milvus/internal/util/importutil/import_wrapper.go
wayblink a7bed1c927
Pass backup flag through Import request options (#20334)
Signed-off-by: wayblink <anyang.wang@zilliz.com>

Signed-off-by: wayblink <anyang.wang@zilliz.com>
2022-11-08 11:33:03 +08:00

954 lines
34 KiB
Go

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package importutil
import (
"bufio"
"context"
"fmt"
"math"
"go.uber.org/zap"
"github.com/milvus-io/milvus-proto/go-api/commonpb"
"github.com/milvus-io/milvus-proto/go-api/schemapb"
"github.com/milvus-io/milvus/internal/allocator"
"github.com/milvus-io/milvus/internal/common"
"github.com/milvus-io/milvus/internal/log"
"github.com/milvus-io/milvus/internal/proto/datapb"
"github.com/milvus-io/milvus/internal/proto/rootcoordpb"
"github.com/milvus-io/milvus/internal/storage"
"github.com/milvus-io/milvus/internal/util/retry"
"github.com/milvus-io/milvus/internal/util/timerecord"
"github.com/milvus-io/milvus/internal/util/typeutil"
)
const (
JSONFileExt = ".json"
NumpyFileExt = ".npy"
// supposed size of a single block, to control a binlog file size, the max biglog file size is no more than 2*SingleBlockSize
SingleBlockSize = 16 * 1024 * 1024 // 16MB
// this limitation is to avoid this OOM risk:
// for column-based file, we read all its data into memory, if user input a large file, the read() method may
// cost extra memory and lear to OOM.
MaxFileSize = 1 * 1024 * 1024 * 1024 // 1GB
// this limitation is to avoid this OOM risk:
// simetimes system segment max size is a large number, a single segment fields data might cause OOM.
// flush the segment when its data reach this limitation, let the compaction to compact it later.
MaxSegmentSizeInMemory = 512 * 1024 * 1024 // 512MB
// this limitation is to avoid this OOM risk:
// if the shard number is a large number, although single segment size is small, but there are lot of in-memory segments,
// the total memory size might cause OOM.
MaxTotalSizeInMemory = 2 * 1024 * 1024 * 1024 // 2GB
)
// ReportImportAttempts is the maximum # of attempts to retry when import fails.
var ReportImportAttempts uint = 10
type ImportFlushFunc func(fields map[storage.FieldID]storage.FieldData, shardID int) error
type AssignSegmentFunc func(shardID int) (int64, string, error)
type CreateBinlogsFunc func(fields map[storage.FieldID]storage.FieldData, segmentID int64) ([]*datapb.FieldBinlog, []*datapb.FieldBinlog, error)
type SaveSegmentFunc func(fieldsInsert []*datapb.FieldBinlog, fieldsStats []*datapb.FieldBinlog, segmentID int64, targetChName string, rowCount int64) error
type WorkingSegment struct {
segmentID int64 // segment ID
shardID int // shard id
targetChName string // target dml channel
rowCount int64 // accumulate row count
memSize int // total memory size of all binlogs
fieldsInsert []*datapb.FieldBinlog // persisted binlogs
fieldsStats []*datapb.FieldBinlog // stats of persisted binlogs
}
type ImportOptions struct {
OnlyValidate bool
TsStartPoint uint64
TsEndPoint uint64
IsBackup bool // whether is triggered by backup tool
}
func DefaultImportOptions() ImportOptions {
options := ImportOptions{
OnlyValidate: false,
TsStartPoint: 0,
TsEndPoint: math.MaxUint64,
}
return options
}
type ImportWrapper struct {
ctx context.Context // for canceling parse process
cancel context.CancelFunc // for canceling parse process
collectionSchema *schemapb.CollectionSchema // collection schema
shardNum int32 // sharding number of the collection
segmentSize int64 // maximum size of a segment(unit:byte) defined by dataCoord.segment.maxSize (milvus.yml)
rowIDAllocator *allocator.IDAllocator // autoid allocator
chunkManager storage.ChunkManager
assignSegmentFunc AssignSegmentFunc // function to prepare a new segment
createBinlogsFunc CreateBinlogsFunc // function to create binlog for a segment
saveSegmentFunc SaveSegmentFunc // function to persist a segment
importResult *rootcoordpb.ImportResult // import result
reportFunc func(res *rootcoordpb.ImportResult) error // report import state to rootcoord
reportImportAttempts uint // attempts count if report function get error
workingSegments map[int]*WorkingSegment // a map shard id to working segments
}
func NewImportWrapper(ctx context.Context, collectionSchema *schemapb.CollectionSchema, shardNum int32, segmentSize int64,
idAlloc *allocator.IDAllocator, cm storage.ChunkManager, importResult *rootcoordpb.ImportResult,
reportFunc func(res *rootcoordpb.ImportResult) error) *ImportWrapper {
if collectionSchema == nil {
log.Error("import wrapper: collection schema is nil")
return nil
}
// ignore the RowID field and Timestamp field
realSchema := &schemapb.CollectionSchema{
Name: collectionSchema.GetName(),
Description: collectionSchema.GetDescription(),
AutoID: collectionSchema.GetAutoID(),
Fields: make([]*schemapb.FieldSchema, 0),
}
for i := 0; i < len(collectionSchema.Fields); i++ {
schema := collectionSchema.Fields[i]
if schema.GetName() == common.RowIDFieldName || schema.GetName() == common.TimeStampFieldName {
continue
}
realSchema.Fields = append(realSchema.Fields, schema)
}
ctx, cancel := context.WithCancel(ctx)
wrapper := &ImportWrapper{
ctx: ctx,
cancel: cancel,
collectionSchema: realSchema,
shardNum: shardNum,
segmentSize: segmentSize,
rowIDAllocator: idAlloc,
chunkManager: cm,
importResult: importResult,
reportFunc: reportFunc,
reportImportAttempts: ReportImportAttempts,
workingSegments: make(map[int]*WorkingSegment),
}
return wrapper
}
func (p *ImportWrapper) SetCallbackFunctions(assignSegmentFunc AssignSegmentFunc, createBinlogsFunc CreateBinlogsFunc, saveSegmentFunc SaveSegmentFunc) error {
if assignSegmentFunc == nil {
log.Error("import wrapper: callback function AssignSegmentFunc is nil")
return fmt.Errorf("callback function AssignSegmentFunc is nil")
}
if createBinlogsFunc == nil {
log.Error("import wrapper: callback function CreateBinlogsFunc is nil")
return fmt.Errorf("callback function CreateBinlogsFunc is nil")
}
if saveSegmentFunc == nil {
log.Error("import wrapper: callback function SaveSegmentFunc is nil")
return fmt.Errorf("callback function SaveSegmentFunc is nil")
}
p.assignSegmentFunc = assignSegmentFunc
p.createBinlogsFunc = createBinlogsFunc
p.saveSegmentFunc = saveSegmentFunc
return nil
}
// Cancel method can be used to cancel parse process
func (p *ImportWrapper) Cancel() error {
p.cancel()
return nil
}
func (p *ImportWrapper) validateColumnBasedFiles(filePaths []string, collectionSchema *schemapb.CollectionSchema) error {
requiredFieldNames := make(map[string]interface{})
for _, schema := range p.collectionSchema.Fields {
if schema.GetIsPrimaryKey() {
if !schema.GetAutoID() {
requiredFieldNames[schema.GetName()] = nil
}
} else {
requiredFieldNames[schema.GetName()] = nil
}
}
// check redundant file
fileNames := make(map[string]interface{})
for _, filePath := range filePaths {
name, _ := GetFileNameAndExt(filePath)
fileNames[name] = nil
_, ok := requiredFieldNames[name]
if !ok {
log.Error("import wrapper: the file has no corresponding field in collection", zap.String("fieldName", name))
return fmt.Errorf("the file '%s' has no corresponding field in collection", filePath)
}
}
// check missed file
for name := range requiredFieldNames {
_, ok := fileNames[name]
if !ok {
log.Error("import wrapper: there is no file corresponding to field", zap.String("fieldName", name))
return fmt.Errorf("there is no file corresponding to field '%s'", name)
}
}
return nil
}
// fileValidation verify the input paths
// if all the files are json type, return true
// if all the files are numpy type, return false, and not allow duplicate file name
func (p *ImportWrapper) fileValidation(filePaths []string) (bool, error) {
// use this map to check duplicate file name(only for numpy file)
fileNames := make(map[string]struct{})
totalSize := int64(0)
rowBased := false
for i := 0; i < len(filePaths); i++ {
filePath := filePaths[i]
name, fileType := GetFileNameAndExt(filePath)
// only allow json file or numpy file
if fileType != JSONFileExt && fileType != NumpyFileExt {
log.Error("import wrapper: unsupported file type", zap.String("filePath", filePath))
return false, fmt.Errorf("unsupported file type: '%s'", filePath)
}
// we use the first file to determine row-based or column-based
if i == 0 && fileType == JSONFileExt {
rowBased = true
}
// check file type
// row-based only support json type, column-based only support numpy type
if rowBased {
if fileType != JSONFileExt {
log.Error("import wrapper: unsupported file type for row-based mode", zap.String("filePath", filePath))
return rowBased, fmt.Errorf("unsupported file type for row-based mode: '%s'", filePath)
}
} else {
if fileType != NumpyFileExt {
log.Error("import wrapper: unsupported file type for column-based mode", zap.String("filePath", filePath))
return rowBased, fmt.Errorf("unsupported file type for column-based mode: '%s'", filePath)
}
}
// check dupliate file
_, ok := fileNames[name]
if ok {
log.Error("import wrapper: duplicate file name", zap.String("filePath", filePath))
return rowBased, fmt.Errorf("duplicate file: '%s'", filePath)
}
fileNames[name] = struct{}{}
// check file size, single file size cannot exceed MaxFileSize
size, err := p.chunkManager.Size(p.ctx, filePath)
if err != nil {
log.Error("import wrapper: failed to get file size", zap.String("filePath", filePath), zap.Error(err))
return rowBased, fmt.Errorf("failed to get file size of '%s', error:%w", filePath, err)
}
// empty file
if size == 0 {
log.Error("import wrapper: file size is zero", zap.String("filePath", filePath))
return rowBased, fmt.Errorf("the file '%s' size is zero", filePath)
}
if size > MaxFileSize {
log.Error("import wrapper: file size exceeds the maximum size", zap.String("filePath", filePath),
zap.Int64("fileSize", size), zap.Int64("MaxFileSize", MaxFileSize))
return rowBased, fmt.Errorf("the file '%s' size exceeds the maximum size: %d bytes", filePath, MaxFileSize)
}
totalSize += size
}
// especially for column-base, total size of files cannot exceed MaxTotalSizeInMemory
if totalSize > MaxTotalSizeInMemory {
log.Error("import wrapper: total size of files exceeds the maximum size", zap.Int64("totalSize", totalSize), zap.Int64("MaxTotalSize", MaxTotalSizeInMemory))
return rowBased, fmt.Errorf("total size(%d bytes) of all files exceeds the maximum size: %d bytes", totalSize, MaxTotalSizeInMemory)
}
// check redundant files for column-based import
// if the field is primary key and autoid is false, the file is required
// any redundant file is not allowed
if !rowBased {
err := p.validateColumnBasedFiles(filePaths, p.collectionSchema)
if err != nil {
return rowBased, err
}
}
return rowBased, nil
}
// Import is the entry of import operation
// filePath and rowBased are from ImportTask
// if onlyValidate is true, this process only do validation, no data generated, flushFunc will not be called
func (p *ImportWrapper) Import(filePaths []string, options ImportOptions) error {
log.Info("import wrapper: begin import", zap.Any("filePaths", filePaths), zap.Any("options", options))
// data restore function to import milvus native binlog files(for backup/restore tools)
// the backup/restore tool provide two paths for a partition, the first path is binlog path, the second is deltalog path
if options.IsBackup && p.isBinlogImport(filePaths) {
return p.doBinlogImport(filePaths, options.TsStartPoint, options.TsEndPoint)
}
// normal logic for import general data files
rowBased, err := p.fileValidation(filePaths)
if err != nil {
return err
}
if rowBased {
// parse and consume row-based files
// for row-based files, the JSONRowConsumer will generate autoid for primary key, and split rows into segments
// according to shard number, so the flushFunc will be called in the JSONRowConsumer
for i := 0; i < len(filePaths); i++ {
filePath := filePaths[i]
_, fileType := GetFileNameAndExt(filePath)
log.Info("import wrapper: row-based file ", zap.Any("filePath", filePath), zap.Any("fileType", fileType))
if fileType == JSONFileExt {
err = p.parseRowBasedJSON(filePath, options.OnlyValidate)
if err != nil {
log.Error("import wrapper: failed to parse row-based json file", zap.Error(err), zap.String("filePath", filePath))
return err
}
} // no need to check else, since the fileValidation() already do this
// trigger gc after each file finished
triggerGC()
}
} else {
// parse and consume column-based files
// for column-based files, the XXXColumnConsumer only output map[string]storage.FieldData
// after all columns are parsed/consumed, we need to combine map[string]storage.FieldData into one
// and use splitFieldsData() to split fields data into segments according to shard number
fieldsData := initSegmentData(p.collectionSchema)
if fieldsData == nil {
log.Error("import wrapper: failed to initialize FieldData list")
return fmt.Errorf("failed to initialize FieldData list")
}
rowCount := 0
// function to combine column data into fieldsData
combineFunc := func(fields map[storage.FieldID]storage.FieldData) error {
if len(fields) == 0 {
return nil
}
printFieldsDataInfo(fields, "import wrapper: combine field data", nil)
tr := timerecord.NewTimeRecorder("combine field data")
defer tr.Elapse("finished")
for k, v := range fields {
// ignore 0 row field
if v.RowNum() == 0 {
log.Warn("import wrapper: empty FieldData ignored", zap.Int64("fieldID", k))
continue
}
// ignore internal fields: RowIDField and TimeStampField
if k == common.RowIDField || k == common.TimeStampField {
log.Warn("import wrapper: internal fields should not be provided", zap.Int64("fieldID", k))
continue
}
// each column should be only combined once
data, ok := fieldsData[k]
if ok && data.RowNum() > 0 {
return fmt.Errorf("the field %d is duplicated", k)
}
// check the row count. only count non-zero row fields
if rowCount > 0 && rowCount != v.RowNum() {
return fmt.Errorf("the field %d row count %d doesn't equal to others row count: %d", k, v.RowNum(), rowCount)
}
rowCount = v.RowNum()
// assign column data to fieldsData
fieldsData[k] = v
}
return nil
}
// parse/validate/consume data
for i := 0; i < len(filePaths); i++ {
filePath := filePaths[i]
_, fileType := GetFileNameAndExt(filePath)
log.Info("import wrapper: column-based file ", zap.Any("filePath", filePath), zap.Any("fileType", fileType))
if fileType == NumpyFileExt {
err = p.parseColumnBasedNumpy(filePath, options.OnlyValidate, combineFunc)
if err != nil {
log.Error("import wrapper: failed to parse column-based numpy file", zap.Error(err), zap.String("filePath", filePath))
return err
}
}
// no need to check else, since the fileValidation() already do this
}
// trigger after read finished
triggerGC()
// split fields data into segments
err := p.splitFieldsData(fieldsData, SingleBlockSize)
if err != nil {
return err
}
// trigger after write finished
triggerGC()
}
return p.reportPersisted(p.reportImportAttempts)
}
// reportPersisted notify the rootcoord to mark the task state to be ImportPersisted
func (p *ImportWrapper) reportPersisted(reportAttempts uint) error {
// force close all segments
err := p.closeAllWorkingSegments()
if err != nil {
return err
}
// report file process state
p.importResult.State = commonpb.ImportState_ImportPersisted
// persist state task is valuable, retry more times in case fail this task only because of network error
reportErr := retry.Do(p.ctx, func() error {
return p.reportFunc(p.importResult)
}, retry.Attempts(reportAttempts))
if reportErr != nil {
log.Warn("import wrapper: fail to report import state to RootCoord", zap.Error(reportErr))
return reportErr
}
return nil
}
// isBinlogImport is to judge whether it is binlog import operation
// For internal usage by the restore tool: https://github.com/zilliztech/milvus-backup
// This tool exports data from a milvus service, and call bulkload interface to import native data into another milvus service.
// This tool provides two paths: one is insert log path of a partition,the other is delta log path of this partition.
// This method checks the filePaths, if the file paths is exist and not a file, we say it is native import.
func (p *ImportWrapper) isBinlogImport(filePaths []string) bool {
// must contains the insert log path, and the delta log path is optional to be empty string
if len(filePaths) != 2 {
log.Info("import wrapper: paths count is not 2, not binlog import", zap.Int("len", len(filePaths)))
return false
}
checkFunc := func(filePath string) bool {
// contains file extension, is not a path
_, fileType := GetFileNameAndExt(filePath)
if len(fileType) != 0 {
log.Info("import wrapper: not a path, not binlog import", zap.String("filePath", filePath), zap.String("fileType", fileType))
return false
}
return true
}
// the first path is insert log path
filePath := filePaths[0]
if len(filePath) == 0 {
log.Info("import wrapper: the first path is empty string, not binlog import")
return false
}
if !checkFunc(filePath) {
return false
}
// the second path is delta log path
filePath = filePaths[1]
if len(filePath) > 0 && !checkFunc(filePath) {
return false
}
log.Info("import wrapper: do binlog import")
return true
}
// doBinlogImport is the entry of binlog import operation
func (p *ImportWrapper) doBinlogImport(filePaths []string, tsStartPoint uint64, tsEndPoint uint64) error {
flushFunc := func(fields map[storage.FieldID]storage.FieldData, shardID int) error {
printFieldsDataInfo(fields, "import wrapper: prepare to flush binlog data", filePaths)
return p.flushFunc(fields, shardID)
}
parser, err := NewBinlogParser(p.ctx, p.collectionSchema, p.shardNum, SingleBlockSize, p.chunkManager, flushFunc,
tsStartPoint, tsEndPoint)
if err != nil {
return err
}
err = parser.Parse(filePaths)
if err != nil {
return err
}
return p.reportPersisted(p.reportImportAttempts)
}
// parseRowBasedJSON is the entry of row-based json import operation
func (p *ImportWrapper) parseRowBasedJSON(filePath string, onlyValidate bool) error {
tr := timerecord.NewTimeRecorder("json row-based parser: " + filePath)
// for minio storage, chunkManager will download file into local memory
// for local storage, chunkManager open the file directly
file, err := p.chunkManager.Reader(p.ctx, filePath)
if err != nil {
return err
}
defer file.Close()
// parse file
reader := bufio.NewReader(file)
parser := NewJSONParser(p.ctx, p.collectionSchema)
var consumer *JSONRowConsumer
if !onlyValidate {
flushFunc := func(fields map[storage.FieldID]storage.FieldData, shardID int) error {
var filePaths = []string{filePath}
printFieldsDataInfo(fields, "import wrapper: prepare to flush binlogs", filePaths)
return p.flushFunc(fields, shardID)
}
consumer, err = NewJSONRowConsumer(p.collectionSchema, p.rowIDAllocator, p.shardNum, SingleBlockSize, flushFunc)
if err != nil {
return err
}
}
validator, err := NewJSONRowValidator(p.collectionSchema, consumer)
if err != nil {
return err
}
err = parser.ParseRows(reader, validator)
if err != nil {
return err
}
// for row-based files, auto-id is generated within JSONRowConsumer
if consumer != nil {
p.importResult.AutoIds = append(p.importResult.AutoIds, consumer.IDRange()...)
}
tr.Elapse("parsed")
return nil
}
// parseColumnBasedNumpy is the entry of column-based numpy import operation
func (p *ImportWrapper) parseColumnBasedNumpy(filePath string, onlyValidate bool,
combineFunc func(fields map[storage.FieldID]storage.FieldData) error) error {
tr := timerecord.NewTimeRecorder("numpy parser: " + filePath)
fileName, _ := GetFileNameAndExt(filePath)
// for minio storage, chunkManager will download file into local memory
// for local storage, chunkManager open the file directly
file, err := p.chunkManager.Reader(p.ctx, filePath)
if err != nil {
return err
}
defer file.Close()
var id storage.FieldID
var found = false
for _, field := range p.collectionSchema.Fields {
if field.GetName() == fileName {
id = field.GetFieldID()
found = true
break
}
}
// if the numpy file name is not mapping to a field name, ignore it
if !found {
return nil
}
// the numpy parser return a storage.FieldData, here construct a map[string]storage.FieldData to combine
flushFunc := func(field storage.FieldData) error {
fields := make(map[storage.FieldID]storage.FieldData)
fields[id] = field
return combineFunc(fields)
}
// for numpy file, we say the file name(without extension) is the filed name
parser := NewNumpyParser(p.ctx, p.collectionSchema, flushFunc)
err = parser.Parse(file, fileName, onlyValidate)
if err != nil {
return err
}
tr.Elapse("parsed")
return nil
}
// appendFunc defines the methods to append data to storage.FieldData
func (p *ImportWrapper) appendFunc(schema *schemapb.FieldSchema) func(src storage.FieldData, n int, target storage.FieldData) error {
switch schema.DataType {
case schemapb.DataType_Bool:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.BoolFieldData)
arr.Data = append(arr.Data, src.GetRow(n).(bool))
arr.NumRows[0]++
return nil
}
case schemapb.DataType_Float:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.FloatFieldData)
arr.Data = append(arr.Data, src.GetRow(n).(float32))
arr.NumRows[0]++
return nil
}
case schemapb.DataType_Double:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.DoubleFieldData)
arr.Data = append(arr.Data, src.GetRow(n).(float64))
arr.NumRows[0]++
return nil
}
case schemapb.DataType_Int8:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.Int8FieldData)
arr.Data = append(arr.Data, src.GetRow(n).(int8))
arr.NumRows[0]++
return nil
}
case schemapb.DataType_Int16:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.Int16FieldData)
arr.Data = append(arr.Data, src.GetRow(n).(int16))
arr.NumRows[0]++
return nil
}
case schemapb.DataType_Int32:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.Int32FieldData)
arr.Data = append(arr.Data, src.GetRow(n).(int32))
arr.NumRows[0]++
return nil
}
case schemapb.DataType_Int64:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.Int64FieldData)
arr.Data = append(arr.Data, src.GetRow(n).(int64))
arr.NumRows[0]++
return nil
}
case schemapb.DataType_BinaryVector:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.BinaryVectorFieldData)
arr.Data = append(arr.Data, src.GetRow(n).([]byte)...)
arr.NumRows[0]++
return nil
}
case schemapb.DataType_FloatVector:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.FloatVectorFieldData)
arr.Data = append(arr.Data, src.GetRow(n).([]float32)...)
arr.NumRows[0]++
return nil
}
case schemapb.DataType_String, schemapb.DataType_VarChar:
return func(src storage.FieldData, n int, target storage.FieldData) error {
arr := target.(*storage.StringFieldData)
arr.Data = append(arr.Data, src.GetRow(n).(string))
return nil
}
default:
return nil
}
}
// splitFieldsData is to split the in-memory data(parsed from column-based files) into blocks, each block save to a binlog file
func (p *ImportWrapper) splitFieldsData(fieldsData map[storage.FieldID]storage.FieldData, blockSize int64) error {
if len(fieldsData) == 0 {
log.Error("import wrapper: fields data is empty")
return fmt.Errorf("fields data is empty")
}
tr := timerecord.NewTimeRecorder("import wrapper: split field data")
defer tr.Elapse("finished")
// check existence of each field
// check row count, all fields row count must be equal
// firstly get the max row count
rowCount := 0
rowCounter := make(map[string]int)
var primaryKey *schemapb.FieldSchema
for i := 0; i < len(p.collectionSchema.Fields); i++ {
schema := p.collectionSchema.Fields[i]
if schema.GetIsPrimaryKey() {
primaryKey = schema
}
if !schema.GetAutoID() {
v, ok := fieldsData[schema.GetFieldID()]
if !ok {
log.Error("import wrapper: field not provided", zap.String("fieldName", schema.GetName()))
return fmt.Errorf("field '%s' not provided", schema.GetName())
}
rowCounter[schema.GetName()] = v.RowNum()
if v.RowNum() > rowCount {
rowCount = v.RowNum()
}
}
}
if primaryKey == nil {
log.Error("import wrapper: primary key field is not found")
return fmt.Errorf("primary key field is not found")
}
for name, count := range rowCounter {
if count != rowCount {
log.Error("import wrapper: field row count is not equal to other fields row count", zap.String("fieldName", name),
zap.Int("rowCount", count), zap.Int("otherRowCount", rowCount))
return fmt.Errorf("field '%s' row count %d is not equal to other fields row count: %d", name, count, rowCount)
}
}
log.Info("import wrapper: try to split a block with row count", zap.Int("rowCount", rowCount))
primaryData, ok := fieldsData[primaryKey.GetFieldID()]
if !ok {
log.Error("import wrapper: primary key field is not provided", zap.String("keyName", primaryKey.GetName()))
return fmt.Errorf("primary key field is not provided")
}
// generate auto id for primary key and rowid field
rowIDBegin, rowIDEnd, err := p.rowIDAllocator.Alloc(uint32(rowCount))
if err != nil {
log.Error("import wrapper: failed to alloc row ID", zap.Error(err))
return fmt.Errorf("failed to alloc row ID, error: %w", err)
}
rowIDField := fieldsData[common.RowIDField]
rowIDFieldArr := rowIDField.(*storage.Int64FieldData)
for i := rowIDBegin; i < rowIDEnd; i++ {
rowIDFieldArr.Data = append(rowIDFieldArr.Data, i)
}
if primaryKey.GetAutoID() {
log.Info("import wrapper: generating auto-id", zap.Int("rowCount", rowCount), zap.Int64("rowIDBegin", rowIDBegin))
// reset the primary keys, as we know, only int64 pk can be auto-generated
primaryDataArr := &storage.Int64FieldData{
NumRows: []int64{int64(rowCount)},
Data: make([]int64, 0, rowCount),
}
for i := rowIDBegin; i < rowIDEnd; i++ {
primaryDataArr.Data = append(primaryDataArr.Data, i)
}
primaryData = primaryDataArr
fieldsData[primaryKey.GetFieldID()] = primaryData
p.importResult.AutoIds = append(p.importResult.AutoIds, rowIDBegin, rowIDEnd)
}
if primaryData.RowNum() <= 0 {
log.Error("import wrapper: primary key is not provided", zap.String("keyName", primaryKey.GetName()))
return fmt.Errorf("the primary key '%s' is not provided", primaryKey.GetName())
}
// prepare segemnts
segmentsData := make([]map[storage.FieldID]storage.FieldData, 0, p.shardNum)
for i := 0; i < int(p.shardNum); i++ {
segmentData := initSegmentData(p.collectionSchema)
if segmentData == nil {
log.Error("import wrapper: failed to initialize FieldData list")
return fmt.Errorf("failed to initialize FieldData list")
}
segmentsData = append(segmentsData, segmentData)
}
// prepare append functions
appendFunctions := make(map[string]func(src storage.FieldData, n int, target storage.FieldData) error)
for i := 0; i < len(p.collectionSchema.Fields); i++ {
schema := p.collectionSchema.Fields[i]
appendFuncErr := p.appendFunc(schema)
if appendFuncErr == nil {
log.Error("import wrapper: unsupported field data type")
return fmt.Errorf("unsupported field data type: %d", schema.GetDataType())
}
appendFunctions[schema.GetName()] = appendFuncErr
}
// split data into shards
for i := 0; i < rowCount; i++ {
// hash to a shard number
var shard uint32
pk := primaryData.GetRow(i)
strPK, ok := interface{}(pk).(string)
if ok {
hash := typeutil.HashString2Uint32(strPK)
shard = hash % uint32(p.shardNum)
} else {
intPK, ok := interface{}(pk).(int64)
if !ok {
log.Error("import wrapper: primary key field must be int64 or varchar")
return fmt.Errorf("primary key field must be int64 or varchar")
}
hash, _ := typeutil.Hash32Int64(intPK)
shard = hash % uint32(p.shardNum)
}
// set rowID field
rowIDField := segmentsData[shard][common.RowIDField].(*storage.Int64FieldData)
rowIDField.Data = append(rowIDField.Data, rowIDFieldArr.GetRow(i).(int64))
// append row to shard
for k := 0; k < len(p.collectionSchema.Fields); k++ {
schema := p.collectionSchema.Fields[k]
srcData := fieldsData[schema.GetFieldID()]
targetData := segmentsData[shard][schema.GetFieldID()]
appendFunc := appendFunctions[schema.GetName()]
err := appendFunc(srcData, i, targetData)
if err != nil {
return err
}
}
// when the estimated size is close to blockSize, force flush
err = tryFlushBlocks(p.ctx, segmentsData, p.collectionSchema, p.flushFunc, blockSize, MaxTotalSizeInMemory, false)
if err != nil {
return err
}
}
// force flush at the end
return tryFlushBlocks(p.ctx, segmentsData, p.collectionSchema, p.flushFunc, blockSize, MaxTotalSizeInMemory, true)
}
// flushFunc is the callback function for parsers generate segment and save binlog files
func (p *ImportWrapper) flushFunc(fields map[storage.FieldID]storage.FieldData, shardID int) error {
// if fields data is empty, do nothing
var rowNum int
memSize := 0
for _, field := range fields {
rowNum = field.RowNum()
memSize += field.GetMemorySize()
break
}
if rowNum <= 0 {
log.Warn("import wrapper: fields data is empty", zap.Int("shardID", shardID))
return nil
}
// if there is no segment for this shard, create a new one
// if the segment exists and its size almost exceed segmentSize, close it and create a new one
var segment *WorkingSegment
segment, ok := p.workingSegments[shardID]
if ok {
// the segment already exists, check its size, if the size exceeds(or almost) segmentSize, close the segment
if int64(segment.memSize)+int64(memSize) >= p.segmentSize {
err := p.closeWorkingSegment(segment)
if err != nil {
return err
}
segment = nil
p.workingSegments[shardID] = nil
}
}
if segment == nil {
// create a new segment
segID, channelName, err := p.assignSegmentFunc(shardID)
if err != nil {
log.Error("import wrapper: failed to assign a new segment", zap.Error(err), zap.Int("shardID", shardID))
return fmt.Errorf("failed to assign a new segment for shard id %d, error: %w", shardID, err)
}
segment = &WorkingSegment{
segmentID: segID,
shardID: shardID,
targetChName: channelName,
rowCount: int64(0),
memSize: 0,
fieldsInsert: make([]*datapb.FieldBinlog, 0),
fieldsStats: make([]*datapb.FieldBinlog, 0),
}
p.workingSegments[shardID] = segment
}
// save binlogs
fieldsInsert, fieldsStats, err := p.createBinlogsFunc(fields, segment.segmentID)
if err != nil {
log.Error("import wrapper: failed to save binlogs", zap.Error(err), zap.Int("shardID", shardID),
zap.Int64("segmentID", segment.segmentID), zap.String("targetChannel", segment.targetChName))
return fmt.Errorf("failed to save binlogs, shard id %d, segment id %d, channel '%s', error: %w",
shardID, segment.segmentID, segment.targetChName, err)
}
segment.fieldsInsert = append(segment.fieldsInsert, fieldsInsert...)
segment.fieldsStats = append(segment.fieldsStats, fieldsStats...)
segment.rowCount += int64(rowNum)
segment.memSize += memSize
return nil
}
// closeWorkingSegment marks a segment to be sealed
func (p *ImportWrapper) closeWorkingSegment(segment *WorkingSegment) error {
log.Info("import wrapper: adding segment to the correct DataNode flow graph and saving binlog paths",
zap.Int("shardID", segment.shardID),
zap.Int64("segmentID", segment.segmentID),
zap.String("targetChannel", segment.targetChName),
zap.Int64("rowCount", segment.rowCount),
zap.Int("insertLogCount", len(segment.fieldsInsert)),
zap.Int("statsLogCount", len(segment.fieldsStats)))
err := p.saveSegmentFunc(segment.fieldsInsert, segment.fieldsStats, segment.segmentID, segment.targetChName, segment.rowCount)
if err != nil {
log.Error("import wrapper: failed to seal segment",
zap.Error(err),
zap.Int("shardID", segment.shardID),
zap.Int64("segmentID", segment.segmentID),
zap.String("targetChannel", segment.targetChName))
return fmt.Errorf("failed to seal segment, shard id %d, segment id %d, channel '%s', error: %w",
segment.shardID, segment.segmentID, segment.targetChName, err)
}
return nil
}
// closeAllWorkingSegments mark all segments to be sealed at the end of import operation
func (p *ImportWrapper) closeAllWorkingSegments() error {
for _, segment := range p.workingSegments {
err := p.closeWorkingSegment(segment)
if err != nil {
return err
}
}
p.workingSegments = make(map[int]*WorkingSegment)
return nil
}