mirror of
https://gitee.com/milvus-io/milvus.git
synced 2024-12-02 20:09:57 +08:00
0cb8153f6b
Signed-off-by: nico <cheng.yuan@zilliz.com>
919 lines
38 KiB
Python
919 lines
38 KiB
Python
import os
|
||
import random
|
||
import math
|
||
import string
|
||
import json
|
||
from functools import singledispatch
|
||
import numpy as np
|
||
import pandas as pd
|
||
from sklearn import preprocessing
|
||
from npy_append_array import NpyAppendArray
|
||
from pymilvus import DataType
|
||
from base.schema_wrapper import ApiCollectionSchemaWrapper, ApiFieldSchemaWrapper
|
||
from common import common_type as ct
|
||
from utils.util_log import test_log as log
|
||
from customize.milvus_operator import MilvusOperator
|
||
|
||
"""" Methods of processing data """
|
||
|
||
|
||
@singledispatch
|
||
def to_serializable(val):
|
||
"""Used by default."""
|
||
return str(val)
|
||
|
||
|
||
@to_serializable.register(np.float32)
|
||
def ts_float32(val):
|
||
"""Used if *val* is an instance of numpy.float32."""
|
||
return np.float64(val)
|
||
|
||
class ParamInfo:
|
||
def __init__(self):
|
||
self.param_host = ""
|
||
self.param_port = ""
|
||
self.param_handler = ""
|
||
self.param_user = ""
|
||
self.param_password = ""
|
||
self.param_secure = False
|
||
self.param_replica_num = ct.default_replica_num
|
||
|
||
def prepare_param_info(self, host, port, handler, replica_num, user, password, secure):
|
||
self.param_host = host
|
||
self.param_port = port
|
||
self.param_handler = handler
|
||
self.param_user = user
|
||
self.param_password = password
|
||
self.param_secure = secure
|
||
self.param_replica_num = replica_num
|
||
|
||
|
||
param_info = ParamInfo()
|
||
|
||
|
||
def gen_unique_str(str_value=None):
|
||
prefix = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(8))
|
||
return "test_" + prefix if str_value is None else str_value + "_" + prefix
|
||
|
||
|
||
def gen_str_by_length(length=8, letters_only=False):
|
||
if letters_only:
|
||
return "".join(random.choice(string.ascii_letters) for _ in range(length))
|
||
return "".join(random.choice(string.ascii_letters + string.digits) for _ in range(length))
|
||
|
||
|
||
def gen_digits_by_length(length=8):
|
||
return "".join(random.choice(string.digits) for _ in range(length))
|
||
|
||
|
||
def gen_bool_field(name=ct.default_bool_field_name, description=ct.default_desc, is_primary=False, **kwargs):
|
||
bool_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.BOOL, description=description,
|
||
is_primary=is_primary, **kwargs)
|
||
return bool_field
|
||
|
||
|
||
def gen_string_field(name=ct.default_string_field_name, description=ct.default_desc, is_primary=False,
|
||
max_length=ct.default_length, **kwargs):
|
||
string_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.VARCHAR,
|
||
description=description, max_length=max_length,
|
||
is_primary=is_primary, **kwargs)
|
||
return string_field
|
||
|
||
|
||
def gen_int8_field(name=ct.default_int8_field_name, description=ct.default_desc, is_primary=False, **kwargs):
|
||
int8_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT8, description=description,
|
||
is_primary=is_primary, **kwargs)
|
||
return int8_field
|
||
|
||
|
||
def gen_int16_field(name=ct.default_int16_field_name, description=ct.default_desc, is_primary=False, **kwargs):
|
||
int16_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT16, description=description,
|
||
is_primary=is_primary, **kwargs)
|
||
return int16_field
|
||
|
||
|
||
def gen_int32_field(name=ct.default_int32_field_name, description=ct.default_desc, is_primary=False, **kwargs):
|
||
int32_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT32, description=description,
|
||
is_primary=is_primary, **kwargs)
|
||
return int32_field
|
||
|
||
|
||
def gen_int64_field(name=ct.default_int64_field_name, description=ct.default_desc, is_primary=False, **kwargs):
|
||
int64_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT64, description=description,
|
||
is_primary=is_primary, **kwargs)
|
||
return int64_field
|
||
|
||
|
||
def gen_float_field(name=ct.default_float_field_name, is_primary=False, description=ct.default_desc):
|
||
float_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.FLOAT, description=description,
|
||
is_primary=is_primary)
|
||
return float_field
|
||
|
||
|
||
def gen_double_field(name=ct.default_double_field_name, is_primary=False, description=ct.default_desc):
|
||
double_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.DOUBLE,
|
||
description=description, is_primary=is_primary)
|
||
return double_field
|
||
|
||
|
||
def gen_float_vec_field(name=ct.default_float_vec_field_name, is_primary=False, dim=ct.default_dim,
|
||
description=ct.default_desc):
|
||
float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.FLOAT_VECTOR,
|
||
description=description, dim=dim,
|
||
is_primary=is_primary)
|
||
return float_vec_field
|
||
|
||
|
||
def gen_binary_vec_field(name=ct.default_binary_vec_field_name, is_primary=False, dim=ct.default_dim,
|
||
description=ct.default_desc):
|
||
binary_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.BINARY_VECTOR,
|
||
description=description, dim=dim,
|
||
is_primary=is_primary)
|
||
return binary_vec_field
|
||
|
||
|
||
def gen_default_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
|
||
auto_id=False, dim=ct.default_dim):
|
||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field(dim=dim)]
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field, auto_id=auto_id)
|
||
return schema
|
||
|
||
|
||
def gen_general_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
|
||
auto_id=False, is_binary=False, dim=ct.default_dim):
|
||
if is_binary:
|
||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_binary_vec_field(dim=dim)]
|
||
else:
|
||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field(dim=dim)]
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field, auto_id=auto_id)
|
||
return schema
|
||
|
||
|
||
def gen_string_pk_default_collection_schema(description=ct.default_desc, primary_field=ct.default_string_field_name,
|
||
auto_id=False, dim=ct.default_dim):
|
||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field(dim=dim)]
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field, auto_id=auto_id)
|
||
return schema
|
||
|
||
|
||
def gen_collection_schema_all_datatype(description=ct.default_desc,
|
||
primary_field=ct.default_int64_field_name,
|
||
auto_id=False, dim=ct.default_dim):
|
||
fields = [gen_int64_field(), gen_int32_field(), gen_int16_field(), gen_int8_field(),
|
||
gen_bool_field(), gen_float_field(), gen_double_field(), gen_string_field(), gen_float_vec_field(dim=dim)]
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field, auto_id=auto_id)
|
||
return schema
|
||
|
||
|
||
def gen_collection_schema(fields, primary_field=None, description=ct.default_desc, auto_id=False):
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, primary_field=primary_field,
|
||
description=description, auto_id=auto_id)
|
||
return schema
|
||
|
||
|
||
def gen_default_binary_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
|
||
auto_id=False, dim=ct.default_dim):
|
||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_binary_vec_field(dim=dim)]
|
||
binary_schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field,
|
||
auto_id=auto_id)
|
||
return binary_schema
|
||
|
||
|
||
def gen_schema_multi_vector_fields(vec_fields):
|
||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field()]
|
||
fields.extend(vec_fields)
|
||
primary_field = ct.default_int64_field_name
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=ct.default_desc,
|
||
primary_field=primary_field, auto_id=False)
|
||
return schema
|
||
|
||
|
||
def gen_schema_multi_string_fields(string_fields):
|
||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field()]
|
||
fields.extend(string_fields)
|
||
primary_field = ct.default_int64_field_name
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=ct.default_desc,
|
||
primary_field=primary_field, auto_id=False)
|
||
return schema
|
||
|
||
|
||
def gen_vectors(nb, dim):
|
||
vectors = [[random.random() for _ in range(dim)] for _ in range(nb)]
|
||
vectors = preprocessing.normalize(vectors, axis=1, norm='l2')
|
||
return vectors.tolist()
|
||
|
||
|
||
def gen_string(nb):
|
||
string_values = [str(random.random()) for _ in range(nb)]
|
||
return string_values
|
||
|
||
|
||
def gen_binary_vectors(num, dim):
|
||
raw_vectors = []
|
||
binary_vectors = []
|
||
for _ in range(num):
|
||
raw_vector = [random.randint(0, 1) for _ in range(dim)]
|
||
raw_vectors.append(raw_vector)
|
||
# packs a binary-valued array into bits in a unit8 array, and bytes array_of_ints
|
||
binary_vectors.append(bytes(np.packbits(raw_vector, axis=-1).tolist()))
|
||
return raw_vectors, binary_vectors
|
||
|
||
|
||
def gen_default_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0):
|
||
int_values = pd.Series(data=[i for i in range(start, start + nb)])
|
||
float_values = pd.Series(data=[np.float32(i) for i in range(start, start + nb)], dtype="float32")
|
||
string_values = pd.Series(data=[str(i) for i in range(start, start + nb)], dtype="string")
|
||
float_vec_values = gen_vectors(nb, dim)
|
||
df = pd.DataFrame({
|
||
ct.default_int64_field_name: int_values,
|
||
ct.default_float_field_name: float_values,
|
||
ct.default_string_field_name: string_values,
|
||
ct.default_float_vec_field_name: float_vec_values
|
||
})
|
||
return df
|
||
|
||
|
||
def gen_default_data_for_upsert(nb=ct.default_nb, dim=ct.default_dim, start=0, size=10000):
|
||
int_values = pd.Series(data=[i for i in range(start, start + nb)])
|
||
float_values = pd.Series(data=[np.float32(i + size) for i in range(start, start + nb)], dtype="float32")
|
||
string_values = pd.Series(data=[str(i + size) for i in range(start, start + nb)], dtype="string")
|
||
float_vec_values = gen_vectors(nb, dim)
|
||
df = pd.DataFrame({
|
||
ct.default_int64_field_name: int_values,
|
||
ct.default_float_field_name: float_values,
|
||
ct.default_string_field_name: string_values,
|
||
ct.default_float_vec_field_name: float_vec_values
|
||
})
|
||
return df, float_values
|
||
|
||
|
||
def gen_dataframe_multi_vec_fields(vec_fields, nb=ct.default_nb):
|
||
"""
|
||
gen dataframe data for fields: int64, float, float_vec and vec_fields
|
||
:param nb: num of entities, default default_nb
|
||
:param vec_fields: list of FieldSchema
|
||
:return: dataframe
|
||
"""
|
||
int_values = pd.Series(data=[i for i in range(0, nb)])
|
||
float_values = pd.Series(data=[float(i) for i in range(nb)], dtype="float32")
|
||
string_values = pd.Series(data=[str(i) for i in range(nb)], dtype="string")
|
||
df = pd.DataFrame({
|
||
ct.default_int64_field_name: int_values,
|
||
ct.default_float_field_name: float_values,
|
||
ct.default_string_field_name: string_values,
|
||
ct.default_float_vec_field_name: gen_vectors(nb, ct.default_dim)
|
||
})
|
||
for field in vec_fields:
|
||
dim = field.params['dim']
|
||
if field.dtype == DataType.FLOAT_VECTOR:
|
||
vec_values = gen_vectors(nb, dim)
|
||
elif field.dtype == DataType.BINARY_VECTOR:
|
||
vec_values = gen_binary_vectors(nb, dim)[1]
|
||
df[field.name] = vec_values
|
||
return df
|
||
|
||
|
||
def gen_dataframe_multi_string_fields(string_fields, nb=ct.default_nb):
|
||
"""
|
||
gen dataframe data for fields: int64, float, float_vec and vec_fields
|
||
:param nb: num of entities, default default_nb
|
||
:param vec_fields: list of FieldSchema
|
||
:return: dataframe
|
||
"""
|
||
int_values = pd.Series(data=[i for i in range(0, nb)])
|
||
float_values = pd.Series(data=[float(i) for i in range(nb)], dtype="float32")
|
||
string_values = pd.Series(data=[str(i) for i in range(nb)], dtype="string")
|
||
df = pd.DataFrame({
|
||
ct.default_int64_field_name: int_values,
|
||
ct.default_float_field_name: float_values,
|
||
ct.default_string_field_name: string_values,
|
||
ct.default_float_vec_field_name: gen_vectors(nb, ct.default_dim)
|
||
})
|
||
for field in string_fields:
|
||
if field.dtype == DataType.VARCHAR:
|
||
string_values = gen_string(nb)
|
||
df[field.name] = string_values
|
||
return df
|
||
|
||
|
||
def gen_dataframe_all_data_type(nb=ct.default_nb, dim=ct.default_dim, start=0):
|
||
int64_values = pd.Series(data=[i for i in range(start, start + nb)])
|
||
int32_values = pd.Series(data=[np.int32(i) for i in range(start, start + nb)], dtype="int32")
|
||
int16_values = pd.Series(data=[np.int16(i) for i in range(start, start + nb)], dtype="int16")
|
||
int8_values = pd.Series(data=[np.int8(i) for i in range(start, start + nb)], dtype="int8")
|
||
bool_values = pd.Series(data=[np.bool_(i) for i in range(start, start + nb)], dtype="bool")
|
||
float_values = pd.Series(data=[np.float32(i) for i in range(start, start + nb)], dtype="float32")
|
||
double_values = pd.Series(data=[np.double(i) for i in range(start, start + nb)], dtype="double")
|
||
string_values = pd.Series(data=[str(i) for i in range(start, start + nb)], dtype="string")
|
||
float_vec_values = gen_vectors(nb, dim)
|
||
df = pd.DataFrame({
|
||
ct.default_int64_field_name: int64_values,
|
||
ct.default_int32_field_name: int32_values,
|
||
ct.default_int16_field_name: int16_values,
|
||
ct.default_int8_field_name: int8_values,
|
||
ct.default_bool_field_name: bool_values,
|
||
ct.default_float_field_name: float_values,
|
||
ct.default_double_field_name: double_values,
|
||
ct.default_string_field_name: string_values,
|
||
ct.default_float_vec_field_name: float_vec_values
|
||
})
|
||
return df
|
||
|
||
|
||
def gen_default_binary_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0):
|
||
int_values = pd.Series(data=[i for i in range(start, start + nb)])
|
||
float_values = pd.Series(data=[np.float32(i) for i in range(start, start + nb)], dtype="float32")
|
||
string_values = pd.Series(data=[str(i) for i in range(start, start + nb)], dtype="string")
|
||
binary_raw_values, binary_vec_values = gen_binary_vectors(nb, dim)
|
||
df = pd.DataFrame({
|
||
ct.default_int64_field_name: int_values,
|
||
ct.default_float_field_name: float_values,
|
||
ct.default_string_field_name: string_values,
|
||
ct.default_binary_vec_field_name: binary_vec_values
|
||
})
|
||
return df, binary_raw_values
|
||
|
||
|
||
def gen_default_list_data(nb=ct.default_nb, dim=ct.default_dim, start=0):
|
||
int_values = [i for i in range(start, start + nb)]
|
||
float_values = [np.float32(i) for i in range(start, start + nb)]
|
||
string_values = [str(i) for i in range(start, start + nb)]
|
||
float_vec_values = gen_vectors(nb, dim)
|
||
data = [int_values, float_values, string_values, float_vec_values]
|
||
return data
|
||
|
||
|
||
def gen_default_list_data_for_bulk_insert(nb=ct.default_nb, dim=ct.default_dim):
|
||
int_values = [i for i in range(nb)]
|
||
float_values = [np.float32(i) for i in range(nb)]
|
||
string_values = [str(i) for i in range(nb)]
|
||
float_vec_values = [] # placeholder for float_vec
|
||
data = [int_values, float_values, string_values, float_vec_values]
|
||
return data
|
||
|
||
|
||
def gen_json_files_for_bulk_insert(data, schema, data_dir, **kwargs):
|
||
nb = kwargs.get("nb", ct.default_nb)
|
||
dim = kwargs.get("dim", ct.default_dim)
|
||
fields_name = [field.name for field in schema.fields]
|
||
file_name = f"bulk_insert_data_source_dim_{dim}_nb_{nb}.json"
|
||
files = [file_name]
|
||
data_source = os.path.join(data_dir, file_name)
|
||
with open(data_source, "w") as f:
|
||
f.write("{")
|
||
f.write("\n")
|
||
f.write('"rows":[')
|
||
f.write("\n")
|
||
for i in range(nb):
|
||
entity_value = [field_values[i] for field_values in data[:-1]]
|
||
vector = [random.random() for _ in range(dim)]
|
||
entity_value.append(vector)
|
||
entity = dict(zip(fields_name, entity_value))
|
||
f.write(json.dumps(entity, indent=4, default=to_serializable))
|
||
if i != nb - 1:
|
||
f.write(",")
|
||
f.write("\n")
|
||
f.write("]")
|
||
f.write("\n")
|
||
f.write("}")
|
||
return files
|
||
|
||
|
||
def gen_npy_files_for_bulk_insert(data, schema, data_dir, **kwargs):
|
||
nb = kwargs.get("nb", ct.default_nb)
|
||
dim = kwargs.get("dim", ct.default_dim)
|
||
fields_name = [field.name for field in schema.fields]
|
||
files = []
|
||
for field in fields_name:
|
||
files.append(f"{field}.npy")
|
||
for i, file in enumerate(files):
|
||
data_source = os.path.join(data_dir, file)
|
||
if "vector" in file:
|
||
log.info(f"generate {nb} vectors with dim {dim} for {data_source}")
|
||
with NpyAppendArray(data_source, "wb") as npaa:
|
||
for j in range(nb):
|
||
vector = np.array([[random.random() for _ in range(dim)]])
|
||
npaa.append(vector)
|
||
|
||
else:
|
||
np.save(data_source, np.array(data[i]))
|
||
return files
|
||
|
||
|
||
def gen_default_tuple_data(nb=ct.default_nb, dim=ct.default_dim):
|
||
int_values = [i for i in range(nb)]
|
||
float_values = [np.float32(i) for i in range(nb)]
|
||
string_values = [str(i) for i in range(nb)]
|
||
float_vec_values = gen_vectors(nb, dim)
|
||
data = (int_values, float_values, string_values, float_vec_values)
|
||
return data
|
||
|
||
|
||
def gen_numpy_data(nb=ct.default_nb, dim=ct.default_dim):
|
||
int_values = np.arange(nb, dtype='int64')
|
||
float_values = np.arange(nb, dtype='float32')
|
||
string_values = [np.str_(i) for i in range(nb)]
|
||
float_vec_values = gen_vectors(nb, dim)
|
||
data = [int_values, float_values, string_values, float_vec_values]
|
||
return data
|
||
|
||
|
||
def gen_default_binary_list_data(nb=ct.default_nb, dim=ct.default_dim):
|
||
int_values = [i for i in range(nb)]
|
||
float_values = [np.float32(i) for i in range(nb)]
|
||
string_values = [str(i) for i in range(nb)]
|
||
binary_raw_values, binary_vec_values = gen_binary_vectors(nb, dim)
|
||
data = [int_values, float_values, string_values, binary_vec_values]
|
||
return data, binary_raw_values
|
||
|
||
|
||
def gen_simple_index():
|
||
index_params = []
|
||
for i in range(len(ct.all_index_types)):
|
||
if ct.all_index_types[i] in ct.binary_support:
|
||
continue
|
||
dic = {"index_type": ct.all_index_types[i], "metric_type": "L2"}
|
||
dic.update({"params": ct.default_index_params[i]})
|
||
index_params.append(dic)
|
||
return index_params
|
||
|
||
|
||
def gen_invalid_field_types():
|
||
field_types = [
|
||
6,
|
||
1.0,
|
||
[[]],
|
||
{},
|
||
(),
|
||
"",
|
||
"a"
|
||
]
|
||
return field_types
|
||
|
||
|
||
def gen_invaild_search_params_type():
|
||
invalid_search_key = 100
|
||
search_params = []
|
||
for index_type in ct.all_index_types:
|
||
if index_type == "FLAT":
|
||
continue
|
||
search_params.append({"index_type": index_type, "search_params": {"invalid_key": invalid_search_key}})
|
||
if index_type in ["IVF_FLAT", "IVF_SQ8", "IVF_PQ"]:
|
||
for nprobe in ct.get_invalid_ints:
|
||
ivf_search_params = {"index_type": index_type, "search_params": {"nprobe": nprobe}}
|
||
search_params.append(ivf_search_params)
|
||
elif index_type in ["HNSW"]:
|
||
for ef in ct.get_invalid_ints:
|
||
hnsw_search_param = {"index_type": index_type, "search_params": {"ef": ef}}
|
||
search_params.append(hnsw_search_param)
|
||
elif index_type == "ANNOY":
|
||
for search_k in ct.get_invalid_ints:
|
||
if isinstance(search_k, int):
|
||
continue
|
||
annoy_search_param = {"index_type": index_type, "search_params": {"search_k": search_k}}
|
||
search_params.append(annoy_search_param)
|
||
elif index_type == "DISKANN":
|
||
for search_list in ct.get_invalid_ints:
|
||
diskann_search_param = {"index_type": index_type, "search_params": {"search_list": search_list}}
|
||
search_params.append(diskann_search_param)
|
||
return search_params
|
||
|
||
|
||
def gen_search_param(index_type, metric_type="L2"):
|
||
search_params = []
|
||
if index_type in ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_PQ"]:
|
||
for nprobe in [64, 128]:
|
||
ivf_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}}
|
||
search_params.append(ivf_search_params)
|
||
elif index_type in ["BIN_FLAT", "BIN_IVF_FLAT"]:
|
||
if metric_type not in ct.binary_metrics:
|
||
log.error("Metric type error: binary index only supports distance type in (%s)" % ct.binary_metrics)
|
||
# default metric type for binary index
|
||
metric_type = "JACCARD"
|
||
for nprobe in [64, 128]:
|
||
binary_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}}
|
||
search_params.append(binary_search_params)
|
||
elif index_type in ["HNSW"]:
|
||
for ef in [64, 32768]:
|
||
hnsw_search_param = {"metric_type": metric_type, "params": {"ef": ef}}
|
||
search_params.append(hnsw_search_param)
|
||
elif index_type == "ANNOY":
|
||
for search_k in [1000, 5000]:
|
||
annoy_search_param = {"metric_type": metric_type, "params": {"search_k": search_k}}
|
||
search_params.append(annoy_search_param)
|
||
elif index_type == "DISKANN":
|
||
for search_list in [20, 30]:
|
||
diskann_search_param = {"metric_type": metric_type, "params": {"search_list": search_list}}
|
||
search_params.append(diskann_search_param)
|
||
else:
|
||
log.error("Invalid index_type.")
|
||
raise Exception("Invalid index_type.")
|
||
return search_params
|
||
|
||
|
||
def gen_invalid_search_param(index_type, metric_type="L2"):
|
||
search_params = []
|
||
if index_type in ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_PQ"] \
|
||
or index_type in ["BIN_FLAT", "BIN_IVF_FLAT"]:
|
||
for nprobe in [-1]:
|
||
ivf_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}}
|
||
search_params.append(ivf_search_params)
|
||
elif index_type in ["HNSW"]:
|
||
for ef in [-1]:
|
||
hnsw_search_param = {"metric_type": metric_type, "params": {"ef": ef}}
|
||
search_params.append(hnsw_search_param)
|
||
elif index_type == "ANNOY":
|
||
for search_k in ["-2"]:
|
||
annoy_search_param = {"metric_type": metric_type, "params": {"search_k": search_k}}
|
||
search_params.append(annoy_search_param)
|
||
elif index_type == "DISKANN":
|
||
for search_list in ["-1"]:
|
||
diskann_search_param = {"metric_type": metric_type, "params": {"search_list": search_list}}
|
||
search_params.append(diskann_search_param)
|
||
|
||
else:
|
||
log.error("Invalid index_type.")
|
||
raise Exception("Invalid index_type.")
|
||
return search_params
|
||
|
||
|
||
def gen_all_type_fields():
|
||
fields = []
|
||
for k, v in DataType.__members__.items():
|
||
if v != DataType.UNKNOWN:
|
||
field, _ = ApiFieldSchemaWrapper().init_field_schema(name=k.lower(), dtype=v)
|
||
fields.append(field)
|
||
return fields
|
||
|
||
|
||
def gen_normal_expressions():
|
||
expressions = [
|
||
"",
|
||
"int64 > 0",
|
||
"(int64 > 0 && int64 < 400) or (int64 > 500 && int64 < 1000)",
|
||
"int64 not in [1, 2, 3]",
|
||
"int64 in [1, 2, 3] and float != 2",
|
||
"int64 == 0 || int64 == 1 || int64 == 2",
|
||
"0 < int64 < 400",
|
||
"500 <= int64 < 1000",
|
||
"200+300 < int64 <= 500+500",
|
||
"int64 in [300/2, 900%40, -10*30+800, 2048/2%200, (100+200)*2]",
|
||
"float in [+3**6, 2**10/2]",
|
||
"(int64 % 100 == 0) && int64 < 500",
|
||
"float <= 4**5/2 && float > 500-1 && float != 500/2+260",
|
||
"int64 > 400 && int64 < 200",
|
||
"float < -2**8",
|
||
"(int64 + 1) == 3 || int64 * 2 == 64 || float == 10**2"
|
||
]
|
||
return expressions
|
||
|
||
|
||
def gen_field_compare_expressions():
|
||
expressions = [
|
||
"int64_1 | int64_2 == 1",
|
||
"int64_1 && int64_2 ==1",
|
||
"int64_1 + int64_2 == 10",
|
||
"int64_1 - int64_2 == 2",
|
||
"int64_1 * int64_2 == 8",
|
||
"int64_1 / int64_2 == 2",
|
||
"int64_1 ** int64_2 == 4",
|
||
"int64_1 % int64_2 == 0",
|
||
"int64_1 in int64_2",
|
||
"int64_1 + int64_2 >= 10"
|
||
]
|
||
return expressions
|
||
|
||
|
||
def gen_normal_string_expressions(field):
|
||
expressions = [
|
||
f"\"0\"< {field} < \"3\"",
|
||
f"{field} >= \"0\"",
|
||
f"({field} > \"0\" && {field} < \"100\") or ({field} > \"200\" && {field} < \"300\")",
|
||
f"\"0\" <= {field} <= \"100\"",
|
||
f"{field} == \"0\"|| {field} == \"1\"|| {field} ==\"2\"",
|
||
f"{field} != \"0\"",
|
||
f"{field} not in [\"0\", \"1\", \"2\"]",
|
||
f"{field} in [\"0\", \"1\", \"2\"]"
|
||
]
|
||
return expressions
|
||
|
||
|
||
def gen_invaild_string_expressions():
|
||
expressions = [
|
||
"varchar in [0, \"1\"]",
|
||
"varchar not in [\"0\", 1, 2]"
|
||
]
|
||
return expressions
|
||
|
||
|
||
def gen_normal_expressions_field(field):
|
||
expressions = [
|
||
"",
|
||
f"{field} > 0",
|
||
f"({field} > 0 && {field} < 400) or ({field} > 500 && {field} < 1000)",
|
||
f"{field} not in [1, 2, 3]",
|
||
f"{field} in [1, 2, 3] and {field} != 2",
|
||
f"{field} == 0 || {field} == 1 || {field} == 2",
|
||
f"0 < {field} < 400",
|
||
f"500 <= {field} <= 1000",
|
||
f"200+300 <= {field} <= 500+500",
|
||
f"{field} in [300/2, 900%40, -10*30+800, 2048/2%200, (100+200)*2]",
|
||
f"{field} in [+3**6, 2**10/2]",
|
||
f"{field} <= 4**5/2 && {field} > 500-1 && {field} != 500/2+260",
|
||
f"{field} > 400 && {field} < 200",
|
||
f"{field} < -2**8",
|
||
f"({field} + 1) == 3 || {field} * 2 == 64 || {field} == 10**2"
|
||
]
|
||
return expressions
|
||
|
||
|
||
def l2(x, y):
|
||
return np.linalg.norm(np.array(x) - np.array(y))
|
||
|
||
|
||
def ip(x, y):
|
||
return np.inner(np.array(x), np.array(y))
|
||
|
||
|
||
def jaccard(x, y):
|
||
x = np.asarray(x, np.bool_)
|
||
y = np.asarray(y, np.bool_)
|
||
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum())
|
||
|
||
|
||
def hamming(x, y):
|
||
x = np.asarray(x, np.bool_)
|
||
y = np.asarray(y, np.bool_)
|
||
return np.bitwise_xor(x, y).sum()
|
||
|
||
|
||
def tanimoto(x, y):
|
||
x = np.asarray(x, np.bool_)
|
||
y = np.asarray(y, np.bool_)
|
||
res = np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum())
|
||
if res == 0:
|
||
value = float("inf")
|
||
else:
|
||
value = -np.log2(res)
|
||
return value
|
||
|
||
|
||
def tanimoto_calc(x, y):
|
||
x = np.asarray(x, np.bool_)
|
||
y = np.asarray(y, np.bool_)
|
||
return np.double((len(x) - np.bitwise_xor(x, y).sum())) / (len(y) + np.bitwise_xor(x, y).sum())
|
||
|
||
|
||
def substructure(x, y):
|
||
x = np.asarray(x, np.bool_)
|
||
y = np.asarray(y, np.bool_)
|
||
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(y)
|
||
|
||
|
||
def superstructure(x, y):
|
||
x = np.asarray(x, np.bool_)
|
||
y = np.asarray(y, np.bool_)
|
||
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(x)
|
||
|
||
|
||
def compare_distance_2d_vector(x, y, distance, metric, sqrt):
|
||
for i in range(len(x)):
|
||
for j in range(len(y)):
|
||
if metric == "L2":
|
||
distance_i = l2(x[i], y[j])
|
||
if not sqrt:
|
||
distance_i = math.pow(distance_i, 2)
|
||
elif metric == "IP":
|
||
distance_i = ip(x[i], y[j])
|
||
elif metric == "HAMMING":
|
||
distance_i = hamming(x[i], y[j])
|
||
elif metric == "TANIMOTO":
|
||
distance_i = tanimoto_calc(x[i], y[j])
|
||
elif metric == "JACCARD":
|
||
distance_i = jaccard(x[i], y[j])
|
||
else:
|
||
raise Exception("metric type is invalid")
|
||
assert abs(distance_i - distance[i][j]) < ct.epsilon
|
||
|
||
return True
|
||
|
||
|
||
def modify_file(file_path_list, is_modify=False, input_content=""):
|
||
"""
|
||
file_path_list : file list -> list[<file_path>]
|
||
is_modify : does the file need to be reset
|
||
input_content :the content that need to insert to the file
|
||
"""
|
||
if not isinstance(file_path_list, list):
|
||
log.error("[modify_file] file is not a list.")
|
||
|
||
for file_path in file_path_list:
|
||
folder_path, file_name = os.path.split(file_path)
|
||
if not os.path.isdir(folder_path):
|
||
log.debug("[modify_file] folder(%s) is not exist." % folder_path)
|
||
os.makedirs(folder_path)
|
||
|
||
if not os.path.isfile(file_path):
|
||
log.error("[modify_file] file(%s) is not exist." % file_path)
|
||
else:
|
||
if is_modify is True:
|
||
log.debug("[modify_file] start modifying file(%s)..." % file_path)
|
||
with open(file_path, "r+") as f:
|
||
f.seek(0)
|
||
f.truncate()
|
||
f.write(input_content)
|
||
f.close()
|
||
log.info("[modify_file] file(%s) modification is complete." % file_path_list)
|
||
|
||
|
||
def index_to_dict(index):
|
||
return {
|
||
"collection_name": index.collection_name,
|
||
"field_name": index.field_name,
|
||
# "name": index.name,
|
||
"params": index.params
|
||
}
|
||
|
||
|
||
def assert_equal_index(index_1, index_2):
|
||
return index_to_dict(index_1) == index_to_dict(index_2)
|
||
|
||
|
||
def gen_partitions(collection_w, partition_num=1):
|
||
"""
|
||
target: create extra partitions except for _default
|
||
method: create more than one partitions
|
||
expected: return collection and raw data
|
||
"""
|
||
log.info("gen_partitions: creating partitions")
|
||
for i in range(partition_num):
|
||
partition_name = "search_partition_" + str(i)
|
||
collection_w.create_partition(partition_name=partition_name,
|
||
description="search partition")
|
||
par = collection_w.partitions
|
||
assert len(par) == (partition_num + 1)
|
||
log.info("gen_partitions: created partitions %s" % par)
|
||
|
||
|
||
def insert_data(collection_w, nb=3000, is_binary=False, is_all_data_type=False,
|
||
auto_id=False, dim=ct.default_dim, insert_offset=0):
|
||
"""
|
||
target: insert non-binary/binary data
|
||
method: insert non-binary/binary data into partitions if any
|
||
expected: return collection and raw data
|
||
"""
|
||
par = collection_w.partitions
|
||
num = len(par)
|
||
vectors = []
|
||
binary_raw_vectors = []
|
||
insert_ids = []
|
||
start = insert_offset
|
||
log.info(f"inserted {nb} data into collection {collection_w.name}")
|
||
for i in range(num):
|
||
default_data = gen_default_dataframe_data(nb // num, dim=dim, start=start)
|
||
if is_binary:
|
||
default_data, binary_raw_data = gen_default_binary_dataframe_data(nb // num, dim=dim, start=start)
|
||
binary_raw_vectors.extend(binary_raw_data)
|
||
if is_all_data_type:
|
||
default_data = gen_dataframe_all_data_type(nb // num, dim=dim, start=start)
|
||
if auto_id:
|
||
default_data.drop(ct.default_int64_field_name, axis=1, inplace=True)
|
||
insert_res = collection_w.insert(default_data, par[i].name)[0]
|
||
time_stamp = insert_res.timestamp
|
||
insert_ids.extend(insert_res.primary_keys)
|
||
vectors.append(default_data)
|
||
start += nb // num
|
||
return collection_w, vectors, binary_raw_vectors, insert_ids, time_stamp
|
||
|
||
|
||
def _check_primary_keys(primary_keys, nb):
|
||
if primary_keys is None:
|
||
raise Exception("The primary_keys is None")
|
||
assert len(primary_keys) == nb
|
||
for i in range(nb - 1):
|
||
if primary_keys[i] >= primary_keys[i + 1]:
|
||
return False
|
||
return True
|
||
|
||
|
||
def get_segment_distribution(res):
|
||
"""
|
||
Get segment distribution
|
||
"""
|
||
from collections import defaultdict
|
||
segment_distribution = defaultdict(lambda: {"sealed": []})
|
||
for r in res:
|
||
for node_id in r.nodeIds:
|
||
if r.state == 3:
|
||
segment_distribution[node_id]["sealed"].append(r.segmentID)
|
||
|
||
return segment_distribution
|
||
|
||
|
||
def percent_to_int(string):
|
||
"""
|
||
transform percent(0%--100%) to int
|
||
"""
|
||
|
||
new_int = -1
|
||
if not isinstance(string, str):
|
||
log.error("%s is not a string" % string)
|
||
return new_int
|
||
if "%" not in string:
|
||
log.error("%s is not a percent" % string)
|
||
else:
|
||
new_int = int(string.strip("%"))
|
||
|
||
return new_int
|
||
|
||
|
||
def gen_grant_list(collection_name):
|
||
grant_list = [{"object": "Collection", "object_name": collection_name, "privilege": "Load"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "Release"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "Compaction"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "Delete"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "GetStatistics"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "CreateIndex"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "IndexDetail"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "DropIndex"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "Search"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "Flush"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "Query"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "LoadBalance"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "Import"},
|
||
{"object": "Global", "object_name": "*", "privilege": "All"},
|
||
{"object": "Global", "object_name": "*", "privilege": "CreateCollection"},
|
||
{"object": "Global", "object_name": "*", "privilege": "DropCollection"},
|
||
{"object": "Global", "object_name": "*", "privilege": "DescribeCollection"},
|
||
{"object": "Global", "object_name": "*", "privilege": "ShowCollections"},
|
||
{"object": "Global", "object_name": "*", "privilege": "CreateOwnership"},
|
||
{"object": "Global", "object_name": "*", "privilege": "DropOwnership"},
|
||
{"object": "Global", "object_name": "*", "privilege": "SelectOwnership"},
|
||
{"object": "Global", "object_name": "*", "privilege": "ManageOwnership"},
|
||
{"object": "User", "object_name": "*", "privilege": "UpdateUser"},
|
||
{"object": "User", "object_name": "*", "privilege": "SelectUser"}]
|
||
return grant_list
|
||
|
||
|
||
def install_milvus_operator_specific_config(namespace, milvus_mode, release_name, image,
|
||
rate_limit_enable, collection_rate_limit):
|
||
"""
|
||
namespace : str
|
||
milvus_mode : str -> standalone or cluster
|
||
release_name : str
|
||
image: str -> image tag including repository
|
||
rate_limit_enable: str -> true or false, switch for rate limit
|
||
collection_rate_limit: int -> collection rate limit numbers
|
||
input_content :the content that need to insert to the file
|
||
return: milvus host name
|
||
"""
|
||
|
||
if not isinstance(namespace, str):
|
||
log.error("[namespace] is not a string.")
|
||
|
||
if not isinstance(milvus_mode, str):
|
||
log.error("[milvus_mode] is not a string.")
|
||
|
||
if not isinstance(release_name, str):
|
||
log.error("[release_name] is not a string.")
|
||
|
||
if not isinstance(image, str):
|
||
log.error("[image] is not a string.")
|
||
|
||
if not isinstance(rate_limit_enable, str):
|
||
log.error("[rate_limit_enable] is not a string.")
|
||
|
||
if not isinstance(collection_rate_limit, int):
|
||
log.error("[collection_rate_limit] is not an integer.")
|
||
|
||
if milvus_mode not in ["standalone", "cluster"]:
|
||
log.error("[milvus_mode] is not 'standalone' or 'cluster'")
|
||
|
||
if rate_limit_enable not in ["true", "false"]:
|
||
log.error("[rate_limit_enable] is not 'true' or 'false'")
|
||
|
||
data_config = {
|
||
'metadata.namespace': namespace,
|
||
'spec.mode': milvus_mode,
|
||
'metadata.name': release_name,
|
||
'spec.components.image': image,
|
||
'spec.components.proxy.serviceType': 'LoadBalancer',
|
||
'spec.components.dataNode.replicas': 2,
|
||
'spec.config.common.retentionDuration': 60,
|
||
'spec.config.quotaAndLimits.enable': rate_limit_enable,
|
||
'spec.config.quotaAndLimits.ddl.collectionRate': collection_rate_limit,
|
||
}
|
||
mil = MilvusOperator()
|
||
mil.install(data_config)
|
||
if mil.wait_for_healthy(release_name, NAMESPACE, timeout=TIMEOUT):
|
||
host = mic.endpoint(release_name, NAMESPACE).split(':')[0]
|
||
else:
|
||
raise MilvusException(message=f'Milvus healthy timeout 1800s')
|
||
|
||
return host
|