milvus/pkg/util/ratelimitutil/limiter_test.go
yihao.dai f19621fc8c
Support refund the tokens to limiter (#25598)
Signed-off-by: bigsheeper <yihao.dai@zilliz.com>
2023-07-14 15:58:32 +08:00

394 lines
9.5 KiB
Go

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ratelimitutil
import (
"math"
"sync"
"sync/atomic"
"testing"
"time"
)
// Partial implementations refer to https://github.com/golang/time/blob/master/rate/rate_test.go
const (
d = 100 * time.Millisecond
)
var (
t0 = time.Now()
t1 = t0.Add(time.Duration(1) * d)
t2 = t0.Add(time.Duration(2) * d)
t3 = t0.Add(time.Duration(3) * d)
t4 = t0.Add(time.Duration(4) * d)
t5 = t0.Add(time.Duration(5) * d)
t9 = t0.Add(time.Duration(9) * d)
)
type allow struct {
t time.Time
n int
ok bool
remainTokens float64
}
func (lim *Limiter) getTokens() float64 {
lim.mu.Lock()
defer lim.mu.Unlock()
return lim.tokens
}
func run(t *testing.T, lim *Limiter, allows []allow) {
for i, a := range allows {
ok := lim.AllowN(a.t, a.n)
if ok != a.ok || int64(lim.getTokens()) != int64(a.remainTokens) {
t.Errorf("step %d: lim.AllowN(%v, %v) = %v want %v, remainTokens = %v, wantTokens = %v",
i, a.t, a.n, ok, a.ok, lim.getTokens(), a.remainTokens)
}
}
}
func runWithoutCheckToken(t *testing.T, lim *Limiter, allows []allow) {
for i, a := range allows {
ok := lim.AllowN(a.t, a.n)
if ok != a.ok {
t.Errorf("step %d: lim.AllowN(%v, %v) = %v want %v", i, a.t, a.n, ok, a.ok)
}
}
}
func TestLimit(t *testing.T) {
t.Run("test limit", func(t *testing.T) {
// test base
now := time.Now()
run(t, NewLimiter(100, 100), []allow{
{now, 200, true, -100},
{now, 100, false, -100},
{now.Add(1 * time.Second), 300, true, -300},
{now.Add(2 * time.Second), 1, false, -300},
{now.Add(7 * time.Second), 50, true, 50},
{now.Add(7 * time.Second), 60, true, -10},
{now.Add(7 * time.Second), 10, false, -10},
})
// limit 10, burst 1
run(t, NewLimiter(10, 1), []allow{
{t0, 1, true, 0},
{t0, 1, true, -1},
{t0, 1, false, -1},
{t1, 1, true, -1},
{t1, 1, false, -1},
{t1, 1, false, -1},
{t2, 2, true, -2},
{t2, 1, false, -2},
{t2, 1, false, -2},
})
// limit 10, burst 3
run(t, NewLimiter(10, 3), []allow{
{t0, 2, true, 1},
{t0, 2, true, -1},
{t0, 1, false, -1},
{t0, 1, false, -1},
{t1, 4, true, -4},
{t2, 1, false, -4},
{t3, 1, false, -4},
{t4, 1, false, -4},
{t5, 1, true, -1},
{t9, 3, true, 0},
{t9, 3, true, -3},
})
// // start at t1
run(t, NewLimiter(10, 3), []allow{
{t1, 1, true, 2},
{t0, 1, true, 1},
{t0, 1, true, 0},
{t0, 1, true, -1},
{t0, 1, false, -1},
{t1, 1, true, -1},
{t1, 1, false, -1},
{t1, 1, false, -1},
{t2, 1, true, -1},
{t2, 1, false, -1},
{t2, 1, false, -1},
})
limit := Inf
burst := math.MaxFloat64
limiter := NewLimiter(limit, burst)
runWithoutCheckToken(t, limiter, []allow{
{t0, 1 * 1024 * 1024, true, 0},
{t1, 1 * 1024 * 1024, true, 0},
{t2, 1 * 1024 * 1024, true, 0},
{t3, 1 * 1024 * 1024, true, 0},
{t4, 1 * 1024 * 1024, true, 0},
{t5, 1 * 1024 * 1024, true, 0},
})
})
t.Run("test SetLimit", func(t *testing.T) {
lim := NewLimiter(10, 10)
run(t, lim, []allow{
{t0, 5, true, 5},
{t0, 1, true, 4},
{t1, 1, true, 4},
})
lim.SetLimit(100)
runWithoutCheckToken(t, lim, []allow{{t2, 10, true, 0}})
})
t.Run("test no truncation error", func(t *testing.T) {
if !NewLimiter(0.7692307692307693, 1).AllowN(time.Now(), 1) {
t.Fatal("expected true")
}
})
t.Run("test zero limit", func(t *testing.T) {
r := NewLimiter(0, 1)
if !r.AllowN(time.Now(), 1) {
t.Errorf("Limit(0, 1) want true when first used")
}
if r.AllowN(time.Now(), 1) {
t.Errorf("Limit(0, 1) want false when already used")
}
})
}
// testTime is a fake time used for testing.
type testTime struct {
mu sync.Mutex
cur time.Time // current fake time
timers []testTimer // fake timers
}
// testTimer is a fake timer.
type testTimer struct {
when time.Time
ch chan<- time.Time
}
// now returns the current fake time.
func (tt *testTime) now() time.Time {
tt.mu.Lock()
defer tt.mu.Unlock()
return tt.cur
}
// newTimer creates a fake timer. It returns the channel,
// a function to stop the timer (which we don't care about),
// and a function to advance to the next timer.
func (tt *testTime) newTimer(dur time.Duration) (<-chan time.Time, func() bool, func()) {
tt.mu.Lock()
defer tt.mu.Unlock()
ch := make(chan time.Time, 1)
timer := testTimer{
when: tt.cur.Add(dur),
ch: ch,
}
tt.timers = append(tt.timers, timer)
return ch, func() bool { return true }, tt.advanceToTimer
}
// since returns the fake time since the given time.
func (tt *testTime) since(t time.Time) time.Duration {
tt.mu.Lock()
defer tt.mu.Unlock()
return tt.cur.Sub(t)
}
// advance advances the fake time.
func (tt *testTime) advance(dur time.Duration) {
tt.mu.Lock()
defer tt.mu.Unlock()
tt.advanceUnlocked(dur)
}
// advanceUnlock advances the fake time, assuming it is already locked.
func (tt *testTime) advanceUnlocked(dur time.Duration) {
tt.cur = tt.cur.Add(dur)
i := 0
for i < len(tt.timers) {
if tt.timers[i].when.After(tt.cur) {
i++
} else {
tt.timers[i].ch <- tt.cur
copy(tt.timers[i:], tt.timers[i+1:])
tt.timers = tt.timers[:len(tt.timers)-1]
}
}
}
// advanceToTimer advances the time to the next timer.
func (tt *testTime) advanceToTimer() {
tt.mu.Lock()
defer tt.mu.Unlock()
if len(tt.timers) == 0 {
panic("no timer")
}
when := tt.timers[0].when
for _, timer := range tt.timers[1:] {
if timer.when.Before(when) {
when = timer.when
}
}
tt.advanceUnlocked(when.Sub(tt.cur))
}
// makeTestTime hooks the testTimer into the package.
func makeTestTime(t *testing.T) *testTime {
return &testTime{
cur: time.Now(),
}
}
func TestSimultaneousRequests(t *testing.T) {
const (
limit = 1
burst = 5
numRequests = 15
)
var (
wg sync.WaitGroup
numOK = uint32(0)
)
// Very slow replenishing bucket.
lim := NewLimiter(limit, burst)
// Tries to take a token, atomically updates the counter and decreases the wait
// group counter.
f := func() {
defer wg.Done()
if ok := lim.AllowN(time.Now(), 1); ok {
atomic.AddUint32(&numOK, 1)
}
}
wg.Add(numRequests)
for i := 0; i < numRequests; i++ {
go f()
}
wg.Wait()
want := burst + 1 // due to overdraft mechanism
if numOK != uint32(want) {
t.Errorf("numOK = %d, want %d", numOK, want)
}
}
func TestLongRunningQPS(t *testing.T) {
// The test runs for a few (fake) seconds executing many requests
// and then checks that overall number of requests is reasonable.
const (
limit = 100
burst = 100
)
var (
numOK = int32(0)
tt = makeTestTime(t)
)
lim := NewLimiter(limit, burst)
start := tt.now()
end := start.Add(5 * time.Second)
for tt.now().Before(end) {
if ok := lim.AllowN(tt.now(), 1); ok {
numOK++
}
// This will still offer ~500 requests per second, but won't consume
// outrageous amount of CPU.
tt.advance(2 * time.Millisecond)
}
elapsed := tt.since(start)
ideal := burst + (limit * float64(elapsed) / float64(time.Second))
// We should never get more requests than allowed.
t.Log("numOK =", numOK, "want", int32(ideal), "ideal", ideal)
if want := int32(ideal); numOK > want {
t.Errorf("numOK = %d, want %d (ideal %f)", numOK, want, ideal)
}
// We should get very close to the number of requests allowed.
t.Log("numOK =", numOK, "want", int32(0.999*ideal), "ideal", ideal)
if want := int32(0.999 * ideal); numOK < want {
t.Errorf("numOK = %d, want %d (ideal %f)", numOK, want, ideal)
}
}
func BenchmarkLimiter_AllowN(b *testing.B) {
lim := NewLimiter(1, 1)
now := time.Now()
b.ReportAllocs()
b.ResetTimer()
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
lim.AllowN(now, 1)
}
})
}
func TestLimiter_Cancel(t *testing.T) {
// The test runs for a few (fake) seconds executing many requests
// and then checks that overall number of requests is reasonable.
const (
limit = 100
burst = 100
)
var (
numOK = int32(0)
tt = makeTestTime(t)
)
lim := NewLimiter(limit, burst)
start := tt.now()
end := start.Add(5 * time.Second)
i := 0
cancelNum := 100
for tt.now().Before(end) {
if ok := lim.AllowN(tt.now(), 1); ok {
numOK++
// inject some cancellations
if i <= cancelNum {
lim.Cancel(1)
numOK--
}
}
// This will still offer ~500 requests per second, but won't consume
// outrageous amount of CPU.
tt.advance(100 * time.Microsecond)
i++
}
elapsed := tt.since(start)
ideal := burst + (limit * float64(elapsed) / float64(time.Second))
// We should never get more requests than allowed.
t.Log("numOK =", numOK, "want", int32(ideal), "ideal", ideal)
if want := int32(ideal); numOK > want {
t.Errorf("numOK = %d, want %d (ideal %f)", numOK, want, ideal)
}
// We should get very close to the number of requests allowed.
t.Log("numOK =", numOK, "want", int32(0.999*ideal), "ideal", ideal)
if want := int32(0.999 * ideal); numOK < want {
t.Errorf("numOK = %d, want %d (ideal %f)", numOK, want, ideal)
}
}