time
|
|
logger.debug({"flush_time": flush_time, "build_time": build_time})
|
|
self.build_time = build_time
|
|
logger.info(self.milvus.count())
|
|
logger.info("Start load collection")
|
|
load_start_time = time.time()
|
|
self.milvus.load_collection(timeout=1200)
|
|
logger.debug({"load_time": round(time.time()-load_start_time, 2)})
|
|
|
|
def run_case(self, case_metric, **case_param):
|
|
run_count = case_param["run_count"]
|
|
avg_query_time = 0.0
|
|
min_query_time = 0.0
|
|
total_query_time = 0.0
|
|
for i in range(run_count):
|
|
# Number of successive queries
|
|
logger.debug("Start run query, run %d of %s" % (i+1, run_count))
|
|
logger.info(case_metric.search)
|
|
start_time = time.time()
|
|
_query_res = self.milvus.query(case_param["vector_query"], filter_query=case_param["filter_query"])
|
|
interval_time = time.time() - start_time
|
|
total_query_time += interval_time
|
|
if (i == 0) or (min_query_time > interval_time):
|
|
min_query_time = round(interval_time, 2)
|
|
avg_query_time = round(total_query_time/run_count, 2)
|
|
logger.info("Min query time: %.2f, avg query time: %.2f" % (min_query_time, avg_query_time))
|
|
# insert_result: "total_time", "rps", "ni_time"
|
|
tmp_result = {"insert": self.insert_result, "build_time": self.build_time, "search_time": min_query_time, "avc_search_time": avg_query_time}
|
|
#
|
|
# logger.info("Start load collection")
|
|
# self.milvus.load_collection(timeout=1200)
|
|
# logger.info("Release load collection")
|
|
# self.milvus.release_collection()
|
|
return tmp_result |