milvus/internal/core/unittest/test_retrieve.cpp
Cai Yudong 246586be27
enhance: Unify data type check APIs under internal/core (#31800)
Issue: #22837 

Move and rename following C++ APIs:
datatype_sizeof() ==> GetDataTypeSize()
datatype_name() ==> GetDataTypeName()
datatype_is_vector() / IsVectorType() ==> IsVectorDataType()
datatype_is_variable() ==> IsVariableDataType()
datatype_is_sparse_vector() ==> IsSparseFloatVectorDataType()
datatype_is_string() / IsString() ==> IsDataTypeString()
datatype_is_floating() / IsFloat() ==> IsDataTypeFloat()
datatype_is_binary() ==> IsDataTypeBinary()
datatype_is_json() ==> IsDataTypeJson()
datatype_is_array() ==> IsDataTypeArray()
datatype_is_variable() == IsDataTypeVariable()
datatype_is_integer() / IsIntegral() ==> IsDataTypeInteger()

Signed-off-by: Cai Yudong <yudong.cai@zilliz.com>
2024-04-02 19:15:14 +08:00

568 lines
21 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <gtest/gtest.h>
#include "common/Types.h"
#include "knowhere/comp/index_param.h"
#include "query/Expr.h"
#include "test_utils/DataGen.h"
#include "plan/PlanNode.h"
using namespace milvus;
using namespace milvus::segcore;
std::unique_ptr<proto::segcore::RetrieveResults>
RetrieveUsingDefaultOutputSize(SegmentInterface* segment,
const query::RetrievePlan* plan,
Timestamp timestamp) {
return segment->Retrieve(plan, timestamp, DEFAULT_MAX_OUTPUT_SIZE);
}
using Param = DataType;
class RetrieveTest : public ::testing::TestWithParam<Param> {
public:
void
SetUp() override {
data_type = GetParam();
is_sparse = IsSparseFloatVectorDataType(data_type);
metric_type = is_sparse ? knowhere::metric::IP : knowhere::metric::L2;
}
DataType data_type;
knowhere::MetricType metric_type;
bool is_sparse = false;
};
INSTANTIATE_TEST_SUITE_P(RetrieveTest,
RetrieveTest,
::testing::Values(DataType::VECTOR_FLOAT,
DataType::VECTOR_SPARSE_FLOAT));
TEST_P(RetrieveTest, AutoID) {
auto schema = std::make_shared<Schema>();
auto fid_64 = schema->AddDebugField("i64", DataType::INT64);
auto DIM = 16;
auto fid_vec =
schema->AddDebugField("vector_64", data_type, DIM, metric_type);
schema->set_primary_field_id(fid_64);
int64_t N = 100;
int64_t req_size = 10;
auto choose = [=](int i) { return i * 3 % N; };
auto dataset = DataGen(schema, N);
auto segment = CreateSealedSegment(schema);
SealedLoadFieldData(dataset, *segment);
auto i64_col = dataset.get_col<int64_t>(fid_64);
auto plan = std::make_unique<query::RetrievePlan>(*schema);
std::vector<proto::plan::GenericValue> values;
for (int i = 0; i < req_size; ++i) {
proto::plan::GenericValue val;
val.set_int64_val(i64_col[choose(i)]);
values.push_back(val);
}
auto term_expr = std::make_shared<milvus::expr::TermFilterExpr>(
milvus::expr::ColumnInfo(
fid_64, DataType::INT64, std::vector<std::string>()),
values);
plan->plan_node_ = std::make_unique<query::RetrievePlanNode>();
plan->plan_node_->filter_plannode_ =
std::make_shared<plan::FilterBitsNode>(DEFAULT_PLANNODE_ID, term_expr);
std::vector<FieldId> target_fields_id{fid_64, fid_vec};
plan->field_ids_ = target_fields_id;
auto retrieve_results =
RetrieveUsingDefaultOutputSize(segment.get(), plan.get(), 100);
Assert(retrieve_results->fields_data_size() == target_fields_id.size());
auto field0 = retrieve_results->fields_data(0);
Assert(field0.has_scalars());
auto field0_data = field0.scalars().long_data();
for (int i = 0; i < req_size; ++i) {
auto index = choose(i);
auto data = field0_data.data(i);
ASSERT_EQ(data, i64_col[index]);
}
auto field1 = retrieve_results->fields_data(1);
Assert(field1.has_vectors());
if (!is_sparse) {
auto field1_data = field1.vectors().float_vector();
ASSERT_EQ(field1_data.data_size(), DIM * req_size);
} else {
auto field1_data = field1.vectors().sparse_float_vector();
ASSERT_EQ(field1_data.contents_size(), req_size);
}
}
TEST_P(RetrieveTest, AutoID2) {
auto schema = std::make_shared<Schema>();
auto fid_64 = schema->AddDebugField("i64", DataType::INT64);
auto DIM = 16;
auto fid_vec =
schema->AddDebugField("vector_64", data_type, DIM, metric_type);
schema->set_primary_field_id(fid_64);
int64_t N = 100;
int64_t req_size = 10;
auto choose = [=](int i) { return i * 3 % N; };
auto dataset = DataGen(schema, N);
auto segment = CreateSealedSegment(schema);
SealedLoadFieldData(dataset, *segment);
auto i64_col = dataset.get_col<int64_t>(fid_64);
auto plan = std::make_unique<query::RetrievePlan>(*schema);
std::vector<proto::plan::GenericValue> values;
{
for (int i = 0; i < req_size; ++i) {
proto::plan::GenericValue val;
val.set_int64_val(i64_col[choose(i)]);
values.push_back(val);
}
}
auto term_expr = std::make_shared<milvus::expr::TermFilterExpr>(
milvus::expr::ColumnInfo(
fid_64, DataType::INT64, std::vector<std::string>()),
values);
plan->plan_node_ = std::make_unique<query::RetrievePlanNode>();
plan->plan_node_->filter_plannode_ =
std::make_shared<plan::FilterBitsNode>(DEFAULT_PLANNODE_ID, term_expr);
std::vector<FieldId> target_offsets{fid_64, fid_vec};
plan->field_ids_ = target_offsets;
auto retrieve_results =
RetrieveUsingDefaultOutputSize(segment.get(), plan.get(), 100);
Assert(retrieve_results->fields_data_size() == target_offsets.size());
auto field0 = retrieve_results->fields_data(0);
Assert(field0.has_scalars());
auto field0_data = field0.scalars().long_data();
for (int i = 0; i < req_size; ++i) {
auto index = choose(i);
auto data = field0_data.data(i);
ASSERT_EQ(data, i64_col[index]);
}
auto field1 = retrieve_results->fields_data(1);
Assert(field1.has_vectors());
if (!is_sparse) {
auto field1_data = field1.vectors().float_vector();
ASSERT_EQ(field1_data.data_size(), DIM * req_size);
} else {
auto field1_data = field1.vectors().sparse_float_vector();
ASSERT_EQ(field1_data.contents_size(), req_size);
}
}
TEST_P(RetrieveTest, NotExist) {
auto schema = std::make_shared<Schema>();
auto fid_64 = schema->AddDebugField("i64", DataType::INT64);
auto DIM = 16;
auto fid_vec =
schema->AddDebugField("vector_64", data_type, DIM, metric_type);
schema->set_primary_field_id(fid_64);
int64_t N = 100;
int64_t req_size = 10;
auto choose = [=](int i) { return i * 3 % N; };
auto choose2 = [=](int i) { return i * 3 % N + 3 * N; };
auto dataset = DataGen(schema, N);
auto segment = CreateSealedSegment(schema);
SealedLoadFieldData(dataset, *segment);
auto i64_col = dataset.get_col<int64_t>(fid_64);
auto plan = std::make_unique<query::RetrievePlan>(*schema);
std::vector<proto::plan::GenericValue> values;
{
for (int i = 0; i < req_size; ++i) {
proto::plan::GenericValue val1;
val1.set_int64_val(i64_col[choose(i)]);
values.push_back(val1);
proto::plan::GenericValue val2;
val2.set_int64_val(choose2(i));
values.push_back(val2);
}
}
auto term_expr = std::make_shared<milvus::expr::TermFilterExpr>(
milvus::expr::ColumnInfo(
fid_64, DataType::INT64, std::vector<std::string>()),
values);
plan->plan_node_ = std::make_unique<query::RetrievePlanNode>();
plan->plan_node_->filter_plannode_ =
std::make_shared<plan::FilterBitsNode>(DEFAULT_PLANNODE_ID, term_expr);
std::vector<FieldId> target_offsets{fid_64, fid_vec};
plan->field_ids_ = target_offsets;
auto retrieve_results =
RetrieveUsingDefaultOutputSize(segment.get(), plan.get(), 100);
Assert(retrieve_results->fields_data_size() == target_offsets.size());
auto field0 = retrieve_results->fields_data(0);
Assert(field0.has_scalars());
auto field0_data = field0.scalars().long_data();
for (int i = 0; i < req_size; ++i) {
auto index = choose(i);
auto data = field0_data.data(i);
ASSERT_EQ(data, i64_col[index]);
}
auto field1 = retrieve_results->fields_data(1);
Assert(field1.has_vectors());
if (!is_sparse) {
auto field1_data = field1.vectors().float_vector();
ASSERT_EQ(field1_data.data_size(), DIM * req_size);
} else {
auto field1_data = field1.vectors().sparse_float_vector();
ASSERT_EQ(field1_data.contents_size(), req_size);
}
}
TEST_P(RetrieveTest, Empty) {
auto schema = std::make_shared<Schema>();
auto fid_64 = schema->AddDebugField("i64", DataType::INT64);
auto DIM = 16;
auto fid_vec =
schema->AddDebugField("vector_64", data_type, DIM, metric_type);
schema->set_primary_field_id(fid_64);
int64_t N = 100;
int64_t req_size = 10;
auto choose = [=](int i) { return i * 3 % N; };
auto segment = CreateSealedSegment(schema);
auto plan = std::make_unique<query::RetrievePlan>(*schema);
std::vector<proto::plan::GenericValue> values;
{
for (int i = 0; i < req_size; ++i) {
proto::plan::GenericValue val;
val.set_int64_val(choose(i));
values.push_back(val);
}
}
auto term_expr = std::make_shared<milvus::expr::TermFilterExpr>(
milvus::expr::ColumnInfo(
fid_64, DataType::INT64, std::vector<std::string>()),
values);
plan->plan_node_ = std::make_unique<query::RetrievePlanNode>();
plan->plan_node_->filter_plannode_ =
std::make_shared<plan::FilterBitsNode>(DEFAULT_PLANNODE_ID, term_expr);
std::vector<FieldId> target_offsets{fid_64, fid_vec};
plan->field_ids_ = target_offsets;
auto retrieve_results =
RetrieveUsingDefaultOutputSize(segment.get(), plan.get(), 100);
Assert(retrieve_results->fields_data_size() == target_offsets.size());
auto field0 = retrieve_results->fields_data(0);
auto field1 = retrieve_results->fields_data(1);
Assert(field0.has_scalars());
auto field0_data = field0.scalars().long_data();
Assert(field0_data.data_size() == 0);
if (!is_sparse) {
ASSERT_EQ(field1.vectors().float_vector().data_size(), 0);
} else {
ASSERT_EQ(field1.vectors().sparse_float_vector().contents_size(), 0);
}
}
TEST_P(RetrieveTest, Limit) {
auto schema = std::make_shared<Schema>();
auto fid_64 = schema->AddDebugField("i64", DataType::INT64);
auto DIM = 16;
auto fid_vec =
schema->AddDebugField("vector_64", data_type, DIM, metric_type);
schema->set_primary_field_id(fid_64);
int64_t N = 101;
auto dataset = DataGen(schema, N, 42);
auto segment = CreateSealedSegment(schema);
SealedLoadFieldData(dataset, *segment);
auto plan = std::make_unique<query::RetrievePlan>(*schema);
proto::plan::GenericValue unary_val;
unary_val.set_int64_val(0);
auto expr = std::make_shared<expr::UnaryRangeFilterExpr>(
milvus::expr::ColumnInfo(
fid_64, DataType::INT64, std::vector<std::string>()),
OpType::GreaterEqual,
unary_val);
plan->plan_node_ = std::make_unique<query::RetrievePlanNode>();
plan->plan_node_->filter_plannode_ =
std::make_shared<plan::FilterBitsNode>(DEFAULT_PLANNODE_ID, expr);
// test query results exceed the limit size
std::vector<FieldId> target_fields{TimestampFieldID, fid_64, fid_vec};
plan->field_ids_ = target_fields;
EXPECT_THROW(segment->Retrieve(plan.get(), N, 1), std::runtime_error);
auto retrieve_results =
segment->Retrieve(plan.get(), N, DEFAULT_MAX_OUTPUT_SIZE);
Assert(retrieve_results->fields_data_size() == target_fields.size());
auto field0 = retrieve_results->fields_data(0);
auto field2 = retrieve_results->fields_data(2);
Assert(field0.scalars().long_data().data_size() == N);
if (!is_sparse) {
Assert(field2.vectors().float_vector().data_size() == N * DIM);
} else {
Assert(field2.vectors().sparse_float_vector().contents_size() == N);
}
}
TEST_P(RetrieveTest, FillEntry) {
auto schema = std::make_shared<Schema>();
auto fid_64 = schema->AddDebugField("i64", DataType::INT64);
auto DIM = 16;
auto fid_bool = schema->AddDebugField("bool", DataType::BOOL);
auto fid_f32 = schema->AddDebugField("f32", DataType::FLOAT);
auto fid_f64 = schema->AddDebugField("f64", DataType::DOUBLE);
auto fid_vec =
schema->AddDebugField("vector", data_type, DIM, knowhere::metric::L2);
auto fid_vecbin = schema->AddDebugField(
"vec_bin", DataType::VECTOR_BINARY, DIM, knowhere::metric::L2);
schema->set_primary_field_id(fid_64);
int64_t N = 101;
auto dataset = DataGen(schema, N, 42);
auto segment = CreateSealedSegment(schema);
SealedLoadFieldData(dataset, *segment);
auto plan = std::make_unique<query::RetrievePlan>(*schema);
proto::plan::GenericValue unary_val;
unary_val.set_int64_val(0);
auto expr = std::make_shared<expr::UnaryRangeFilterExpr>(
milvus::expr::ColumnInfo(
fid_64, DataType::INT64, std::vector<std::string>()),
OpType::GreaterEqual,
unary_val);
plan->plan_node_ = std::make_unique<query::RetrievePlanNode>();
plan->plan_node_->filter_plannode_ =
std::make_shared<plan::FilterBitsNode>(DEFAULT_PLANNODE_ID, expr);
// test query results exceed the limit size
std::vector<FieldId> target_fields{TimestampFieldID,
fid_64,
fid_bool,
fid_f32,
fid_f64,
fid_vec,
fid_vecbin};
plan->field_ids_ = target_fields;
EXPECT_THROW(segment->Retrieve(plan.get(), N, 1), std::runtime_error);
auto retrieve_results =
segment->Retrieve(plan.get(), N, DEFAULT_MAX_OUTPUT_SIZE);
Assert(retrieve_results->fields_data_size() == target_fields.size());
}
TEST_P(RetrieveTest, LargeTimestamp) {
auto schema = std::make_shared<Schema>();
auto fid_64 = schema->AddDebugField("i64", DataType::INT64);
auto DIM = 16;
auto fid_vec =
schema->AddDebugField("vector_64", data_type, DIM, metric_type);
schema->set_primary_field_id(fid_64);
int64_t N = 100;
int64_t req_size = 10;
int choose_sep = 3;
auto choose = [=](int i) { return i * choose_sep % N; };
uint64_t ts_offset = 100;
auto dataset = DataGen(schema, N, 42, ts_offset + 1);
auto segment = CreateSealedSegment(schema);
SealedLoadFieldData(dataset, *segment);
auto i64_col = dataset.get_col<int64_t>(fid_64);
auto plan = std::make_unique<query::RetrievePlan>(*schema);
std::vector<proto::plan::GenericValue> values;
{
for (int i = 0; i < req_size; ++i) {
proto::plan::GenericValue val;
val.set_int64_val(i64_col[choose(i)]);
values.push_back(val);
}
}
auto term_expr = std::make_shared<milvus::expr::TermFilterExpr>(
milvus::expr::ColumnInfo(
fid_64, DataType::INT64, std::vector<std::string>()),
values);
;
plan->plan_node_ = std::make_unique<query::RetrievePlanNode>();
plan->plan_node_->filter_plannode_ =
std::make_shared<plan::FilterBitsNode>(DEFAULT_PLANNODE_ID, term_expr);
std::vector<FieldId> target_offsets{fid_64, fid_vec};
plan->field_ids_ = target_offsets;
std::vector<int> filter_timestamps{-1, 0, 1, 10, 20};
filter_timestamps.push_back(N / 2);
for (const auto& f_ts : filter_timestamps) {
auto retrieve_results = RetrieveUsingDefaultOutputSize(
segment.get(), plan.get(), ts_offset + 1 + f_ts);
Assert(retrieve_results->fields_data_size() == 2);
int target_num = (f_ts + choose_sep) / choose_sep;
if (target_num > req_size) {
target_num = req_size;
}
for (auto field_data : retrieve_results->fields_data()) {
if (DataType(field_data.type()) == DataType::INT64) {
Assert(field_data.scalars().long_data().data_size() ==
target_num);
}
if (DataType(field_data.type()) == DataType::VECTOR_FLOAT) {
Assert(field_data.vectors().float_vector().data_size() ==
target_num * DIM);
}
if (DataType(field_data.type()) == DataType::VECTOR_SPARSE_FLOAT) {
Assert(field_data.vectors()
.sparse_float_vector()
.contents_size() == target_num);
}
}
}
}
TEST_P(RetrieveTest, Delete) {
auto schema = std::make_shared<Schema>();
auto fid_64 = schema->AddDebugField("i64", DataType::INT64);
auto DIM = 16;
auto fid_vec =
schema->AddDebugField("vector_64", data_type, DIM, metric_type);
schema->set_primary_field_id(fid_64);
auto fid_ts = schema->AddDebugField("Timestamp", DataType::INT64);
int64_t N = 10;
int64_t req_size = 10;
auto choose = [=](int i) { return i; };
auto dataset = DataGen(schema, N);
auto segment = CreateSealedSegment(schema);
SealedLoadFieldData(dataset, *segment);
auto i64_col = dataset.get_col<int64_t>(fid_64);
auto ts_col = dataset.get_col<int64_t>(fid_ts);
auto plan = std::make_unique<query::RetrievePlan>(*schema);
std::vector<int64_t> timestamps;
for (int i = 0; i < req_size; ++i) {
timestamps.emplace_back(ts_col[choose(i)]);
}
std::vector<proto::plan::GenericValue> values;
{
for (int i = 0; i < req_size; ++i) {
proto::plan::GenericValue val;
val.set_int64_val(i64_col[choose(i)]);
values.push_back(val);
}
}
auto term_expr = std::make_shared<milvus::expr::TermFilterExpr>(
milvus::expr::ColumnInfo(
fid_64, DataType::INT64, std::vector<std::string>()),
values);
plan->plan_node_ = std::make_unique<query::RetrievePlanNode>();
plan->plan_node_->filter_plannode_ =
std::make_shared<plan::FilterBitsNode>(DEFAULT_PLANNODE_ID, term_expr);
std::vector<FieldId> target_offsets{fid_ts, fid_64, fid_vec};
plan->field_ids_ = target_offsets;
{
auto retrieve_results =
RetrieveUsingDefaultOutputSize(segment.get(), plan.get(), 100);
ASSERT_EQ(retrieve_results->fields_data_size(), target_offsets.size());
auto field0 = retrieve_results->fields_data(0);
Assert(field0.has_scalars());
auto field0_data = field0.scalars().long_data();
for (int i = 0; i < req_size; ++i) {
auto index = choose(i);
auto data = field0_data.data(i);
ASSERT_EQ(data, ts_col[index]);
}
auto field1 = retrieve_results->fields_data(1);
Assert(field1.has_scalars());
auto field1_data = field1.scalars().long_data();
for (int i = 0; i < req_size; ++i) {
auto index = choose(i);
auto data = field1_data.data(i);
ASSERT_EQ(data, i64_col[index]);
}
auto field2 = retrieve_results->fields_data(2);
Assert(field2.has_vectors());
if (!is_sparse) {
auto field2_data = field2.vectors().float_vector();
ASSERT_EQ(field2_data.data_size(), DIM * req_size);
} else {
auto field2_data = field2.vectors().sparse_float_vector();
ASSERT_EQ(field2_data.contents_size(), req_size);
}
}
int64_t row_count = 0;
// strange, when enable load_delete_record, this test failed
auto load_delete_record = false;
if (load_delete_record) {
std::vector<idx_t> pks{1, 2, 3, 4, 5};
auto ids = std::make_unique<IdArray>();
ids->mutable_int_id()->mutable_data()->Add(pks.begin(), pks.end());
std::vector<Timestamp> timestamps{10, 10, 10, 10, 10};
LoadDeletedRecordInfo info = {timestamps.data(), ids.get(), row_count};
segment->LoadDeletedRecord(info);
row_count = 5;
}
int64_t new_count = 6;
std::vector<idx_t> new_pks{0, 1, 2, 3, 4, 5};
auto ids = std::make_unique<IdArray>();
ids->mutable_int_id()->mutable_data()->Add(new_pks.begin(), new_pks.end());
std::vector<idx_t> new_timestamps{10, 10, 10, 10, 10, 10};
auto reserved_offset = segment->get_deleted_count();
ASSERT_EQ(reserved_offset, row_count);
segment->Delete(reserved_offset,
new_count,
ids.get(),
reinterpret_cast<const Timestamp*>(new_timestamps.data()));
{
auto retrieve_results =
RetrieveUsingDefaultOutputSize(segment.get(), plan.get(), 100);
Assert(retrieve_results->fields_data_size() == target_offsets.size());
auto field1 = retrieve_results->fields_data(1);
Assert(field1.has_scalars());
auto field1_data = field1.scalars().long_data();
auto size = req_size - new_count;
for (int i = 0; i < size; ++i) {
auto index = choose(i);
auto data = field1_data.data(i);
ASSERT_EQ(data, i64_col[index + new_count]);
}
auto field2 = retrieve_results->fields_data(2);
Assert(field2.has_vectors());
if (!is_sparse) {
auto field2_data = field2.vectors().float_vector();
ASSERT_EQ(field2_data.data_size(), DIM * size);
} else {
auto field2_data = field2.vectors().sparse_float_vector();
ASSERT_EQ(field2_data.contents_size(), size);
}
}
}