milvus/tests/python_client/common/common_func.py
NicoYuan1986 0cb8153f6b
Add test cases of upsert (#22545)
Signed-off-by: nico <cheng.yuan@zilliz.com>
2023-03-03 15:23:48 +08:00

919 lines
38 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import random
import math
import string
import json
from functools import singledispatch
import numpy as np
import pandas as pd
from sklearn import preprocessing
from npy_append_array import NpyAppendArray
from pymilvus import DataType
from base.schema_wrapper import ApiCollectionSchemaWrapper, ApiFieldSchemaWrapper
from common import common_type as ct
from utils.util_log import test_log as log
from customize.milvus_operator import MilvusOperator
"""" Methods of processing data """
@singledispatch
def to_serializable(val):
"""Used by default."""
return str(val)
@to_serializable.register(np.float32)
def ts_float32(val):
"""Used if *val* is an instance of numpy.float32."""
return np.float64(val)
class ParamInfo:
def __init__(self):
self.param_host = ""
self.param_port = ""
self.param_handler = ""
self.param_user = ""
self.param_password = ""
self.param_secure = False
self.param_replica_num = ct.default_replica_num
def prepare_param_info(self, host, port, handler, replica_num, user, password, secure):
self.param_host = host
self.param_port = port
self.param_handler = handler
self.param_user = user
self.param_password = password
self.param_secure = secure
self.param_replica_num = replica_num
param_info = ParamInfo()
def gen_unique_str(str_value=None):
prefix = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(8))
return "test_" + prefix if str_value is None else str_value + "_" + prefix
def gen_str_by_length(length=8, letters_only=False):
if letters_only:
return "".join(random.choice(string.ascii_letters) for _ in range(length))
return "".join(random.choice(string.ascii_letters + string.digits) for _ in range(length))
def gen_digits_by_length(length=8):
return "".join(random.choice(string.digits) for _ in range(length))
def gen_bool_field(name=ct.default_bool_field_name, description=ct.default_desc, is_primary=False, **kwargs):
bool_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.BOOL, description=description,
is_primary=is_primary, **kwargs)
return bool_field
def gen_string_field(name=ct.default_string_field_name, description=ct.default_desc, is_primary=False,
max_length=ct.default_length, **kwargs):
string_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.VARCHAR,
description=description, max_length=max_length,
is_primary=is_primary, **kwargs)
return string_field
def gen_int8_field(name=ct.default_int8_field_name, description=ct.default_desc, is_primary=False, **kwargs):
int8_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT8, description=description,
is_primary=is_primary, **kwargs)
return int8_field
def gen_int16_field(name=ct.default_int16_field_name, description=ct.default_desc, is_primary=False, **kwargs):
int16_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT16, description=description,
is_primary=is_primary, **kwargs)
return int16_field
def gen_int32_field(name=ct.default_int32_field_name, description=ct.default_desc, is_primary=False, **kwargs):
int32_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT32, description=description,
is_primary=is_primary, **kwargs)
return int32_field
def gen_int64_field(name=ct.default_int64_field_name, description=ct.default_desc, is_primary=False, **kwargs):
int64_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT64, description=description,
is_primary=is_primary, **kwargs)
return int64_field
def gen_float_field(name=ct.default_float_field_name, is_primary=False, description=ct.default_desc):
float_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.FLOAT, description=description,
is_primary=is_primary)
return float_field
def gen_double_field(name=ct.default_double_field_name, is_primary=False, description=ct.default_desc):
double_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.DOUBLE,
description=description, is_primary=is_primary)
return double_field
def gen_float_vec_field(name=ct.default_float_vec_field_name, is_primary=False, dim=ct.default_dim,
description=ct.default_desc):
float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.FLOAT_VECTOR,
description=description, dim=dim,
is_primary=is_primary)
return float_vec_field
def gen_binary_vec_field(name=ct.default_binary_vec_field_name, is_primary=False, dim=ct.default_dim,
description=ct.default_desc):
binary_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.BINARY_VECTOR,
description=description, dim=dim,
is_primary=is_primary)
return binary_vec_field
def gen_default_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
auto_id=False, dim=ct.default_dim):
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field(dim=dim)]
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
primary_field=primary_field, auto_id=auto_id)
return schema
def gen_general_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
auto_id=False, is_binary=False, dim=ct.default_dim):
if is_binary:
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_binary_vec_field(dim=dim)]
else:
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field(dim=dim)]
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
primary_field=primary_field, auto_id=auto_id)
return schema
def gen_string_pk_default_collection_schema(description=ct.default_desc, primary_field=ct.default_string_field_name,
auto_id=False, dim=ct.default_dim):
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field(dim=dim)]
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
primary_field=primary_field, auto_id=auto_id)
return schema
def gen_collection_schema_all_datatype(description=ct.default_desc,
primary_field=ct.default_int64_field_name,
auto_id=False, dim=ct.default_dim):
fields = [gen_int64_field(), gen_int32_field(), gen_int16_field(), gen_int8_field(),
gen_bool_field(), gen_float_field(), gen_double_field(), gen_string_field(), gen_float_vec_field(dim=dim)]
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
primary_field=primary_field, auto_id=auto_id)
return schema
def gen_collection_schema(fields, primary_field=None, description=ct.default_desc, auto_id=False):
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, primary_field=primary_field,
description=description, auto_id=auto_id)
return schema
def gen_default_binary_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
auto_id=False, dim=ct.default_dim):
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_binary_vec_field(dim=dim)]
binary_schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
primary_field=primary_field,
auto_id=auto_id)
return binary_schema
def gen_schema_multi_vector_fields(vec_fields):
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field()]
fields.extend(vec_fields)
primary_field = ct.default_int64_field_name
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=ct.default_desc,
primary_field=primary_field, auto_id=False)
return schema
def gen_schema_multi_string_fields(string_fields):
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field()]
fields.extend(string_fields)
primary_field = ct.default_int64_field_name
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=ct.default_desc,
primary_field=primary_field, auto_id=False)
return schema
def gen_vectors(nb, dim):
vectors = [[random.random() for _ in range(dim)] for _ in range(nb)]
vectors = preprocessing.normalize(vectors, axis=1, norm='l2')
return vectors.tolist()
def gen_string(nb):
string_values = [str(random.random()) for _ in range(nb)]
return string_values
def gen_binary_vectors(num, dim):
raw_vectors = []
binary_vectors = []
for _ in range(num):
raw_vector = [random.randint(0, 1) for _ in range(dim)]
raw_vectors.append(raw_vector)
# packs a binary-valued array into bits in a unit8 array, and bytes array_of_ints
binary_vectors.append(bytes(np.packbits(raw_vector, axis=-1).tolist()))
return raw_vectors, binary_vectors
def gen_default_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0):
int_values = pd.Series(data=[i for i in range(start, start + nb)])
float_values = pd.Series(data=[np.float32(i) for i in range(start, start + nb)], dtype="float32")
string_values = pd.Series(data=[str(i) for i in range(start, start + nb)], dtype="string")
float_vec_values = gen_vectors(nb, dim)
df = pd.DataFrame({
ct.default_int64_field_name: int_values,
ct.default_float_field_name: float_values,
ct.default_string_field_name: string_values,
ct.default_float_vec_field_name: float_vec_values
})
return df
def gen_default_data_for_upsert(nb=ct.default_nb, dim=ct.default_dim, start=0, size=10000):
int_values = pd.Series(data=[i for i in range(start, start + nb)])
float_values = pd.Series(data=[np.float32(i + size) for i in range(start, start + nb)], dtype="float32")
string_values = pd.Series(data=[str(i + size) for i in range(start, start + nb)], dtype="string")
float_vec_values = gen_vectors(nb, dim)
df = pd.DataFrame({
ct.default_int64_field_name: int_values,
ct.default_float_field_name: float_values,
ct.default_string_field_name: string_values,
ct.default_float_vec_field_name: float_vec_values
})
return df, float_values
def gen_dataframe_multi_vec_fields(vec_fields, nb=ct.default_nb):
"""
gen dataframe data for fields: int64, float, float_vec and vec_fields
:param nb: num of entities, default default_nb
:param vec_fields: list of FieldSchema
:return: dataframe
"""
int_values = pd.Series(data=[i for i in range(0, nb)])
float_values = pd.Series(data=[float(i) for i in range(nb)], dtype="float32")
string_values = pd.Series(data=[str(i) for i in range(nb)], dtype="string")
df = pd.DataFrame({
ct.default_int64_field_name: int_values,
ct.default_float_field_name: float_values,
ct.default_string_field_name: string_values,
ct.default_float_vec_field_name: gen_vectors(nb, ct.default_dim)
})
for field in vec_fields:
dim = field.params['dim']
if field.dtype == DataType.FLOAT_VECTOR:
vec_values = gen_vectors(nb, dim)
elif field.dtype == DataType.BINARY_VECTOR:
vec_values = gen_binary_vectors(nb, dim)[1]
df[field.name] = vec_values
return df
def gen_dataframe_multi_string_fields(string_fields, nb=ct.default_nb):
"""
gen dataframe data for fields: int64, float, float_vec and vec_fields
:param nb: num of entities, default default_nb
:param vec_fields: list of FieldSchema
:return: dataframe
"""
int_values = pd.Series(data=[i for i in range(0, nb)])
float_values = pd.Series(data=[float(i) for i in range(nb)], dtype="float32")
string_values = pd.Series(data=[str(i) for i in range(nb)], dtype="string")
df = pd.DataFrame({
ct.default_int64_field_name: int_values,
ct.default_float_field_name: float_values,
ct.default_string_field_name: string_values,
ct.default_float_vec_field_name: gen_vectors(nb, ct.default_dim)
})
for field in string_fields:
if field.dtype == DataType.VARCHAR:
string_values = gen_string(nb)
df[field.name] = string_values
return df
def gen_dataframe_all_data_type(nb=ct.default_nb, dim=ct.default_dim, start=0):
int64_values = pd.Series(data=[i for i in range(start, start + nb)])
int32_values = pd.Series(data=[np.int32(i) for i in range(start, start + nb)], dtype="int32")
int16_values = pd.Series(data=[np.int16(i) for i in range(start, start + nb)], dtype="int16")
int8_values = pd.Series(data=[np.int8(i) for i in range(start, start + nb)], dtype="int8")
bool_values = pd.Series(data=[np.bool_(i) for i in range(start, start + nb)], dtype="bool")
float_values = pd.Series(data=[np.float32(i) for i in range(start, start + nb)], dtype="float32")
double_values = pd.Series(data=[np.double(i) for i in range(start, start + nb)], dtype="double")
string_values = pd.Series(data=[str(i) for i in range(start, start + nb)], dtype="string")
float_vec_values = gen_vectors(nb, dim)
df = pd.DataFrame({
ct.default_int64_field_name: int64_values,
ct.default_int32_field_name: int32_values,
ct.default_int16_field_name: int16_values,
ct.default_int8_field_name: int8_values,
ct.default_bool_field_name: bool_values,
ct.default_float_field_name: float_values,
ct.default_double_field_name: double_values,
ct.default_string_field_name: string_values,
ct.default_float_vec_field_name: float_vec_values
})
return df
def gen_default_binary_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0):
int_values = pd.Series(data=[i for i in range(start, start + nb)])
float_values = pd.Series(data=[np.float32(i) for i in range(start, start + nb)], dtype="float32")
string_values = pd.Series(data=[str(i) for i in range(start, start + nb)], dtype="string")
binary_raw_values, binary_vec_values = gen_binary_vectors(nb, dim)
df = pd.DataFrame({
ct.default_int64_field_name: int_values,
ct.default_float_field_name: float_values,
ct.default_string_field_name: string_values,
ct.default_binary_vec_field_name: binary_vec_values
})
return df, binary_raw_values
def gen_default_list_data(nb=ct.default_nb, dim=ct.default_dim, start=0):
int_values = [i for i in range(start, start + nb)]
float_values = [np.float32(i) for i in range(start, start + nb)]
string_values = [str(i) for i in range(start, start + nb)]
float_vec_values = gen_vectors(nb, dim)
data = [int_values, float_values, string_values, float_vec_values]
return data
def gen_default_list_data_for_bulk_insert(nb=ct.default_nb, dim=ct.default_dim):
int_values = [i for i in range(nb)]
float_values = [np.float32(i) for i in range(nb)]
string_values = [str(i) for i in range(nb)]
float_vec_values = [] # placeholder for float_vec
data = [int_values, float_values, string_values, float_vec_values]
return data
def gen_json_files_for_bulk_insert(data, schema, data_dir, **kwargs):
nb = kwargs.get("nb", ct.default_nb)
dim = kwargs.get("dim", ct.default_dim)
fields_name = [field.name for field in schema.fields]
file_name = f"bulk_insert_data_source_dim_{dim}_nb_{nb}.json"
files = [file_name]
data_source = os.path.join(data_dir, file_name)
with open(data_source, "w") as f:
f.write("{")
f.write("\n")
f.write('"rows":[')
f.write("\n")
for i in range(nb):
entity_value = [field_values[i] for field_values in data[:-1]]
vector = [random.random() for _ in range(dim)]
entity_value.append(vector)
entity = dict(zip(fields_name, entity_value))
f.write(json.dumps(entity, indent=4, default=to_serializable))
if i != nb - 1:
f.write(",")
f.write("\n")
f.write("]")
f.write("\n")
f.write("}")
return files
def gen_npy_files_for_bulk_insert(data, schema, data_dir, **kwargs):
nb = kwargs.get("nb", ct.default_nb)
dim = kwargs.get("dim", ct.default_dim)
fields_name = [field.name for field in schema.fields]
files = []
for field in fields_name:
files.append(f"{field}.npy")
for i, file in enumerate(files):
data_source = os.path.join(data_dir, file)
if "vector" in file:
log.info(f"generate {nb} vectors with dim {dim} for {data_source}")
with NpyAppendArray(data_source, "wb") as npaa:
for j in range(nb):
vector = np.array([[random.random() for _ in range(dim)]])
npaa.append(vector)
else:
np.save(data_source, np.array(data[i]))
return files
def gen_default_tuple_data(nb=ct.default_nb, dim=ct.default_dim):
int_values = [i for i in range(nb)]
float_values = [np.float32(i) for i in range(nb)]
string_values = [str(i) for i in range(nb)]
float_vec_values = gen_vectors(nb, dim)
data = (int_values, float_values, string_values, float_vec_values)
return data
def gen_numpy_data(nb=ct.default_nb, dim=ct.default_dim):
int_values = np.arange(nb, dtype='int64')
float_values = np.arange(nb, dtype='float32')
string_values = [np.str_(i) for i in range(nb)]
float_vec_values = gen_vectors(nb, dim)
data = [int_values, float_values, string_values, float_vec_values]
return data
def gen_default_binary_list_data(nb=ct.default_nb, dim=ct.default_dim):
int_values = [i for i in range(nb)]
float_values = [np.float32(i) for i in range(nb)]
string_values = [str(i) for i in range(nb)]
binary_raw_values, binary_vec_values = gen_binary_vectors(nb, dim)
data = [int_values, float_values, string_values, binary_vec_values]
return data, binary_raw_values
def gen_simple_index():
index_params = []
for i in range(len(ct.all_index_types)):
if ct.all_index_types[i] in ct.binary_support:
continue
dic = {"index_type": ct.all_index_types[i], "metric_type": "L2"}
dic.update({"params": ct.default_index_params[i]})
index_params.append(dic)
return index_params
def gen_invalid_field_types():
field_types = [
6,
1.0,
[[]],
{},
(),
"",
"a"
]
return field_types
def gen_invaild_search_params_type():
invalid_search_key = 100
search_params = []
for index_type in ct.all_index_types:
if index_type == "FLAT":
continue
search_params.append({"index_type": index_type, "search_params": {"invalid_key": invalid_search_key}})
if index_type in ["IVF_FLAT", "IVF_SQ8", "IVF_PQ"]:
for nprobe in ct.get_invalid_ints:
ivf_search_params = {"index_type": index_type, "search_params": {"nprobe": nprobe}}
search_params.append(ivf_search_params)
elif index_type in ["HNSW"]:
for ef in ct.get_invalid_ints:
hnsw_search_param = {"index_type": index_type, "search_params": {"ef": ef}}
search_params.append(hnsw_search_param)
elif index_type == "ANNOY":
for search_k in ct.get_invalid_ints:
if isinstance(search_k, int):
continue
annoy_search_param = {"index_type": index_type, "search_params": {"search_k": search_k}}
search_params.append(annoy_search_param)
elif index_type == "DISKANN":
for search_list in ct.get_invalid_ints:
diskann_search_param = {"index_type": index_type, "search_params": {"search_list": search_list}}
search_params.append(diskann_search_param)
return search_params
def gen_search_param(index_type, metric_type="L2"):
search_params = []
if index_type in ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_PQ"]:
for nprobe in [64, 128]:
ivf_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}}
search_params.append(ivf_search_params)
elif index_type in ["BIN_FLAT", "BIN_IVF_FLAT"]:
if metric_type not in ct.binary_metrics:
log.error("Metric type error: binary index only supports distance type in (%s)" % ct.binary_metrics)
# default metric type for binary index
metric_type = "JACCARD"
for nprobe in [64, 128]:
binary_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}}
search_params.append(binary_search_params)
elif index_type in ["HNSW"]:
for ef in [64, 32768]:
hnsw_search_param = {"metric_type": metric_type, "params": {"ef": ef}}
search_params.append(hnsw_search_param)
elif index_type == "ANNOY":
for search_k in [1000, 5000]:
annoy_search_param = {"metric_type": metric_type, "params": {"search_k": search_k}}
search_params.append(annoy_search_param)
elif index_type == "DISKANN":
for search_list in [20, 30]:
diskann_search_param = {"metric_type": metric_type, "params": {"search_list": search_list}}
search_params.append(diskann_search_param)
else:
log.error("Invalid index_type.")
raise Exception("Invalid index_type.")
return search_params
def gen_invalid_search_param(index_type, metric_type="L2"):
search_params = []
if index_type in ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_PQ"] \
or index_type in ["BIN_FLAT", "BIN_IVF_FLAT"]:
for nprobe in [-1]:
ivf_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}}
search_params.append(ivf_search_params)
elif index_type in ["HNSW"]:
for ef in [-1]:
hnsw_search_param = {"metric_type": metric_type, "params": {"ef": ef}}
search_params.append(hnsw_search_param)
elif index_type == "ANNOY":
for search_k in ["-2"]:
annoy_search_param = {"metric_type": metric_type, "params": {"search_k": search_k}}
search_params.append(annoy_search_param)
elif index_type == "DISKANN":
for search_list in ["-1"]:
diskann_search_param = {"metric_type": metric_type, "params": {"search_list": search_list}}
search_params.append(diskann_search_param)
else:
log.error("Invalid index_type.")
raise Exception("Invalid index_type.")
return search_params
def gen_all_type_fields():
fields = []
for k, v in DataType.__members__.items():
if v != DataType.UNKNOWN:
field, _ = ApiFieldSchemaWrapper().init_field_schema(name=k.lower(), dtype=v)
fields.append(field)
return fields
def gen_normal_expressions():
expressions = [
"",
"int64 > 0",
"(int64 > 0 && int64 < 400) or (int64 > 500 && int64 < 1000)",
"int64 not in [1, 2, 3]",
"int64 in [1, 2, 3] and float != 2",
"int64 == 0 || int64 == 1 || int64 == 2",
"0 < int64 < 400",
"500 <= int64 < 1000",
"200+300 < int64 <= 500+500",
"int64 in [300/2, 900%40, -10*30+800, 2048/2%200, (100+200)*2]",
"float in [+3**6, 2**10/2]",
"(int64 % 100 == 0) && int64 < 500",
"float <= 4**5/2 && float > 500-1 && float != 500/2+260",
"int64 > 400 && int64 < 200",
"float < -2**8",
"(int64 + 1) == 3 || int64 * 2 == 64 || float == 10**2"
]
return expressions
def gen_field_compare_expressions():
expressions = [
"int64_1 | int64_2 == 1",
"int64_1 && int64_2 ==1",
"int64_1 + int64_2 == 10",
"int64_1 - int64_2 == 2",
"int64_1 * int64_2 == 8",
"int64_1 / int64_2 == 2",
"int64_1 ** int64_2 == 4",
"int64_1 % int64_2 == 0",
"int64_1 in int64_2",
"int64_1 + int64_2 >= 10"
]
return expressions
def gen_normal_string_expressions(field):
expressions = [
f"\"0\"< {field} < \"3\"",
f"{field} >= \"0\"",
f"({field} > \"0\" && {field} < \"100\") or ({field} > \"200\" && {field} < \"300\")",
f"\"0\" <= {field} <= \"100\"",
f"{field} == \"0\"|| {field} == \"1\"|| {field} ==\"2\"",
f"{field} != \"0\"",
f"{field} not in [\"0\", \"1\", \"2\"]",
f"{field} in [\"0\", \"1\", \"2\"]"
]
return expressions
def gen_invaild_string_expressions():
expressions = [
"varchar in [0, \"1\"]",
"varchar not in [\"0\", 1, 2]"
]
return expressions
def gen_normal_expressions_field(field):
expressions = [
"",
f"{field} > 0",
f"({field} > 0 && {field} < 400) or ({field} > 500 && {field} < 1000)",
f"{field} not in [1, 2, 3]",
f"{field} in [1, 2, 3] and {field} != 2",
f"{field} == 0 || {field} == 1 || {field} == 2",
f"0 < {field} < 400",
f"500 <= {field} <= 1000",
f"200+300 <= {field} <= 500+500",
f"{field} in [300/2, 900%40, -10*30+800, 2048/2%200, (100+200)*2]",
f"{field} in [+3**6, 2**10/2]",
f"{field} <= 4**5/2 && {field} > 500-1 && {field} != 500/2+260",
f"{field} > 400 && {field} < 200",
f"{field} < -2**8",
f"({field} + 1) == 3 || {field} * 2 == 64 || {field} == 10**2"
]
return expressions
def l2(x, y):
return np.linalg.norm(np.array(x) - np.array(y))
def ip(x, y):
return np.inner(np.array(x), np.array(y))
def jaccard(x, y):
x = np.asarray(x, np.bool_)
y = np.asarray(y, np.bool_)
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum())
def hamming(x, y):
x = np.asarray(x, np.bool_)
y = np.asarray(y, np.bool_)
return np.bitwise_xor(x, y).sum()
def tanimoto(x, y):
x = np.asarray(x, np.bool_)
y = np.asarray(y, np.bool_)
res = np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum())
if res == 0:
value = float("inf")
else:
value = -np.log2(res)
return value
def tanimoto_calc(x, y):
x = np.asarray(x, np.bool_)
y = np.asarray(y, np.bool_)
return np.double((len(x) - np.bitwise_xor(x, y).sum())) / (len(y) + np.bitwise_xor(x, y).sum())
def substructure(x, y):
x = np.asarray(x, np.bool_)
y = np.asarray(y, np.bool_)
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(y)
def superstructure(x, y):
x = np.asarray(x, np.bool_)
y = np.asarray(y, np.bool_)
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(x)
def compare_distance_2d_vector(x, y, distance, metric, sqrt):
for i in range(len(x)):
for j in range(len(y)):
if metric == "L2":
distance_i = l2(x[i], y[j])
if not sqrt:
distance_i = math.pow(distance_i, 2)
elif metric == "IP":
distance_i = ip(x[i], y[j])
elif metric == "HAMMING":
distance_i = hamming(x[i], y[j])
elif metric == "TANIMOTO":
distance_i = tanimoto_calc(x[i], y[j])
elif metric == "JACCARD":
distance_i = jaccard(x[i], y[j])
else:
raise Exception("metric type is invalid")
assert abs(distance_i - distance[i][j]) < ct.epsilon
return True
def modify_file(file_path_list, is_modify=False, input_content=""):
"""
file_path_list : file list -> list[<file_path>]
is_modify : does the file need to be reset
input_content the content that need to insert to the file
"""
if not isinstance(file_path_list, list):
log.error("[modify_file] file is not a list.")
for file_path in file_path_list:
folder_path, file_name = os.path.split(file_path)
if not os.path.isdir(folder_path):
log.debug("[modify_file] folder(%s) is not exist." % folder_path)
os.makedirs(folder_path)
if not os.path.isfile(file_path):
log.error("[modify_file] file(%s) is not exist." % file_path)
else:
if is_modify is True:
log.debug("[modify_file] start modifying file(%s)..." % file_path)
with open(file_path, "r+") as f:
f.seek(0)
f.truncate()
f.write(input_content)
f.close()
log.info("[modify_file] file(%s) modification is complete." % file_path_list)
def index_to_dict(index):
return {
"collection_name": index.collection_name,
"field_name": index.field_name,
# "name": index.name,
"params": index.params
}
def assert_equal_index(index_1, index_2):
return index_to_dict(index_1) == index_to_dict(index_2)
def gen_partitions(collection_w, partition_num=1):
"""
target: create extra partitions except for _default
method: create more than one partitions
expected: return collection and raw data
"""
log.info("gen_partitions: creating partitions")
for i in range(partition_num):
partition_name = "search_partition_" + str(i)
collection_w.create_partition(partition_name=partition_name,
description="search partition")
par = collection_w.partitions
assert len(par) == (partition_num + 1)
log.info("gen_partitions: created partitions %s" % par)
def insert_data(collection_w, nb=3000, is_binary=False, is_all_data_type=False,
auto_id=False, dim=ct.default_dim, insert_offset=0):
"""
target: insert non-binary/binary data
method: insert non-binary/binary data into partitions if any
expected: return collection and raw data
"""
par = collection_w.partitions
num = len(par)
vectors = []
binary_raw_vectors = []
insert_ids = []
start = insert_offset
log.info(f"inserted {nb} data into collection {collection_w.name}")
for i in range(num):
default_data = gen_default_dataframe_data(nb // num, dim=dim, start=start)
if is_binary:
default_data, binary_raw_data = gen_default_binary_dataframe_data(nb // num, dim=dim, start=start)
binary_raw_vectors.extend(binary_raw_data)
if is_all_data_type:
default_data = gen_dataframe_all_data_type(nb // num, dim=dim, start=start)
if auto_id:
default_data.drop(ct.default_int64_field_name, axis=1, inplace=True)
insert_res = collection_w.insert(default_data, par[i].name)[0]
time_stamp = insert_res.timestamp
insert_ids.extend(insert_res.primary_keys)
vectors.append(default_data)
start += nb // num
return collection_w, vectors, binary_raw_vectors, insert_ids, time_stamp
def _check_primary_keys(primary_keys, nb):
if primary_keys is None:
raise Exception("The primary_keys is None")
assert len(primary_keys) == nb
for i in range(nb - 1):
if primary_keys[i] >= primary_keys[i + 1]:
return False
return True
def get_segment_distribution(res):
"""
Get segment distribution
"""
from collections import defaultdict
segment_distribution = defaultdict(lambda: {"sealed": []})
for r in res:
for node_id in r.nodeIds:
if r.state == 3:
segment_distribution[node_id]["sealed"].append(r.segmentID)
return segment_distribution
def percent_to_int(string):
"""
transform percent(0%--100%) to int
"""
new_int = -1
if not isinstance(string, str):
log.error("%s is not a string" % string)
return new_int
if "%" not in string:
log.error("%s is not a percent" % string)
else:
new_int = int(string.strip("%"))
return new_int
def gen_grant_list(collection_name):
grant_list = [{"object": "Collection", "object_name": collection_name, "privilege": "Load"},
{"object": "Collection", "object_name": collection_name, "privilege": "Release"},
{"object": "Collection", "object_name": collection_name, "privilege": "Compaction"},
{"object": "Collection", "object_name": collection_name, "privilege": "Delete"},
{"object": "Collection", "object_name": collection_name, "privilege": "GetStatistics"},
{"object": "Collection", "object_name": collection_name, "privilege": "CreateIndex"},
{"object": "Collection", "object_name": collection_name, "privilege": "IndexDetail"},
{"object": "Collection", "object_name": collection_name, "privilege": "DropIndex"},
{"object": "Collection", "object_name": collection_name, "privilege": "Search"},
{"object": "Collection", "object_name": collection_name, "privilege": "Flush"},
{"object": "Collection", "object_name": collection_name, "privilege": "Query"},
{"object": "Collection", "object_name": collection_name, "privilege": "LoadBalance"},
{"object": "Collection", "object_name": collection_name, "privilege": "Import"},
{"object": "Global", "object_name": "*", "privilege": "All"},
{"object": "Global", "object_name": "*", "privilege": "CreateCollection"},
{"object": "Global", "object_name": "*", "privilege": "DropCollection"},
{"object": "Global", "object_name": "*", "privilege": "DescribeCollection"},
{"object": "Global", "object_name": "*", "privilege": "ShowCollections"},
{"object": "Global", "object_name": "*", "privilege": "CreateOwnership"},
{"object": "Global", "object_name": "*", "privilege": "DropOwnership"},
{"object": "Global", "object_name": "*", "privilege": "SelectOwnership"},
{"object": "Global", "object_name": "*", "privilege": "ManageOwnership"},
{"object": "User", "object_name": "*", "privilege": "UpdateUser"},
{"object": "User", "object_name": "*", "privilege": "SelectUser"}]
return grant_list
def install_milvus_operator_specific_config(namespace, milvus_mode, release_name, image,
rate_limit_enable, collection_rate_limit):
"""
namespace : str
milvus_mode : str -> standalone or cluster
release_name : str
image: str -> image tag including repository
rate_limit_enable: str -> true or false, switch for rate limit
collection_rate_limit: int -> collection rate limit numbers
input_content the content that need to insert to the file
return: milvus host name
"""
if not isinstance(namespace, str):
log.error("[namespace] is not a string.")
if not isinstance(milvus_mode, str):
log.error("[milvus_mode] is not a string.")
if not isinstance(release_name, str):
log.error("[release_name] is not a string.")
if not isinstance(image, str):
log.error("[image] is not a string.")
if not isinstance(rate_limit_enable, str):
log.error("[rate_limit_enable] is not a string.")
if not isinstance(collection_rate_limit, int):
log.error("[collection_rate_limit] is not an integer.")
if milvus_mode not in ["standalone", "cluster"]:
log.error("[milvus_mode] is not 'standalone' or 'cluster'")
if rate_limit_enable not in ["true", "false"]:
log.error("[rate_limit_enable] is not 'true' or 'false'")
data_config = {
'metadata.namespace': namespace,
'spec.mode': milvus_mode,
'metadata.name': release_name,
'spec.components.image': image,
'spec.components.proxy.serviceType': 'LoadBalancer',
'spec.components.dataNode.replicas': 2,
'spec.config.common.retentionDuration': 60,
'spec.config.quotaAndLimits.enable': rate_limit_enable,
'spec.config.quotaAndLimits.ddl.collectionRate': collection_rate_limit,
}
mil = MilvusOperator()
mil.install(data_config)
if mil.wait_for_healthy(release_name, NAMESPACE, timeout=TIMEOUT):
host = mic.endpoint(release_name, NAMESPACE).split(':')[0]
else:
raise MilvusException(message=f'Milvus healthy timeout 1800s')
return host