milvus/internal/core/unittest/test_sealed.cpp
xige-16 428840178c
Support diskann index for vector field (#19093)
Signed-off-by: xige-16 <xi.ge@zilliz.com>

Signed-off-by: xige-16 <xi.ge@zilliz.com>
2022-09-21 20:16:51 +08:00

855 lines
32 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <gtest/gtest.h>
#include <boost/format.hpp>
#include <knowhere/index/IndexType.h>
#include "knowhere/index/vector_index/adapter/VectorAdapter.h"
#include "segcore/SegmentSealedImpl.h"
#include "test_utils/DataGen.h"
#include "index/IndexFactory.h"
#include "segcore/segcore_init_c.h"
using namespace milvus;
using namespace milvus::query;
using namespace milvus::segcore;
using milvus::index::LoadIndexInfo;
const int64_t ROW_COUNT = 100 * 1000;
TEST(Sealed, without_predicate) {
using namespace milvus::query;
using namespace milvus::segcore;
auto schema = std::make_shared<Schema>();
auto dim = 16;
auto topK = 5;
auto metric_type = knowhere::metric::L2;
auto fake_id = schema->AddDebugField("fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto float_fid = schema->AddDebugField("age", DataType::FLOAT);
auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
schema->set_primary_field_id(i64_fid);
std::string dsl = R"({
"bool": {
"must": [
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 5,
"round_decimal": 3
}
}
}
]
}
})";
auto N = ROW_COUNT;
auto dataset = DataGen(schema, N);
auto vec_col = dataset.get_col<float>(fake_id);
for (int64_t i = 0; i < 1000 * dim; ++i) {
vec_col.push_back(0);
}
auto query_ptr = vec_col.data() + 4200 * dim;
auto segment = CreateGrowingSegment(schema);
segment->PreInsert(N);
segment->Insert(0, N, dataset.row_ids_.data(), dataset.timestamps_.data(), dataset.raw_);
auto plan = CreatePlan(*schema, dsl);
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroupFromBlob(num_queries, 16, query_ptr);
auto ph_group = ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
Timestamp time = 1000000;
std::vector<const PlaceholderGroup*> ph_group_arr = {ph_group.get()};
auto sr = segment->Search(plan.get(), ph_group.get(), time);
auto pre_result = SearchResultToJson(*sr);
milvus::index::CreateIndexInfo create_index_info;
create_index_info.field_type = DataType::VECTOR_FLOAT;
create_index_info.metric_type = knowhere::metric::L2;
create_index_info.index_type = knowhere::IndexEnum::INDEX_FAISS_IVFFLAT;
auto indexing = milvus::index::IndexFactory::GetInstance().CreateIndex(create_index_info, nullptr);
auto build_conf = knowhere::Config{{knowhere::meta::METRIC_TYPE, knowhere::metric::L2},
{knowhere::meta::DIM, std::to_string(dim)},
{knowhere::indexparam::NLIST, "100"}};
auto search_conf = knowhere::Config{{knowhere::indexparam::NPROBE, 10}};
auto database = knowhere::GenDataset(N, dim, vec_col.data() + 1000 * dim);
indexing->BuildWithDataset(database, build_conf);
auto vec_index = dynamic_cast<milvus::index::VectorIndex*>(indexing.get());
EXPECT_EQ(vec_index->Count(), N);
EXPECT_EQ(vec_index->GetDim(), dim);
auto query_dataset = knowhere::GenDataset(num_queries, dim, query_ptr);
milvus::SearchInfo searchInfo;
searchInfo.topk_ = topK;
searchInfo.metric_type_ = knowhere::metric::L2;
searchInfo.search_params_ = search_conf;
auto result = vec_index->Query(query_dataset, searchInfo, nullptr);
auto ref_result = SearchResultToJson(*result);
LoadIndexInfo load_info;
load_info.field_id = fake_id.get();
load_info.index = std::move(indexing);
load_info.index_params["metric_type"] = "L2";
// load index for vec field, load raw data for scalar filed
auto sealed_segment = SealedCreator(schema, dataset);
sealed_segment->DropFieldData(fake_id);
sealed_segment->LoadIndex(load_info);
sr = sealed_segment->Search(plan.get(), ph_group.get(), time);
auto post_result = SearchResultToJson(*sr);
std::cout << "ref_result" << std::endl;
std::cout << ref_result.dump(1) << std::endl;
std::cout << "post_result" << std::endl;
std::cout << post_result.dump(1);
// ASSERT_EQ(ref_result.dump(1), post_result.dump(1));
sr = sealed_segment->Search(plan.get(), ph_group.get(), 0);
EXPECT_EQ(sr->get_total_result_count(), 0);
}
TEST(Sealed, with_predicate) {
using namespace milvus::query;
using namespace milvus::segcore;
auto schema = std::make_shared<Schema>();
auto dim = 16;
auto topK = 5;
auto metric_type = knowhere::metric::L2;
auto fake_id = schema->AddDebugField("fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
schema->set_primary_field_id(i64_fid);
std::string dsl = R"({
"bool": {
"must": [
{
"range": {
"counter": {
"GE": 42000,
"LT": 42005
}
}
},
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 5,
"round_decimal": 6
}
}
}
]
}
})";
auto N = ROW_COUNT;
auto dataset = DataGen(schema, N);
auto vec_col = dataset.get_col<float>(fake_id);
auto query_ptr = vec_col.data() + 42000 * dim;
auto segment = CreateGrowingSegment(schema);
segment->PreInsert(N);
segment->Insert(0, N, dataset.row_ids_.data(), dataset.timestamps_.data(), dataset.raw_);
auto plan = CreatePlan(*schema, dsl);
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroupFromBlob(num_queries, 16, query_ptr);
auto ph_group = ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
Timestamp time = 10000000;
std::vector<const PlaceholderGroup*> ph_group_arr = {ph_group.get()};
auto sr = segment->Search(plan.get(), ph_group.get(), time);
milvus::index::CreateIndexInfo create_index_info;
create_index_info.field_type = DataType::VECTOR_FLOAT;
create_index_info.metric_type = knowhere::metric::L2;
create_index_info.index_type = knowhere::IndexEnum::INDEX_FAISS_IVFFLAT;
auto indexing = milvus::index::IndexFactory::GetInstance().CreateIndex(create_index_info, nullptr);
auto build_conf = knowhere::Config{{knowhere::meta::METRIC_TYPE, knowhere::metric::L2},
{knowhere::meta::DIM, std::to_string(dim)},
{knowhere::indexparam::NLIST, "100"}};
auto database = knowhere::GenDataset(N, dim, vec_col.data());
indexing->BuildWithDataset(database, build_conf);
auto vec_index = dynamic_cast<index::VectorIndex*>(indexing.get());
EXPECT_EQ(vec_index->Count(), N);
EXPECT_EQ(vec_index->GetDim(), dim);
auto query_dataset = knowhere::GenDataset(num_queries, dim, query_ptr);
auto search_conf =
knowhere::Config{{knowhere::meta::METRIC_TYPE, knowhere::metric::L2}, {knowhere::indexparam::NPROBE, 10}};
milvus::SearchInfo searchInfo;
searchInfo.topk_ = topK;
searchInfo.metric_type_ = knowhere::metric::L2;
searchInfo.search_params_ = search_conf;
auto result = vec_index->Query(query_dataset, searchInfo, nullptr);
LoadIndexInfo load_info;
load_info.field_id = fake_id.get();
load_info.index = std::move(indexing);
load_info.index_params["metric_type"] = "L2";
// load index for vec field, load raw data for scalar filed
auto sealed_segment = SealedCreator(schema, dataset);
sealed_segment->DropFieldData(fake_id);
sealed_segment->LoadIndex(load_info);
sr = sealed_segment->Search(plan.get(), ph_group.get(), time);
for (int i = 0; i < num_queries; ++i) {
auto offset = i * topK;
ASSERT_EQ(sr->seg_offsets_[offset], 42000 + i);
ASSERT_EQ(sr->distances_[offset], 0.0);
}
}
TEST(Sealed, with_predicate_filter_all) {
using namespace milvus::query;
using namespace milvus::segcore;
auto schema = std::make_shared<Schema>();
auto dim = 16;
auto topK = 5;
// auto metric_type = MetricType::METRIC_L2;
auto metric_type = knowhere::metric::L2;
auto fake_id = schema->AddDebugField("fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
schema->set_primary_field_id(i64_fid);
std::string dsl = R"({
"bool": {
"must": [
{
"range": {
"counter": {
"GE": 42000,
"LT": 41999
}
}
},
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 5,
"round_decimal": 6
}
}
}
]
}
})";
auto N = ROW_COUNT;
auto dataset = DataGen(schema, N);
auto vec_col = dataset.get_col<float>(fake_id);
auto query_ptr = vec_col.data() + 42000 * dim;
auto plan = CreatePlan(*schema, dsl);
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroupFromBlob(num_queries, 16, query_ptr);
auto ph_group = ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
Timestamp time = 10000000;
std::vector<const PlaceholderGroup*> ph_group_arr = {ph_group.get()};
milvus::index::CreateIndexInfo create_index_info;
create_index_info.field_type = DataType::VECTOR_FLOAT;
create_index_info.metric_type = knowhere::metric::L2;
create_index_info.index_type = knowhere::IndexEnum::INDEX_FAISS_IVFFLAT;
auto ivf_indexing = milvus::index::IndexFactory::GetInstance().CreateIndex(create_index_info, nullptr);
auto ivf_build_conf = knowhere::Config{{knowhere::meta::DIM, std::to_string(dim)},
{knowhere::indexparam::NLIST, "100"},
{knowhere::meta::METRIC_TYPE, knowhere::metric::L2}};
auto database = knowhere::GenDataset(N, dim, vec_col.data());
ivf_indexing->BuildWithDataset(database, ivf_build_conf);
auto ivf_vec_index = dynamic_cast<index::VectorIndex*>(ivf_indexing.get());
EXPECT_EQ(ivf_vec_index->Count(), N);
EXPECT_EQ(ivf_vec_index->GetDim(), dim);
LoadIndexInfo load_info;
load_info.field_id = fake_id.get();
load_info.index = std::move(ivf_indexing);
load_info.index_params["metric_type"] = "L2";
// load index for vec field, load raw data for scalar filed
auto ivf_sealed_segment = SealedCreator(schema, dataset);
ivf_sealed_segment->DropFieldData(fake_id);
ivf_sealed_segment->LoadIndex(load_info);
auto sr = ivf_sealed_segment->Search(plan.get(), ph_group.get(), time);
EXPECT_EQ(sr->get_total_result_count(), 0);
auto hnsw_conf = knowhere::Config{{knowhere::meta::DIM, std::to_string(dim)},
{knowhere::indexparam::HNSW_M, "16"},
{knowhere::indexparam::EFCONSTRUCTION, "200"},
{knowhere::indexparam::EF, "200"},
{knowhere::meta::METRIC_TYPE, knowhere::metric::L2}};
create_index_info.field_type = DataType::VECTOR_FLOAT;
create_index_info.metric_type = knowhere::metric::L2;
create_index_info.index_type = knowhere::IndexEnum::INDEX_HNSW;
auto hnsw_indexing = milvus::index::IndexFactory::GetInstance().CreateIndex(create_index_info, nullptr);
hnsw_indexing->BuildWithDataset(database, hnsw_conf);
auto hnsw_vec_index = dynamic_cast<index::VectorIndex*>(hnsw_indexing.get());
EXPECT_EQ(hnsw_vec_index->Count(), N);
EXPECT_EQ(hnsw_vec_index->GetDim(), dim);
LoadIndexInfo hnsw_load_info;
hnsw_load_info.field_id = fake_id.get();
hnsw_load_info.index = std::move(hnsw_indexing);
hnsw_load_info.index_params["metric_type"] = "L2";
// load index for vec field, load raw data for scalar filed
auto hnsw_sealed_segment = SealedCreator(schema, dataset);
hnsw_sealed_segment->DropFieldData(fake_id);
hnsw_sealed_segment->LoadIndex(hnsw_load_info);
auto sr2 = hnsw_sealed_segment->Search(plan.get(), ph_group.get(), time);
EXPECT_EQ(sr2->get_total_result_count(), 0);
}
TEST(Sealed, LoadFieldData) {
auto dim = 16;
auto topK = 5;
auto N = ROW_COUNT;
auto metric_type = knowhere::metric::L2;
auto schema = std::make_shared<Schema>();
auto fakevec_id = schema->AddDebugField("fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto counter_id = schema->AddDebugField("counter", DataType::INT64);
auto double_id = schema->AddDebugField("double", DataType::DOUBLE);
auto nothing_id = schema->AddDebugField("nothing", DataType::INT32);
auto str_id = schema->AddDebugField("str", DataType::VARCHAR);
schema->set_primary_field_id(counter_id);
auto dataset = DataGen(schema, N);
auto fakevec = dataset.get_col<float>(fakevec_id);
auto indexing = GenVecIndexing(N, dim, fakevec.data());
auto segment = CreateSealedSegment(schema);
std::string dsl = R"({
"bool": {
"must": [
{
"range": {
"double": {
"GE": -1,
"LT": 1
}
}
},
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 5,
"round_decimal": 3
}
}
}
]
}
})";
Timestamp time = 1000000;
auto plan = CreatePlan(*schema, dsl);
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, 16, 1024);
auto ph_group = ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), time));
SealedLoadFieldData(dataset, *segment);
segment->DropFieldData(nothing_id);
segment->Search(plan.get(), ph_group.get(), time);
segment->DropFieldData(fakevec_id);
ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), time));
LoadIndexInfo vec_info;
vec_info.field_id = fakevec_id.get();
vec_info.index = std::move(indexing);
vec_info.index_params["metric_type"] = knowhere::metric::L2;
segment->LoadIndex(vec_info);
ASSERT_EQ(segment->num_chunk(), 1);
ASSERT_EQ(segment->num_chunk_index(double_id), 0);
ASSERT_EQ(segment->num_chunk_index(str_id), 0);
auto chunk_span1 = segment->chunk_data<int64_t>(counter_id, 0);
auto chunk_span2 = segment->chunk_data<double>(double_id, 0);
auto chunk_span3 = segment->chunk_data<std::string>(str_id, 0);
auto ref1 = dataset.get_col<int64_t>(counter_id);
auto ref2 = dataset.get_col<double>(double_id);
auto ref3 = dataset.get_col(str_id)->scalars().string_data().data();
for (int i = 0; i < N; ++i) {
ASSERT_EQ(chunk_span1[i], ref1[i]);
ASSERT_EQ(chunk_span2[i], ref2[i]);
ASSERT_EQ(chunk_span3[i], ref3[i]);
}
auto sr = segment->Search(plan.get(), ph_group.get(), time);
auto json = SearchResultToJson(*sr);
std::cout << json.dump(1);
segment->DropIndex(fakevec_id);
ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), time));
// segment->LoadIndex(vec_info);
// auto sr2 = segment->Search(plan.get(), ph_group.get(), time);
// auto json2 = SearchResultToJson(*sr);
// ASSERT_EQ(json.dump(-2), json2.dump(-2));
// segment->DropFieldData(double_id);
// ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), time));
//#ifdef __linux__
// auto std_json = Json::parse(R"(
//[
// [
// ["982->0.000000", "25315->4.742000", "57893->4.758000", "48201->6.075000", "53853->6.223000"],
// ["41772->10.111000", "74859->11.790000", "79777->11.842000", "3785->11.983000", "35888->12.193000"],
// ["59251->2.543000", "65551->4.454000", "72204->5.332000", "96905->5.479000", "87833->5.765000"],
// ["59219->5.458000", "21995->6.078000", "97922->6.764000", "25710->7.158000", "14048->7.294000"],
// ["66353->5.696000", "30664->5.881000", "41087->5.917000", "10393->6.633000", "90215->7.202000"]
// ]
//])");
//#else // for mac
// auto std_json = Json::parse(R"(
//[
// [
// ["982->0.000000", "31864->4.270000", "18916->4.651000", "71547->5.125000", "86706->5.991000"],
// ["96984->4.192000", "65514->6.011000", "89328->6.138000", "80284->6.526000", "68218->6.563000"],
// ["30119->2.464000", "82365->4.725000", "74834->5.009000", "79995->5.725000", "33359->5.816000"],
// ["99625->6.129000", "86582->6.900000", "85934->7.792000", "60450->8.087000", "19257->8.530000"],
// ["37759->3.581000", "31292->5.780000", "98124->6.216000", "63535->6.439000", "11707->6.553000"]
// ]
//])");
//#endif
// ASSERT_EQ(std_json.dump(-2), json.dump(-2));
}
TEST(Sealed, LoadScalarIndex) {
auto dim = 16;
auto N = ROW_COUNT;
auto metric_type = knowhere::metric::L2;
auto schema = std::make_shared<Schema>();
auto fakevec_id = schema->AddDebugField("fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto counter_id = schema->AddDebugField("counter", DataType::INT64);
auto double_id = schema->AddDebugField("double", DataType::DOUBLE);
auto nothing_id = schema->AddDebugField("nothing", DataType::INT32);
schema->set_primary_field_id(counter_id);
auto dataset = DataGen(schema, N);
auto fakevec = dataset.get_col<float>(fakevec_id);
auto indexing = GenVecIndexing(N, dim, fakevec.data());
auto segment = CreateSealedSegment(schema);
std::string dsl = R"({
"bool": {
"must": [
{
"range": {
"double": {
"GE": -1,
"LT": 1
}
}
},
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 5,
"round_decimal": 3
}
}
}
]
}
})";
Timestamp time = 1000000;
auto plan = CreatePlan(*schema, dsl);
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, 16, 1024);
auto ph_group = ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
LoadFieldDataInfo row_id_info;
FieldMeta row_id_field_meta(FieldName("RowID"), RowFieldID, DataType::INT64);
auto array = CreateScalarDataArrayFrom(dataset.row_ids_.data(), N, row_id_field_meta);
row_id_info.field_data = array.release();
row_id_info.row_count = dataset.row_ids_.size();
row_id_info.field_id = RowFieldID.get(); // field id for RowId
segment->LoadFieldData(row_id_info);
LoadFieldDataInfo ts_info;
FieldMeta ts_field_meta(FieldName("Timestamp"), TimestampFieldID, DataType::INT64);
array = CreateScalarDataArrayFrom(dataset.timestamps_.data(), N, ts_field_meta);
ts_info.field_data = array.release();
ts_info.row_count = dataset.timestamps_.size();
ts_info.field_id = TimestampFieldID.get();
segment->LoadFieldData(ts_info);
LoadIndexInfo vec_info;
vec_info.field_id = fakevec_id.get();
vec_info.field_type = DataType::VECTOR_FLOAT;
vec_info.index = std::move(indexing);
vec_info.index_params["metric_type"] = knowhere::metric::L2;
segment->LoadIndex(vec_info);
LoadIndexInfo counter_index;
counter_index.field_id = counter_id.get();
counter_index.field_type = DataType::INT64;
counter_index.index_params["index_type"] = "sort";
auto counter_data = dataset.get_col<int64_t>(counter_id);
counter_index.index = std::move(GenScalarIndexing<int64_t>(N, counter_data.data()));
segment->LoadIndex(counter_index);
LoadIndexInfo double_index;
double_index.field_id = double_id.get();
double_index.field_type = DataType::DOUBLE;
double_index.index_params["index_type"] = "sort";
auto double_data = dataset.get_col<double>(double_id);
double_index.index = std::move(GenScalarIndexing<double>(N, double_data.data()));
segment->LoadIndex(double_index);
LoadIndexInfo nothing_index;
nothing_index.field_id = nothing_id.get();
nothing_index.field_type = DataType::INT32;
nothing_index.index_params["index_type"] = "sort";
auto nothing_data = dataset.get_col<int32_t>(nothing_id);
nothing_index.index = std::move(GenScalarIndexing<int32_t>(N, nothing_data.data()));
segment->LoadIndex(nothing_index);
auto sr = segment->Search(plan.get(), ph_group.get(), time);
auto json = SearchResultToJson(*sr);
std::cout << json.dump(1);
}
TEST(Sealed, Delete) {
auto dim = 16;
auto topK = 5;
auto N = 10;
auto metric_type = knowhere::metric::L2;
auto schema = std::make_shared<Schema>();
auto fakevec_id = schema->AddDebugField("fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto counter_id = schema->AddDebugField("counter", DataType::INT64);
auto double_id = schema->AddDebugField("double", DataType::DOUBLE);
auto nothing_id = schema->AddDebugField("nothing", DataType::INT32);
schema->set_primary_field_id(counter_id);
auto dataset = DataGen(schema, N);
auto fakevec = dataset.get_col<float>(fakevec_id);
auto segment = CreateSealedSegment(schema);
std::string dsl = R"({
"bool": {
"must": [
{
"range": {
"double": {
"GE": -1,
"LT": 1
}
}
},
{
"vector": {
"fakevec": {
"metric_type": "L2",
"params": {
"nprobe": 10
},
"query": "$0",
"topk": 5,
"round_decimal": 3
}
}
}
]
}
})";
Timestamp time = 1000000;
auto plan = CreatePlan(*schema, dsl);
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, 16, 1024);
auto ph_group = ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
ASSERT_ANY_THROW(segment->Search(plan.get(), ph_group.get(), time));
SealedLoadFieldData(dataset, *segment);
int64_t row_count = 5;
std::vector<idx_t> pks{1, 2, 3, 4, 5};
auto ids = std::make_unique<IdArray>();
ids->mutable_int_id()->mutable_data()->Add(pks.begin(), pks.end());
std::vector<Timestamp> timestamps{10, 10, 10, 10, 10};
LoadDeletedRecordInfo info = {timestamps.data(), ids.get(), row_count};
segment->LoadDeletedRecord(info);
std::vector<uint8_t> tmp_block{0, 0};
BitsetType bitset(N, false);
segment->mask_with_delete(bitset, 10, 11);
ASSERT_EQ(bitset.count(), pks.size());
int64_t new_count = 3;
std::vector<idx_t> new_pks{6, 7, 8};
auto new_ids = std::make_unique<IdArray>();
new_ids->mutable_int_id()->mutable_data()->Add(new_pks.begin(), new_pks.end());
std::vector<idx_t> new_timestamps{10, 10, 10};
auto reserved_offset = segment->PreDelete(new_count);
ASSERT_EQ(reserved_offset, row_count);
segment->Delete(reserved_offset, new_count, new_ids.get(),
reinterpret_cast<const Timestamp*>(new_timestamps.data()));
}
auto
GenMaxFloatVecs(int N, int dim) {
std::vector<float> vecs;
for (int i = 0; i < N; i++) {
for (int j = 0; j < dim; j++) {
vecs.push_back(std::numeric_limits<float>::max());
}
}
return vecs;
}
auto
GenRandomFloatVecs(int N, int dim) {
std::vector<float> vecs;
srand(time(NULL));
for (int i = 0; i < N; i++) {
for (int j = 0; j < dim; j++) {
vecs.push_back(static_cast<float>(rand()) / static_cast<float>(RAND_MAX));
}
}
return vecs;
}
auto
GenQueryVecs(int N, int dim) {
std::vector<float> vecs;
for (int i = 0; i < N; i++) {
for (int j = 0; j < dim; j++) {
vecs.push_back(1);
}
}
return vecs;
}
auto
transfer_to_fields_data(const std::vector<float>& vecs) {
auto arr = std::make_unique<DataArray>();
*(arr->mutable_vectors()->mutable_float_vector()->mutable_data()) = {vecs.begin(), vecs.end()};
return arr;
}
TEST(Sealed, BF) {
auto schema = std::make_shared<Schema>();
auto dim = 128;
auto metric_type = "L2";
auto fake_id = schema->AddDebugField("fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
schema->set_primary_field_id(i64_fid);
int64_t N = 100000;
auto base = GenRandomFloatVecs(N, dim);
auto base_arr = transfer_to_fields_data(base);
base_arr->set_type(proto::schema::DataType::FloatVector);
LoadFieldDataInfo load_info{100, base_arr.get(), N};
auto dataset = DataGen(schema, N);
auto segment = CreateSealedSegment(schema);
std::cout << fake_id.get() << std::endl;
SealedLoadFieldData(dataset, *segment, {fake_id.get()});
segment->LoadFieldData(load_info);
auto topK = 1;
auto fmt = boost::format(R"(vector_anns: <
field_id: 100
query_info: <
topk: %1%
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0">
output_field_ids: 101)") %
topK;
auto serialized_expr_plan = fmt.str();
auto binary_plan = translate_text_plan_to_binary_plan(serialized_expr_plan.data());
auto plan = CreateSearchPlanByExpr(*schema, binary_plan.data(), binary_plan.size());
auto num_queries = 10;
auto query = GenQueryVecs(num_queries, dim);
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, query);
auto ph_group = ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
auto result = segment->Search(plan.get(), ph_group.get(), MAX_TIMESTAMP);
auto ves = SearchResultToVector(*result);
// first: offset, second: distance
EXPECT_GT(ves[0].first, 0);
EXPECT_LE(ves[0].first, N);
EXPECT_LE(ves[0].second, dim);
auto result2 = segment->Search(plan.get(), ph_group.get(), 0);
EXPECT_EQ(result2->get_total_result_count(), 0);
}
TEST(Sealed, BF_Overflow) {
auto schema = std::make_shared<Schema>();
auto dim = 128;
auto metric_type = "L2";
auto fake_id = schema->AddDebugField("fakevec", DataType::VECTOR_FLOAT, dim, metric_type);
auto i64_fid = schema->AddDebugField("counter", DataType::INT64);
schema->set_primary_field_id(i64_fid);
int64_t N = 10;
auto base = GenMaxFloatVecs(N, dim);
auto base_arr = transfer_to_fields_data(base);
base_arr->set_type(proto::schema::DataType::FloatVector);
LoadFieldDataInfo load_info{100, base_arr.get(), N};
auto dataset = DataGen(schema, N);
auto segment = CreateSealedSegment(schema);
std::cout << fake_id.get() << std::endl;
SealedLoadFieldData(dataset, *segment, {fake_id.get()});
segment->LoadFieldData(load_info);
auto topK = 1;
auto fmt = boost::format(R"(vector_anns: <
field_id: 100
query_info: <
topk: %1%
metric_type: "L2"
search_params: "{\"nprobe\": 10}"
>
placeholder_tag: "$0">
output_field_ids: 101)") %
topK;
auto serialized_expr_plan = fmt.str();
auto binary_plan = translate_text_plan_to_binary_plan(serialized_expr_plan.data());
auto plan = CreateSearchPlanByExpr(*schema, binary_plan.data(), binary_plan.size());
auto num_queries = 10;
auto query = GenQueryVecs(num_queries, dim);
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, query);
auto ph_group = ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
auto result = segment->Search(plan.get(), ph_group.get(), MAX_TIMESTAMP);
auto ves = SearchResultToVector(*result);
for (int i = 0; i < num_queries; ++i) {
EXPECT_EQ(ves[0].first, -1);
}
}
TEST(Sealed, DeleteCount) {
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
schema->set_primary_field_id(pk);
auto segment = CreateSealedSegment(schema);
int64_t c = 10;
auto offset = segment->PreDelete(c);
ASSERT_EQ(offset, 0);
Timestamp begin_ts = 100;
auto tss = GenTss(c, begin_ts);
auto pks = GenPKs(c, 0);
auto status = segment->Delete(offset, c, pks.get(), tss.data());
ASSERT_TRUE(status.ok());
auto cnt = segment->get_deleted_count();
ASSERT_EQ(cnt, c);
}
TEST(Sealed, RealCount) {
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
schema->set_primary_field_id(pk);
auto segment = CreateSealedSegment(schema);
int64_t c = 10;
auto dataset = DataGen(schema, c);
auto pks = dataset.get_col<int64_t>(pk);
SealedLoadFieldData(dataset, *segment);
// no delete.
ASSERT_EQ(c, segment->get_real_count());
// delete half.
auto half = c / 2;
auto del_offset1 = segment->PreDelete(half);
ASSERT_EQ(del_offset1, 0);
auto del_ids1 = GenPKs(pks.begin(), pks.begin() + half);
auto del_tss1 = GenTss(half, c);
auto status = segment->Delete(del_offset1, half, del_ids1.get(), del_tss1.data());
ASSERT_TRUE(status.ok());
ASSERT_EQ(c - half, segment->get_real_count());
// delete duplicate.
auto del_offset2 = segment->PreDelete(half);
ASSERT_EQ(del_offset2, half);
auto del_tss2 = GenTss(half, c + half);
status = segment->Delete(del_offset2, half, del_ids1.get(), del_tss2.data());
ASSERT_TRUE(status.ok());
ASSERT_EQ(c - half, segment->get_real_count());
// delete all.
auto del_offset3 = segment->PreDelete(c);
ASSERT_EQ(del_offset3, half * 2);
auto del_ids3 = GenPKs(pks.begin(), pks.end());
auto del_tss3 = GenTss(c, c + half * 2);
status = segment->Delete(del_offset3, c, del_ids3.get(), del_tss3.data());
ASSERT_TRUE(status.ok());
ASSERT_EQ(0, segment->get_real_count());
}